Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with...Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with hydraulic fracturing in a relatively high confidence level and accuracy.In this study,we present a multidimensional DIRECT inversion method for microseismic locations and applicability tests over modeling data based on a downhole microseismic monitoring system.Synthetic tests inidcate that the objective function of locations can be defined as a multi-dimensional matrix space by employing the global optimization DIRECT algorithm,because it can be run without the initial value and objective function derivation,and the discretely scattered objective points lead to an expeditious contraction of objective functions in each dimension.This study shows that the DIRECT algorithm can be extensively applied in real downhole microseismic monitoring data from hydraulic fracturing completions.Therefore,the methodology,based on a multidimensional DIRECT algorithm,can provide significant high accuracy and convergent efficiency as well as robust computation for interpretable spatiotemporal microseismic evolution,which is more suitable for real-time processing of a large amount of downhole microseismic monitoring data.展开更多
X oilfield has successfully adopted horizontal wells to develop strong bottom water reservoirs, as a typical representative of development styles in the Bohai offshore oilfield. At present, many contributions to metho...X oilfield has successfully adopted horizontal wells to develop strong bottom water reservoirs, as a typical representative of development styles in the Bohai offshore oilfield. At present, many contributions to methods of inverting relative permeability curve and forecasting residual recoverable reserves had been made by investigators, but rarely involved in horizontal wells’ in bottom water reservoir. As the pore volume injected was less (usually under 30 PV), the relative permeability curve endpoint had become a serious distortion. That caused a certain deviation in forecasting residual recoverable reserves in the practical value of field directly. For the performance of water cresting, the common method existed some problems, such as no pertinence, ineffectiveness and less affecting factors considered. This paper adopts the streamlines theory with two phases flowing to solve that. Meanwhile, based on the research coupling genetic algorithm, optimized relative permeability curve was calculated by bottom-water drive model. The residual oil saturation calculated was lower than the initial’s, and the hydrophilic property was more reinforced, due to improving the pore volume injected vastly. Also, the study finally helped us enhance residual recoverable reserves degree at high water cut stage, more than 20%, taking Guantao sandstone as an example. As oil field being gradually entering high water cut stage, this method had a great significance to evaluate the development effect and guide the potential of the reservoir.展开更多
Water levels in reservoirs are generally not allowed to exceed the flood-limited water level during the flood season, which means that huge amounts of water spill in order to provide adequate storage for flood prevent...Water levels in reservoirs are generally not allowed to exceed the flood-limited water level during the flood season, which means that huge amounts of water spill in order to provide adequate storage for flood prevention and that it is difficult to fill the reservoir fully at the end of year. Early reservoir refill is an effective method for addressing the contradiction between the needs of flood control and of comprehensive utilization. This study selected the Danjiangkou Reservoir, which is the water source for the middle route of the South-North Water Diversion Project (SNWDP) in China, as a case study, and analyzed the necessity and operational feasibility of early reservoir refill. An early reservoir refill model is proposed based on the maximum average storage ratio, optimized by the progressive optimality algorithm, and the optimal scheduling schemes were obtained. Results show that the best time of refill operation for the Danjiangkou Reservoir is September 15, and the upper limit water level during September is 166 m. The proposed early refill scheme, in stages, can increase the annual average storage ratio from 77.51% to 81.99%, and decrease spilled water from 2.439 × 109 m^3 to 1.692×109 m^3, in comparison to the original design scheme. The suggested early significant comprehensive benefits, which decision-making. reservoir refill scheme can be easily operated with may provide a good reference for scheduling展开更多
The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of re...The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of reservoir operation on the river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied with a focus on maintaining a healthy river ecosystem. This study considered ecological operation targets, including maintaining the river environmental flow and protecting the spawning and reproduction of the Chinese sturgeon and four major Chinese carps. Using flow data from 1900 to 2006 at the Yichang gauging station as the control station data for the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets for the Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. This paper proposes a reservoir ecological operation model, which comprehensively considers flood control, power generation, navigation, and the ecological environment. Three typical periods, wet, normal, and dry years, were selected, and the particle swarm optimization algorithm was used to analyze the model. The results show that ecological operation modes have different effects on the economic benefit of the hydropower station, and the reservoir ecological operation model can simulate the flood pulse for the requirements of spawning of the Chinese sturgeon and four major Chinese carps. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand is met. The results provide a reference for designing reasonable operation schemes for the Three Gorges Reservoir.展开更多
In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for ...In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for the present study is developed in ‘C’ Language. The GA parameters i.e. population size, number of generations, crossover probability, and mutation probability are decided based on optimized val-ues of fitness function. The GA operators adopted are stochastic remainder selection, one point crossover and binary mutation. Initially the model is run for maximization of irrigation releases. Then the model is run for maximization of hydropower production. These objectives are fuzzified by assuming a linear membership function. These fuzzified objectives are simultaneously maximized by defining level of satisfaction (?) and then maximizing it. This approach is applied to a multireservoir system in Godavari river sub basin in Ma-harashtra State, India. Problem is formulated with 4 reservoirs and a barrage. The optimal operation policy for maximization of irrigation releases, maximization of hydropower production and maximization of level of satisfaction is presented for existing demand in command area. This optimal operation policy so deter-mined is compared with the actual average operation policy for Jayakwadi Stage-I reservoir.展开更多
Unexpected noise in reservoir stochastic simulation realization may be too high to make the realization useful, especially when there is a lack of hard data. Through discussing the uncertainties, we present two ways t...Unexpected noise in reservoir stochastic simulation realization may be too high to make the realization useful, especially when there is a lack of hard data. Through discussing the uncertainties, we present two ways to control the uncertainty ratio that is brought by the algorithm of stochastic simulation. By reasonably reducing the random value of the stochastic simulation result, the unexpected values introduced by the residual that associates with random series can be controlled. Another way when the data disperse unevenly is to control the stochastic simulation order by grouping the points that need to be simulated to make those points which can be simulated by more neighborhood hard data calculated first. Both methods do not go against the core stochastic simulation algorithm.展开更多
Aiming at the problem that traditional optimal operation of hydropower reservoir pays little attention to ecology, an optimal operation model of multi-objective hydropower reservoir with ecology consideration is estab...Aiming at the problem that traditional optimal operation of hydropower reservoir pays little attention to ecology, an optimal operation model of multi-objective hydropower reservoir with ecology consideration is established which combines the ecology and power generation. The model takes the maximum annual power generation benefit, the maximum output of the minimal output stage in the year and the minimum shortage of ecological water demand as objectives, and water quantity balance of reservoir, reservoir storage, discharge flow, output and so on as constraints. Chaotic genetic arithmetic is developed to solve the optimal model. An example is studied, showing that the annual generation of the proposed model is 8 million kW?h less than that model without ecology consideration, which is about 0.28 percent. But the proposed model is in favor of river ecology protection, and can promote the sustainable utilization of water resources. So it is worthy and necessary for the optimal operation of hydropower reservoir with ecology consideration.展开更多
The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. T...The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. This is one of the most effective ways to exploit limited oil reserves more economically and efficiently. There are two steps in closed-loop reservoir management: automatic history matching and reservoir production opti- mization. Both of the steps are large-scale complicated optimization problems. This paper gives a general review of the two basic techniques in closed-loop reservoir man- agement; summarizes the applications of gradient-based algorithms, gradient-free algorithms, and artificial intelligence algorithms; analyzes the characteristics and application conditions of these optimization methods; and finally discusses the emphases and directions of future research on both automatic history matching and reservoir production optimization.展开更多
Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of S...Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of Suez, Egypt. HSO algorithm has the following advantages:(1) The good balance between exploration and exploitation techniques during searching for optimal solutions makes the HSO algorithm robust and efficient.(2) The diversity of generated solutions is more effectively controlled by two components, making it suitable for highly non-linear problems in reservoir engineering history matching.(3) The integration between the three components(harmony memory values, pitch adjusting and randomization) of the HSO helps in finding unbiased solutions.(4) The implementation process of the HSO algorithm is much easier. The HSO algorithm and two other commonly used algorithms(genetic and particle swarm optimization algorithms) were used in three reservoir engineering history match questions of different complex degrees, which are two material balance history matches of different scales and one reservoir history matching. The results were compared, which proves the superiority and validity of HSO. The results of Kareem reservoir history matching show that using the HSO algorithm as the optimization method in the assisted history matching workflow improves the simulation quality and saves solution time significantly.展开更多
考虑到当前梯级水库蓄水调度研究尚未开展碳减排调度,基于碳排放因子法提出了梯级水库蓄水期水碳多目标调度模型,制定了梯级水库提前蓄水策略,并以防洪风险最小化、发电量最大化和温室气体排放量最小化为调度目标,采用NSGA-II求解调度...考虑到当前梯级水库蓄水调度研究尚未开展碳减排调度,基于碳排放因子法提出了梯级水库蓄水期水碳多目标调度模型,制定了梯级水库提前蓄水策略,并以防洪风险最小化、发电量最大化和温室气体排放量最小化为调度目标,采用NSGA-II求解调度模型推求了梯级水库蓄水期优化调度方案,在金沙江中下游6座水库与三峡水库组成的梯级水库开展了实例研究。结果表明:相较于现行调度方案,优化调度方案集在防洪库容占用率为0~4.92%的情况下,发电量提升了7.23~40.26亿kW·h/a(0.65%~3.60%),弃水量减少了15.82~55.03亿m^(3)/a(6.45%~22.43%),温室气体排放量降低了38.55~45.63 Gg CO_(2e)/a(8.33%~9.85%),碳排放强度降低了0.39~0.47 kg CO_(2e)/(MW·h)(9.49%~11.44%),显著提升了梯级水库的发电量、抗旱供水能力并减少了温室气体排放。研究成果为实现梯级水库蓄水期水碳协同调度提供了技术支撑。展开更多
Separator design in petroleum engineering is so important because of its important role in the evaluation of optimum parameters and also to achieve to maximum stock tank liquid. However, no simulator exists that simul...Separator design in petroleum engineering is so important because of its important role in the evaluation of optimum parameters and also to achieve to maximum stock tank liquid. However, no simulator exists that simultaneously and directly optimizes the parameters “pressure”, “temperature”, and so on. On the other hands, Commercial simulators fix one parameter and vary another parameter to achieve the optimum conditions. So, they need long-time simulation. Moreover, gas condensate reservoirs, like another reservoirs, have this problem as well. In present paper, a self-developed simulator applied in the optimized design of gas condensate reservoir’s separators by determining optimized pressure, temperature, and number of separators in order to obtain maximized tank liquid volume and minimized tank liquid density utilizing Matlab software and other commercial simulators such as Aspen-Plus, Aspen-Hysys, and PVTi to do a comparison. Also, each software was separately tested with one, two, and three separators to obtain the optimum number of separators. Additionally, Peng-Robinson equation of state (PR EOS) has been applied in the simulation. For simulation input, a set of field data of gas condensate reservoir has been utilized, as well. The results show a good compatibility of this simulator with other simulators but in so little runtime (this simulator calculates the optimum pressure and temperature in a wide range of pressures and temperatures with the help of a simultaneous optimization algorithm in one stage) and the highest stock tank liquid is calculated with this simulator in comparison to other simulators. Also, with the help of this simulator, we are able to obtain the optimum pressure, temperature, and the number of separators in the gas condensate reservoir’s separators with any desired properties. Finally, this simulator optimizes the temperatures for each separator and obtains very good results despite the other simulators that fix temperatures for all separators in most times.展开更多
In this paper, a novel empirical equation is proposed to calculate the relative permeability of low permeability reservoir. An improved item is introduced on the basis of Rose empirical formula and Al-Fattah empirical...In this paper, a novel empirical equation is proposed to calculate the relative permeability of low permeability reservoir. An improved item is introduced on the basis of Rose empirical formula and Al-Fattah empirical formula, with one simple model to describe oil/water relative permeability. The position displacement idea of bare bones particle swarm optimization is applied to change the mutation operator to improve the RNA genetic algorithm. The parameters of the new empirical equation are optimized with the hybrid RNA genetic algorithm(HRGA) based on the experimental data. The data is obtained from a typical low permeability reservoir well 54 core 27-1 in Gu Dong by unsteady method. We carry out matlab programming simulation with HRGA. The comparison and error analysis show that the empirical equation proposed is more accurate than the Rose empirical formula and the exponential model. The generalization of the empirical equation is also verified.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No. 41807296 and No. 41802006)Natural science found for universities of Anhui province (Grant No. KJ2017A036)
文摘Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with hydraulic fracturing in a relatively high confidence level and accuracy.In this study,we present a multidimensional DIRECT inversion method for microseismic locations and applicability tests over modeling data based on a downhole microseismic monitoring system.Synthetic tests inidcate that the objective function of locations can be defined as a multi-dimensional matrix space by employing the global optimization DIRECT algorithm,because it can be run without the initial value and objective function derivation,and the discretely scattered objective points lead to an expeditious contraction of objective functions in each dimension.This study shows that the DIRECT algorithm can be extensively applied in real downhole microseismic monitoring data from hydraulic fracturing completions.Therefore,the methodology,based on a multidimensional DIRECT algorithm,can provide significant high accuracy and convergent efficiency as well as robust computation for interpretable spatiotemporal microseismic evolution,which is more suitable for real-time processing of a large amount of downhole microseismic monitoring data.
文摘X oilfield has successfully adopted horizontal wells to develop strong bottom water reservoirs, as a typical representative of development styles in the Bohai offshore oilfield. At present, many contributions to methods of inverting relative permeability curve and forecasting residual recoverable reserves had been made by investigators, but rarely involved in horizontal wells’ in bottom water reservoir. As the pore volume injected was less (usually under 30 PV), the relative permeability curve endpoint had become a serious distortion. That caused a certain deviation in forecasting residual recoverable reserves in the practical value of field directly. For the performance of water cresting, the common method existed some problems, such as no pertinence, ineffectiveness and less affecting factors considered. This paper adopts the streamlines theory with two phases flowing to solve that. Meanwhile, based on the research coupling genetic algorithm, optimized relative permeability curve was calculated by bottom-water drive model. The residual oil saturation calculated was lower than the initial’s, and the hydrophilic property was more reinforced, due to improving the pore volume injected vastly. Also, the study finally helped us enhance residual recoverable reserves degree at high water cut stage, more than 20%, taking Guantao sandstone as an example. As oil field being gradually entering high water cut stage, this method had a great significance to evaluate the development effect and guide the potential of the reservoir.
基金supported by the National Natural Science Foundation of China(Grant No.51190094)the National Key Technologies Research and Development Program of China(Grant No.2009BAC56B02)
文摘Water levels in reservoirs are generally not allowed to exceed the flood-limited water level during the flood season, which means that huge amounts of water spill in order to provide adequate storage for flood prevention and that it is difficult to fill the reservoir fully at the end of year. Early reservoir refill is an effective method for addressing the contradiction between the needs of flood control and of comprehensive utilization. This study selected the Danjiangkou Reservoir, which is the water source for the middle route of the South-North Water Diversion Project (SNWDP) in China, as a case study, and analyzed the necessity and operational feasibility of early reservoir refill. An early reservoir refill model is proposed based on the maximum average storage ratio, optimized by the progressive optimality algorithm, and the optimal scheduling schemes were obtained. Results show that the best time of refill operation for the Danjiangkou Reservoir is September 15, and the upper limit water level during September is 166 m. The proposed early refill scheme, in stages, can increase the annual average storage ratio from 77.51% to 81.99%, and decrease spilled water from 2.439 × 109 m^3 to 1.692×109 m^3, in comparison to the original design scheme. The suggested early significant comprehensive benefits, which decision-making. reservoir refill scheme can be easily operated with may provide a good reference for scheduling
基金supported by the National Eleventh Five-Year Water Project Funded Projects of China (Grant No.2008ZX07209-002-04)the North China University of Water Resources and Electric Power Funded Projects (Grants No.200907 and 200910)the Scientific Research Fund for the Returned Overseas Chinese Scholars
文摘The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of reservoir operation on the river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied with a focus on maintaining a healthy river ecosystem. This study considered ecological operation targets, including maintaining the river environmental flow and protecting the spawning and reproduction of the Chinese sturgeon and four major Chinese carps. Using flow data from 1900 to 2006 at the Yichang gauging station as the control station data for the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets for the Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. This paper proposes a reservoir ecological operation model, which comprehensively considers flood control, power generation, navigation, and the ecological environment. Three typical periods, wet, normal, and dry years, were selected, and the particle swarm optimization algorithm was used to analyze the model. The results show that ecological operation modes have different effects on the economic benefit of the hydropower station, and the reservoir ecological operation model can simulate the flood pulse for the requirements of spawning of the Chinese sturgeon and four major Chinese carps. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand is met. The results provide a reference for designing reasonable operation schemes for the Three Gorges Reservoir.
文摘In this paper, a multi objective, multireservoir operation model is proposed using Genetic algorithm (GA) under fuzzy environment. A monthly Multi Objective Genetic Algorithm Fuzzy Optimization (MOGAFU-OPT) model for the present study is developed in ‘C’ Language. The GA parameters i.e. population size, number of generations, crossover probability, and mutation probability are decided based on optimized val-ues of fitness function. The GA operators adopted are stochastic remainder selection, one point crossover and binary mutation. Initially the model is run for maximization of irrigation releases. Then the model is run for maximization of hydropower production. These objectives are fuzzified by assuming a linear membership function. These fuzzified objectives are simultaneously maximized by defining level of satisfaction (?) and then maximizing it. This approach is applied to a multireservoir system in Godavari river sub basin in Ma-harashtra State, India. Problem is formulated with 4 reservoirs and a barrage. The optimal operation policy for maximization of irrigation releases, maximization of hydropower production and maximization of level of satisfaction is presented for existing demand in command area. This optimal operation policy so deter-mined is compared with the actual average operation policy for Jayakwadi Stage-I reservoir.
文摘Unexpected noise in reservoir stochastic simulation realization may be too high to make the realization useful, especially when there is a lack of hard data. Through discussing the uncertainties, we present two ways to control the uncertainty ratio that is brought by the algorithm of stochastic simulation. By reasonably reducing the random value of the stochastic simulation result, the unexpected values introduced by the residual that associates with random series can be controlled. Another way when the data disperse unevenly is to control the stochastic simulation order by grouping the points that need to be simulated to make those points which can be simulated by more neighborhood hard data calculated first. Both methods do not go against the core stochastic simulation algorithm.
文摘Aiming at the problem that traditional optimal operation of hydropower reservoir pays little attention to ecology, an optimal operation model of multi-objective hydropower reservoir with ecology consideration is established which combines the ecology and power generation. The model takes the maximum annual power generation benefit, the maximum output of the minimal output stage in the year and the minimum shortage of ecological water demand as objectives, and water quantity balance of reservoir, reservoir storage, discharge flow, output and so on as constraints. Chaotic genetic arithmetic is developed to solve the optimal model. An example is studied, showing that the annual generation of the proposed model is 8 million kW?h less than that model without ecology consideration, which is about 0.28 percent. But the proposed model is in favor of river ecology protection, and can promote the sustainable utilization of water resources. So it is worthy and necessary for the optimal operation of hydropower reservoir with ecology consideration.
基金the Important National Science & Technology Specific Projects of China (Grant No. 2011ZX05024-004)the Natural Science Foundation for Distinguished Young Scholars of Shandong Province, China (Grant No. JQ201115)+2 种基金the Program for New Century Excellent Talents in University (Grant No. NCET-11-0734)the Fundamental Research Funds for the Central Universities (Grant No. 13CX05007A, 13CX05016A)the Program for Changjiang Scholars and Innovative Research Team in University (IRT1294)
文摘The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. This is one of the most effective ways to exploit limited oil reserves more economically and efficiently. There are two steps in closed-loop reservoir management: automatic history matching and reservoir production opti- mization. Both of the steps are large-scale complicated optimization problems. This paper gives a general review of the two basic techniques in closed-loop reservoir man- agement; summarizes the applications of gradient-based algorithms, gradient-free algorithms, and artificial intelligence algorithms; analyzes the characteristics and application conditions of these optimization methods; and finally discusses the emphases and directions of future research on both automatic history matching and reservoir production optimization.
文摘Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of Suez, Egypt. HSO algorithm has the following advantages:(1) The good balance between exploration and exploitation techniques during searching for optimal solutions makes the HSO algorithm robust and efficient.(2) The diversity of generated solutions is more effectively controlled by two components, making it suitable for highly non-linear problems in reservoir engineering history matching.(3) The integration between the three components(harmony memory values, pitch adjusting and randomization) of the HSO helps in finding unbiased solutions.(4) The implementation process of the HSO algorithm is much easier. The HSO algorithm and two other commonly used algorithms(genetic and particle swarm optimization algorithms) were used in three reservoir engineering history match questions of different complex degrees, which are two material balance history matches of different scales and one reservoir history matching. The results were compared, which proves the superiority and validity of HSO. The results of Kareem reservoir history matching show that using the HSO algorithm as the optimization method in the assisted history matching workflow improves the simulation quality and saves solution time significantly.
文摘考虑到当前梯级水库蓄水调度研究尚未开展碳减排调度,基于碳排放因子法提出了梯级水库蓄水期水碳多目标调度模型,制定了梯级水库提前蓄水策略,并以防洪风险最小化、发电量最大化和温室气体排放量最小化为调度目标,采用NSGA-II求解调度模型推求了梯级水库蓄水期优化调度方案,在金沙江中下游6座水库与三峡水库组成的梯级水库开展了实例研究。结果表明:相较于现行调度方案,优化调度方案集在防洪库容占用率为0~4.92%的情况下,发电量提升了7.23~40.26亿kW·h/a(0.65%~3.60%),弃水量减少了15.82~55.03亿m^(3)/a(6.45%~22.43%),温室气体排放量降低了38.55~45.63 Gg CO_(2e)/a(8.33%~9.85%),碳排放强度降低了0.39~0.47 kg CO_(2e)/(MW·h)(9.49%~11.44%),显著提升了梯级水库的发电量、抗旱供水能力并减少了温室气体排放。研究成果为实现梯级水库蓄水期水碳协同调度提供了技术支撑。
文摘Separator design in petroleum engineering is so important because of its important role in the evaluation of optimum parameters and also to achieve to maximum stock tank liquid. However, no simulator exists that simultaneously and directly optimizes the parameters “pressure”, “temperature”, and so on. On the other hands, Commercial simulators fix one parameter and vary another parameter to achieve the optimum conditions. So, they need long-time simulation. Moreover, gas condensate reservoirs, like another reservoirs, have this problem as well. In present paper, a self-developed simulator applied in the optimized design of gas condensate reservoir’s separators by determining optimized pressure, temperature, and number of separators in order to obtain maximized tank liquid volume and minimized tank liquid density utilizing Matlab software and other commercial simulators such as Aspen-Plus, Aspen-Hysys, and PVTi to do a comparison. Also, each software was separately tested with one, two, and three separators to obtain the optimum number of separators. Additionally, Peng-Robinson equation of state (PR EOS) has been applied in the simulation. For simulation input, a set of field data of gas condensate reservoir has been utilized, as well. The results show a good compatibility of this simulator with other simulators but in so little runtime (this simulator calculates the optimum pressure and temperature in a wide range of pressures and temperatures with the help of a simultaneous optimization algorithm in one stage) and the highest stock tank liquid is calculated with this simulator in comparison to other simulators. Also, with the help of this simulator, we are able to obtain the optimum pressure, temperature, and the number of separators in the gas condensate reservoir’s separators with any desired properties. Finally, this simulator optimizes the temperatures for each separator and obtains very good results despite the other simulators that fix temperatures for all separators in most times.
基金Supported by the National Natural Science Foundation of China(60974039)the Natural Science Foundation of Shandong Province(ZR2011FM002)
文摘In this paper, a novel empirical equation is proposed to calculate the relative permeability of low permeability reservoir. An improved item is introduced on the basis of Rose empirical formula and Al-Fattah empirical formula, with one simple model to describe oil/water relative permeability. The position displacement idea of bare bones particle swarm optimization is applied to change the mutation operator to improve the RNA genetic algorithm. The parameters of the new empirical equation are optimized with the hybrid RNA genetic algorithm(HRGA) based on the experimental data. The data is obtained from a typical low permeability reservoir well 54 core 27-1 in Gu Dong by unsteady method. We carry out matlab programming simulation with HRGA. The comparison and error analysis show that the empirical equation proposed is more accurate than the Rose empirical formula and the exponential model. The generalization of the empirical equation is also verified.