When a crowdsourcing approach is used to assist the classification of a set of items,the main objective is to classify this set of items by aggregating the worker-provided labels.A secondary objective is to assess the...When a crowdsourcing approach is used to assist the classification of a set of items,the main objective is to classify this set of items by aggregating the worker-provided labels.A secondary objective is to assess the workers’skill levels in this process.A classical model that achieves both objectives is the famous Dawid-Skene model.In this paper,we consider a third objective in this context,namely,to learn a classifier that is capable of labelling future items without further assistance of crowd workers.By extending the DawidSkene model to include the item features into consideration,we develop a Classification-Oriented Dawid Skene(CODS)model,which achieves the three objectives simultaneously.The effectiveness of CODS on this three dimensions of the problem space is demonstrated experimentally.展开更多
基金supported in part by the National Key R&D Program of China(2021ZD0110700)in part by the Fundamental Research Funds for the Central Universities,in part by the State Key Laboratory of Software Development Environmentin part by a Leverhulme Trust Research Project Grant.
文摘When a crowdsourcing approach is used to assist the classification of a set of items,the main objective is to classify this set of items by aggregating the worker-provided labels.A secondary objective is to assess the workers’skill levels in this process.A classical model that achieves both objectives is the famous Dawid-Skene model.In this paper,we consider a third objective in this context,namely,to learn a classifier that is capable of labelling future items without further assistance of crowd workers.By extending the DawidSkene model to include the item features into consideration,we develop a Classification-Oriented Dawid Skene(CODS)model,which achieves the three objectives simultaneously.The effectiveness of CODS on this three dimensions of the problem space is demonstrated experimentally.