期刊文献+
共找到379篇文章
< 1 2 19 >
每页显示 20 50 100
Retrotransposon-mediated DELLA transcriptional reprograming underlies semi-dominant dwarfism in foxtail millet 被引量:7
1
作者 Meicheng Zhao Hui Zhi +2 位作者 Xue Zhang Guanqing Jia Xianmin Diao 《The Crop Journal》 SCIE CAS CSCD 2019年第4期458-468,共11页
Retrotransposons account for a large proportion of the genome and genomic variation, and play key roles in creating novel genes and diversifying the genome in many eukaryotic species. Although retrotransposons are abu... Retrotransposons account for a large proportion of the genome and genomic variation, and play key roles in creating novel genes and diversifying the genome in many eukaryotic species. Although retrotransposons are abundant in plants, their roles had been underestimated because of a lack of research. Here, we characterized a gibberellin Acid (GA)-insensitive dwarf mutant, 84133, in foxtail millet. Map-based cloning revealed a 5.5-kb Copia-like retrotransposon insertion in DWARF1 (D1), which encodes a DELLA protein. Transcriptional analysis showed that the Copia retrotransposon mediated the transcriptional reprogramming of D1 leading to a novel N-terminal-deleted truncated DELLA transcript that was putatively driven by Copia's LTR, namely D1-TT, and another chimeric transcript. The presence of D1-TT was confirmed by protein immunodetection analysis. Furthermore, D1-TT protein was resistant to GA3 treatment compared with the intact DELLA protein due to its inability to interact with the GA receptor, SiGID1. Overexpression of D1-TT in foxtail millet resulted in dwarf plants, confirming that it determines the dwarfism of 84133. Thus, our study documents a rare instance of long terminal repeat (LTR) retrotransposon-mediated transcriptional reprograming in the plant kingdom. These results shed light on the function of LTR retrotransposons in generating new gene functions and genetic diversity. 展开更多
关键词 RETROTRANSPOSON TRANSCRIPTIONAL reprogramming DELLA Dwarf breeding Foxtail millet (Setaria italica)
在线阅读 下载PDF
Metabolic reprogramming: a new option for the treatment of spinal cord injury 被引量:1
2
作者 Jiangjie Chen Jinyang Chen +11 位作者 Chao Yu Kaishun Xia Biao Yang Ronghao Wang Yi Li Kesi Shi Yuang Zhang Haibin Xu Xuesong Zhang Jingkai Wang Qixin Chen Chengzhen Liang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1042-1057,共16页
Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness ... Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness remains unsatisfactory.However,a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming.In this review,we explore the metabolic changes that occur during spinal cord injuries,their consequences,and the therapeutic tools available for metabolic reprogramming.Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling.However,spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism,lipid metabolism,and mitochondrial dysfunction.These metabolic disturbances lead to corresponding pathological changes,including the failure of axonal regeneration,the accumulation of scarring,and the activation of microglia.To rescue spinal cord injury at the metabolic level,potential metabolic reprogramming approaches have emerged,including replenishing metabolic substrates,reconstituting metabolic couplings,and targeting mitochondrial therapies to alter cell fate.The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury.To further advance the metabolic treatment of the spinal cord injury,future efforts should focus on a deeper understanding of neurometabolism,the development of more advanced metabolomics technologies,and the design of highly effective metabolic interventions. 展开更多
关键词 AXONS GLYCOLYSIS metabolic reprogramming metabolism mitochondria neural regeneration NEUROPROTECTION oxidative phosphorylation spinal cord injury therapy
暂未订购
Characteristic changes in astrocyte properties during astrocyte-to-neuron conversion induced by NeuroD1/Ascl1/Dlx2 被引量:1
3
作者 Qing He Zhen Wang +5 位作者 Yuchen Wang Mengjie Zhu Zhile Liang Kanghong Zhang Yuge Xu Gong Chen 《Neural Regeneration Research》 SCIE CAS 2025年第6期1801-1815,共15页
Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders.... Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders. However, a few recent studies have claimed that neural transcription factors cannot convert astrocytes into neurons, attributing the converted neurons to pre-existing neurons mis-expressing transgenes. In this study, we overexpressed three distinct neural transcription factors––NeuroD1, Ascl1, and Dlx2––in reactive astrocytes in mouse cortices subjected to stab injury, resulting in a series of significant changes in astrocyte properties. Initially, the three neural transcription factors were exclusively expressed in the nuclei of astrocytes. Over time, however, these astrocytes gradually adopted neuronal morphology, and the neural transcription factors was gradually observed in the nuclei of neuron-like cells instead of astrocytes. Furthermore,we noted that transcription factor-infected astrocytes showed a progressive decrease in the expression of astrocytic markers AQP4(astrocyte endfeet signal), CX43(gap junction signal), and S100β. Importantly, none of these changes could be attributed to transgene leakage into preexisting neurons. Therefore, our findings suggest that neural transcription factors such as NeuroD1, Ascl1, and Dlx2 can effectively convert reactive astrocytes into neurons in the adult mammalian brain. 展开更多
关键词 AQUAPORIN-4 Ascl1 ASTROCYTE cortex Dlx2 gap junction glia-to-neuron conversion neural regeneration NeuroD1 REPROGRAMMING
暂未订购
Crosstalk between degradation and bioenergetics: how autophagy and endolysosomal processes regulate energy production
4
作者 Angelid Pabon Jagannatham Naidu Bhupana Ching-On Wong 《Neural Regeneration Research》 SCIE CAS 2025年第3期671-681,共11页
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy... Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation. 展开更多
关键词 AUTOPHAGY BIOENERGETICS endolysosome energy production GLYCOLYSIS metabolic reprogramming MITOCHONDRIA
暂未订购
Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future
5
作者 Zhiyuan Yin Jiahui Kang +3 位作者 Xuan Cheng Hui Gao Shujia Huo Haiwei Xu 《Neural Regeneration Research》 SCIE CAS 2025年第4期946-959,共14页
Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume respon... Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume responsibility for spontaneous retinal regeneration,wherein endogenous Müller glia undergo proliferation,transform into Müller glia-derived progenitor cells,and subsequently regenerate the entire retina with restored functionality.Conversely,Müller glia in the mouse and human retina exhibit limited neural reprogramming.Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders.Müller glia reprogramming in mice has been accomplished with remarkable success,through various technologies.Advancements in molecular,genetic,epigenetic,morphological,and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice.Nevertheless,there remain issues that hinder improving reprogramming efficiency and maturity.Thus,understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency,and for developing novel Müller glia reprogramming strategies.This review describes recent progress in relatively successful Müller glia reprogramming strategies.It also provides a basis for developing new Müller glia reprogramming strategies in mice,including epigenetic remodeling,metabolic modulation,immune regulation,chemical small-molecules regulation,extracellular matrix remodeling,and cell-cell fusion,to achieve Müller glia reprogramming in mice. 展开更多
关键词 cell fusion chemical small-molecules EPIGENETIC extracellular matrix immune metabolic MICE Müller glia neurodegenerative diseases REPROGRAMMING retina regeneration
暂未订购
Perfluoropentane-based oxygen-loaded nanodroplets reduce microglial activation through metabolic reprogramming
6
作者 Wanxian Luo Chuanhui Xu +4 位作者 Linxi Li Yunxiang Ji Yezhong Wang Yingjia Li Yongyi Ye 《Neural Regeneration Research》 SCIE CAS 2025年第4期1178-1191,共14页
Microglia,the primary immune cells within the brain,have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system,including Parkinson’s disease.Na... Microglia,the primary immune cells within the brain,have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system,including Parkinson’s disease.Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity,but also exhibit remarkable anti-inflammatory properties.However,the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood.In this study,we developed perfluoropentane-based oxygen-loaded nanodroplets(PFP-OLNDs)and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo,and suppressed microglial activation in a mouse model of Parkinson’s disease.Microglial suppression led to a reduction in the inflammatory response,oxidative stress,and cell migration capacity in vitro.Consequently,the neurotoxic effects were mitigated,which alleviated neuronal degeneration.Additionally,ultrahigh-performance liquid chromatography–tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming.We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1αpathway.Collectively,our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming. 展开更多
关键词 metabolic reprogramming microglia microglial migration nanotherapy neurodegenerative diseases NEUROINFLAMMATION oxygen-loaded nanodroplets Parkinson’s disease perfluoropentane ultra-performance liquid chromatography–mass spectrometry
暂未订购
Relationship of immune response with intestinal flora and metabolic reprogramming in patients with non-small cell lung cancer
7
作者 GUO Rui HE Zhe +2 位作者 LIU Fan PENG Hui-Zhen XING Li-Wei 《生理学报》 北大核心 2025年第2期289-299,共11页
Numerous research conducted in recent years has revealed that gut microbial dysbiosis,such as modifications in composition and activity,might influence lung tissue homeostasis through specific pathways,thereby promoti... Numerous research conducted in recent years has revealed that gut microbial dysbiosis,such as modifications in composition and activity,might influence lung tissue homeostasis through specific pathways,thereby promoting susceptibility to lung diseases.The development and progression of lung cancer,as well as the effectiveness of immunotherapy are closely associated with gut flora and metabolites,which influence immunological and inflammatory responses.During abnormal proliferation,non-small cell lung cancer cells acquire more substances and energy by altering their own metabolic pathways.Glucose and amino acid metabolism reprogramming provide tumor cells with abundant ATP,carbon,and nitrogen sources,respectively,providing optimal conditions for tumor cell proliferation,invasion,and immune escape.This article reviews the relationship of immune response with gut flora and metabolic reprogramming in non-small cell lung cancer,and discusses the potential mechanisms by which gut flora and metabolic reprogramming affect the occurrence,development,and immunotherapy of non-small cell lung cancer,in order to provide new ideas for precision treatment of lung cancer patients. 展开更多
关键词 non-small cell lung cancer metabolic reprogramming intestinal flora IMMUNITY
原文传递
Reprogramming the Metabolome of Centella asiatica (L.) Urban Callus: Profiling of Newly Synthesized Cryptic Anthocyanins Triggered by LED Light Exposure
8
作者 Claude Y.Hamany Djande Paul A.Steenkamp Ian A.Dubery 《Phyton-International Journal of Experimental Botany》 2025年第4期1269-1286,共18页
Centella asiatica L.,a medicinal herb,has attracted substantial interest in research as well as commercial domains due to its bioactive compounds which include the pentacyclic triterpenoid centellosides,and in additio... Centella asiatica L.,a medicinal herb,has attracted substantial interest in research as well as commercial domains due to its bioactive compounds which include the pentacyclic triterpenoid centellosides,and in addition,hydroxy.In addition,hydroxycinnamic acid conjugates as well as flavonoids.The latter is the major class of secondary plant metabolites and comprises various subclasses,including anthocyanidins.Anthocyanins are rarely reported in extracts from C.asiatica and differ structurally due to a flavylium(2-phenylchromenylium)ion that carries a positive charge at the oxygen atom of the C-ring of the basic flavonoid structure.Callus of C.asiatica was initiated and propagated on synthetic media and subjected to different light regimes.White callus resulted from white fluorescent illumination,while purple callus developed in response to white light emitting diode(LED)illumination.To profile the metabolites responsible for the intense purple coloration,methanolic extracts were prepared from the two cell lines.Total phenolic,flavonoid,and anthocyanin content were determined and indicated(i)very low levels of flavonoids and anthocyanins in white callus and(ii)that anthocyanins dominate the flavonoid content of the purple callus.Extracts were subjected to untargeted ultra-high-performance liquid chromatography coupled to high-definition mass spectrometry(UHPLC–MS)to profile newly synthesized anthocyanins.Metabolite annotation was based on accurate mass determination and characteristic fragmentation patterns.Here,the reprogramming of the metabolome of white C.asiatica callus due to LED illumination is reported and the profiles of cryptic anthocyanins as well as putative flavonoid and caffeoylquinic acid co-pigments in purple callus are described. 展开更多
关键词 Anthocyanins CALLUS Centella asiatica CRYPTIC FLAVONOIDS liquid chromatography mass spectrometry REPROGRAMMING
暂未订购
Reprogramming to restore youthful epigenetics of senescent nucleus pulposus cells for mitigating intervertebral disc degeneration and alleviating low back pain
9
作者 Wenzheng Ma Wantao Wang +9 位作者 Lei Zhao Jinghao Fan Lei Liu Lin Huang Baogan Peng Jianru Wang Baoshan Xu Hongmei Liu Decheng Wu Zhaomin Zheng 《Bone Research》 2025年第3期716-730,共15页
Aging is a pivotal risk factor for intervertebral disc degeneration(IVDD)and chronic low back pain(LBP).The restoration of aging nucleus pulposus cells(NPCs)to a youthful epigenetic state is crucial for IVDD treatment... Aging is a pivotal risk factor for intervertebral disc degeneration(IVDD)and chronic low back pain(LBP).The restoration of aging nucleus pulposus cells(NPCs)to a youthful epigenetic state is crucial for IVDD treatment,but remains a formidable challenge.Here,we proposed a strategy to partially reprogram and reinstate youthful epigenetics of senescent NPCs by delivering a plasmid carrier that expressed pluripotency-associated genes(Oct4,Klf4 and Sox2)in Cavin2-modified exosomes(OKS@M-Exo)for treatment of IVDD and alleviating LBP.The functional OKS@M-Exo efficaciously alleviated senescence markers(p16^(INK4a),p21^(CIP1)and p53),reduced DNA damage and H4K20me3 expression,as well as restored proliferation ability and metabolic balance in senescent NPCs,as validated through in vitro experiments.In a rat model of IVDD,OKS@M-Exo maintained intervertebral disc height,nucleus pulposus hydration and tissue structure,effectively ameliorated IVDD via decreasing the senescence markers.Additionally,OKS@MExo reduced nociceptive behavior and downregulated nociception markers,indicating its efficiency in alleviating LBP.The transcriptome sequencing analysis also demonstrated that OKS@M-Exo could decrease the expression of age-related pathways and restore cell proliferation.Collectively,reprogramming by the OKS@M-Exo to restore youthful epigenetics of senescent NPCs may hold promise as a therapeutic platform to treat IVDD. 展开更多
关键词 youthful epigenetics senescent nucleus pulposus cells intervertebral disc degeneration REPROGRAMMING intervertebral disc degeneration ivdd low back pain nucleus pulposus cells npcs partially reprogram reinstate youthful epigenetics
在线阅读 下载PDF
Cell reprogramming in cancer:Interplay of genetic,epigenetic mechanisms,and the tumor microenvironment in carcinogenesis and metastasis
10
作者 Santosh Shenoy 《World Journal of Clinical Oncology》 2025年第8期17-30,共14页
Cell plasticity,also known as lineage plasticity,refers to the ability of a cell to reprogram and change its phenotypic identity in response to various cues.This phenomenon is context-dependent,playing a crucial role ... Cell plasticity,also known as lineage plasticity,refers to the ability of a cell to reprogram and change its phenotypic identity in response to various cues.This phenomenon is context-dependent,playing a crucial role in embryonic development,tissue regeneration,and wound healing.However,when dysregulated,cell plasticity contributes to cancer initiation,progression,metastasis,and therapeutic resistance.Throughout different stages of tumor development,cancer cells exploit various forms of plasticity to evade normal regulatory mechanisms that govern cell division and homeostasis.Recent evidence highlights the complex interplay between genetic and epigenetic factors,the tumor microenvironment,and epithelial-to-mesenchymal transition in driving cancer cell plasticity.This dynamic reprogramming suggests that“deregulated cell plasticity”could be considered an additional hallmark of cancer.Advancements in next-generation sequencing and single-cell RNA analysis,combined with artificial intelligence technologies such as deep learning,along with Google’s AlphaFold may help predict the trajectories of cancer cells.By predicting protein three-dimensional structures and identifying both active and potential allosteric binding sites,AlphaFold 2 can accelerate the development of new cancer drugs and therapies.For example,allosteric drugs,bind to the allosteric rather than the active sites,can induce conformational changes in proteins,affecting their activities.This can then alter the conformation of an active site that a drug-resistant mutation has created,permitting a blocked orthosteric drug to bind and this enables the design of more effective drugs that can synergize with traditional orthosteric drugs to bind and regain its efficacy.These innovations could provide deeper insights into the intricate mechanisms of cancer progression and resistance,ultimately paving the way for more precise,durable,and personalized oncologic treatments. 展开更多
关键词 Cell reprogramming TUMORIGENESIS Chemotherapy resistance Artificial intelligence Deep learning AlphaFold
在线阅读 下载PDF
Effect of in vivo reprogramming of astrocytes combined with exercise training on neurorepair in rats with spinal cord injury
11
作者 Zuliyaer Talifu Xin Xu +12 位作者 Huayong Du Zehui Li Xiaoxin Wang Chunjia Zhang Yunzhu Pan Han Ke Wubo Liu Feng Gao Degang Yang Yingli Jing Yan Yu Liangjie Du Jianjun Li 《Animal Models and Experimental Medicine》 2025年第4期595-605,共11页
Background:The inability of damaged neurons to regenerate and of axons to estab-lish new functional connections leads to permanent functional deficits after spinal cord injury(SCI).Although astrocyte reprogramming hol... Background:The inability of damaged neurons to regenerate and of axons to estab-lish new functional connections leads to permanent functional deficits after spinal cord injury(SCI).Although astrocyte reprogramming holds promise for neurorepair in various disease models,it is not sufficient on its own to achieve significant functional recovery.Methods:A rat SCI model was established using a spinal cord impactor.Seven days postsurgery,adeno-associated virus were injected to overexpress the transcription factors NeuroD1 and Neurogenin-2(Ngn2)in the spinal cord.The rats were then trained to walk on a weight-supported treadmill for 4 weeks,starting 14 days after modeling.The effects of these interventions on motor and sensory functions,as well as spinal cord tissue repair,were subsequently evaluated.Results:The combination of NeuroD1 and Ngn2 overexpression with weight-supported exercise training significantly improved gait compared to either inter-vention alone.The group receiving the combined intervention exhibited enhanced sensitivity in sensory assessments.Immunofluorescence analysis revealed increased colocalization of astrocytes and microtubule-associated protein 2-positive neurons in the injury area.These effects were more pronounced than those observed with spinal cord tissue repair alone.Additionally,the combined intervention significantly reduced glial scarring and the size of the injury area.Conclusion:Exercise intervention enhances the reprogramming effects of astrocytes and restores motor function,yielding better results than either intervention alone. 展开更多
关键词 ASTROCYTE exercise training functional recovery REPROGRAMMING spinal cord injury
暂未订购
Engineered bacteria potentiate cancer immunotherapy
12
作者 Meng Sun Jiazhen Yang +3 位作者 Leijiao Li Yunhui Li Wenliang Li Jianxun Ding 《Chinese Chemical Letters》 2025年第9期86-91,共6页
Immunotherapy offers the promise of a potential cure for cancer,yet achieving the desired therapeutic effect can be challenging due to the immunosuppressive tumor microenvironments(TMEs) present in some tumors.Therefo... Immunotherapy offers the promise of a potential cure for cancer,yet achieving the desired therapeutic effect can be challenging due to the immunosuppressive tumor microenvironments(TMEs) present in some tumors.Therefore,robust immune system activation is crucial to enhance the efficacy of cancer immunotherapy in clinical applications.Bacteria have shown the ability to target the hypoxic TMEs while activating both innate and adaptive immune responses.Engineered bacteria,modified through chemical or biological methods,can be endowed with specific physiological properties,such as diverse surface antigens,metabolites,and improved biocompatibility.These unique characteristics give engineered bacteria distinct advantages in stimulating anti-cancer immune responses.This review explores the potential regulatory mechanisms of engineered bacteria in modulating both innate and adaptive immunity while also forecasting the future development and challenges of using engineered bacteria in clinical cancer immunotherapy. 展开更多
关键词 Engineered bacteria IMMUNOTHERAPY Innate immune Adaptive immune Tumor immune reprogramming
原文传递
Pro-Aging Metabolic Reprogramming:A Unified Theory of Aging
13
作者 Zhiguo Wang Baofeng Yang 《Engineering》 2025年第1期37-43,共7页
Despite recent advances in understanding the biology of aging,the field remains fragmented due to the lack of a central organizing hypothesis.Although there are ongoing debates on whether the aging process is programm... Despite recent advances in understanding the biology of aging,the field remains fragmented due to the lack of a central organizing hypothesis.Although there are ongoing debates on whether the aging process is programmed or stochastic,it is now evident that neither perspective alone can fully explain the complexity of aging.Here,we propose the pro-aging metabolic reprogramming(PAMRP)theory,which integrates and unifies the genetic-program and stochastic hypotheses.This theory posits that aging is driven by degenerative metabolic reprogramming(MRP)over time,requiring the emergence of pro-aging substrates and triggers(PASs and PATs)to predispose cells to cellular and genetic reprogramming(CRP and GRP). 展开更多
关键词 AGING Aging theory METABOLISM Metabolic reprogramming Pro-aging substrate Pro-aging trigger
暂未订购
Differentiation of patient-specific induced pluripotent stem cells derived from type 1 diabetes peripheral blood mononuclear cells into pancreatic β-like cells
14
作者 Kun Wang Wei Lin +4 位作者 Jun-Yong Han Jin-Yan Chen Rong-Hua Liu Zhen Yu Jing-Jun Jin 《World Journal of Stem Cells》 2025年第7期143-159,共17页
BACKGROUND Type 1 diabetes(T1D)results from the autoimmune-mediated loss of pancreatic β-cells.Current insulin therapies offer symptomatic relief but fall short of providing a definitive cure.Islet cell transplantati... BACKGROUND Type 1 diabetes(T1D)results from the autoimmune-mediated loss of pancreatic β-cells.Current insulin therapies offer symptomatic relief but fall short of providing a definitive cure.Islet cell transplantation,while promising,faces limitations related to donor scarcity,procedural complexities,and the necessity for long-term immunosuppression.Consequently,there is an urgent need for innovative strategies aimed at β-cell regeneration.Patient-derived induced pluripotent stem cells(iPSCs),obtained from peripheral blood mononuclear cells(PBMCs)of T1D patients,hold great potential as a source of cells for therapeutic purposes.Therefore,the differentiation of T1D-iPSCs into functional pancreatic β-cells is a critical step toward effective β-cell replacement therapy.AIM To assess the potential of patient-derived T1D-β-like cells(differentiated from T1D-iPSCs reprogrammed from T1D-PBMCs)for restoring β-cell function in T1D.METHODS T1D-iPSCs were reprogrammed from T1D-PBMCs using an episomal vectorbased approach.Pluripotency was confirmed by flow cytometry(FCM),quantitative real-time polymerase chain reaction,genomic stability analysis,and teratoma formation assays.Differentiation into pancreatic β-cells was optimized using triiodothyronine(T3),vitamin C(Vc),and an adenovirus(M3C)encoding pancreatic duodenal homeobox-1,neurogenin 3(Ngn3),and MAF bZIP transcription factor A(MafA).Following characterization of β-cell features by immunofluorescence,quantitative real-time polymerase chain reaction,and flow cytometry,therapeutic efficacy was assessed through blood glucose monitoring after transplantation under the renal capsule of streptozotocin-induced diabetic mice.RESULTS T1D-iPSCs were successfully generated from T1D-PBMCs.These cells exhibited the hallmark characteristics of pluripotent stem cells,including appropriate morphology,differentiation potential,genomic integrity,and expression of pluripotency-associated genes.Differentiation yielded insulin-positive(insulin+)pancreatic β-like cells that,at the mRNA level,expressed key β-cell markers such as pancreatic duodenal homeobox-1,Ngn3,MafA,NeuroD,glucagon-like peptide-1 receptor,Nkx6.1,glucose transporter 2,and Kir6.2.Notably,the T3+Vc group displayed the lowest Ngn3 expression(1.31±0.38 vs 1.96±0.25 vs 2.51±0.24,P<0.01),while the M3C+T3+Vc group exhibited the highest MafA expression(0.49±0.11 vs 0.32±0.06 vs 0.29±0.08,P<0.05).Both in vitro and in vivo assessments confirmed the insulin secretion ability of the generated β-like cells;however,they did not demonstrate appropriate modulation of insulin release in response to variations in extracellular glucose concentrations.CONCLUSION T1D-iPSCs derived from T1D-PBMCs can be differentiated into insulin+β-like cells,albeit with functional immaturity.These cells represent a potential source of seed cells for β-cell replacement therapy in T1D. 展开更多
关键词 Pluripotent stem cells Cell reprogramming Type 1 diabetes TRIIODOTHYRONINE Vitamin C ADENOVIRUS β-cell regeneration DIFFERENTIATION
暂未订购
Metabolic dysfunction-associated steatotic liver disease: Mechanisms, metabolic reprogramming, and therapeutic insights
15
作者 Wan-Qi Yang Ling-Ling Xue Jing-Lin Wang 《World Journal of Gastroenterology》 2025年第26期156-159,共4页
Metabolic dysfunction-associated steatotic liver disease(MASLD)is a progressive metabolic disorder that is pathologically characterized by abnormal lipid deposition in the liver and metabolic inflammation.The current ... Metabolic dysfunction-associated steatotic liver disease(MASLD)is a progressive metabolic disorder that is pathologically characterized by abnormal lipid deposition in the liver and metabolic inflammation.The current clinical mana-gement of MASLD largely involves generalized lifestyle modifications including diet and broad-spectrum metabolic interventions such as insulin sensitizers.These approaches often yield suboptimal outcomes because of poor long-term adhe-rence,heterogeneous patient responses,and limited efficacy in advanced disease stages.Crucially,they fail to address disease-specific molecular drivers,such as aging-associated pathways exemplified by vitamin D receptor dysregulation.Given the complexity and progressive nature of MASLD,it is crucial to further elucidate its mechanisms,develop precise therapeutic strategies,and raise awareness of the disease among the public and medical community. 展开更多
关键词 Metabolic dysfunction-associated steatotic liver disease Aging Vitamin D receptor Metabolic reprogramming Ferroptosis
暂未订购
Reprogramming of fatty acid metabolism in thyroid cancer:Potential targets and mechanisms
16
作者 Pengbin Ping Yuhong Ma +1 位作者 Xiaoying Xu Juan Li 《Chinese Journal of Cancer Research》 2025年第2期227-249,共23页
Thyroid cancer(TC)is one of the most common endocrine system tumors,and its incidence continues to increase worldwide.Although most TC patients have a good prognosis,especially with continuous advancements in surgery,... Thyroid cancer(TC)is one of the most common endocrine system tumors,and its incidence continues to increase worldwide.Although most TC patients have a good prognosis,especially with continuous advancements in surgery,radioactive iodine therapy,chemotherapy,endocrine therapy and targeted therapy,the effectiveness of disease treatment has significantly improved.However,there are still some cases with a higher risk of death and greater aggressiveness.In these more challenging advanced or highly aggressive cases,tyrosine kinase inhibitors appear to be an effective treatment option.Unfortunately,these drugs are less than ideal in terms of efficacy because of their toxicity and potential for intrinsic or acquired resistance.Therefore,exploring new strategies targeting the metabolic characteristics of TC cells and overcoming drug resistance barriers in existing treatments have become key topics in the current field of TC research.In recent years,lipid metabolic reprogramming has gained attention as an important aspect of cancer development.Lipid metabolic reprogramming not only participates in the formation of the cell membrane structure,but also plays an important role in signal transduction and promoting cell proliferation.In particular,fatty acid(FA)metabolic reprogramming has attracted widespread attention and plays an important role in multiple aspects such as tumor growth,metastasis,enhanced invasive ability,immune escape,and drug resistance.Although TC is considered a disease that is highly dependent on specific types of metabolic activities,a comprehensive understanding of the specific mechanism of action of FA metabolic reprogramming in this process is lacking.This article aims to review how FA metabolic reprogramming participates in the occurrence and development of TC,focusing on the impact of abnormal FA metabolic pathways and changes in the expression and regulation of related genes over the course of this disease.By examining the complex interactions between FA metabolic disorders and carcinogenic signaling pathways in depth,we aim to identify new therapeutic targets and develop more precise and effective treatments for TC. 展开更多
关键词 Thyroid cancer lipid metabolism fatty acid metabolic reprogramming mechanism TARGET
暂未订购
Amino acids shape the metabolic and immunologic landscape in the tumor immune microenvironment:from molecular mechanisms to therapeutic strategies
17
作者 Ziyou Lin Chang Chang +2 位作者 Shuyu Zhao Lan Fang Ping Wang 《Cancer Biology & Medicine》 2025年第7期726-746,共21页
The tumor immune microenvironment(TIME)represents a complex battlefield where metabolic competition and immune evasion mechanisms converge to drive cancer progression.Amino acids,with their multifaceted biological rol... The tumor immune microenvironment(TIME)represents a complex battlefield where metabolic competition and immune evasion mechanisms converge to drive cancer progression.Amino acids,with their multifaceted biological roles,have emerged as pivotal regulators of tumor cell proliferation and immune cell functionality.The sensing mechanisms by which amino acids within the tumor microenvironment influence cellular growth,survival,and immune function are systematically explored in this review;the latest advances in understanding amino acid metabolism in tumor biology are also reviewed.In addition,the multifaceted roles of key amino acids in shaping the TIME with particular emphasis on tumor immunity and malignant growth were investigated.Finally,emerging therapeutic strategies targeting amino acid metabolism to reprogram the TIME are discussed,highlighting promising approaches,such as CAR-T cell therapy and engineered bacterial interventions.Through this comprehensive analysis,critical insights into future research directions and potential clinical translation of amino acid-targeted interventions are provided. 展开更多
关键词 Tumor microenvironment(TME) amino acid sensing amino acid metabolism metabolic reprogramming immunotherapy
暂未订购
Neutrophil extracellular traps and metabolic reprogramming in renal cell carcinoma: implications for tumor progression and immune-based therapeutics
18
作者 Asif Shahzad Yueli Ni +13 位作者 Zhuoran Teng Wenjing Liu Honggang Bai Yijian Sun Kun Cui Qiuxin Duan Xiangjie Liu Zhe Xu Jinshan Zhang Jiaojiao Xia Rong Che Ting Guo Zhe Yang Qiao Zhang 《Cancer Biology & Medicine》 2025年第11期1282-1303,共22页
Neutrophil extracellular traps (NETs) are web-like structures of DNA and proteins that are released by activated neutrophils. While originally identified as antimicrobial defense mechanisms, NETs are now recognized as... Neutrophil extracellular traps (NETs) are web-like structures of DNA and proteins that are released by activated neutrophils. While originally identified as antimicrobial defense mechanisms, NETs are now recognized as key modulators of tumor progression. NETs interact with the tumor microenvironment and metabolic pathways in renal cell carcinoma (RCC), which promotes immune evasion and metastasis. This review explores the interplay between NET formation and metabolic reprogramming in RCC, highlighting the implications for immunotherapy resistance and therapeutic targeting. NET-associated signaling, immunometabolism disruption, and current strategies to inhibit NETs in preclinical and clinical settings are discussed. Targeting NETs may represent a promising adjunct in RCC therapy, particularly when integrated with immune checkpoint blockade. 展开更多
关键词 NEUTROPHILS neutrophil extracellular traps renal carcinoma cell metabolic reprogramming cancer immunity therapeutic target
暂未订购
Lipid metabolism-related genes in gastric cancer:Exploring oncogenic pathways
19
作者 Maaz Amir Danyal Bakht +7 位作者 Syed Faqeer Hussain Bokhari Rabia Yousaf Asma Iqbal Hashir Nazir Muhammad Waleed Mustabeen Zahra Naqvi Maleeha Tahir Wahidullah Dost 《World Journal of Gastrointestinal Oncology》 2025年第8期65-74,共10页
Lipid metabolism plays a pivotal role in gastric cancer(GC)progression,characterized by complex metabolic reprogramming that supports tumor growth and survival.This narrative review comprehensively examines the dysreg... Lipid metabolism plays a pivotal role in gastric cancer(GC)progression,characterized by complex metabolic reprogramming that supports tumor growth and survival.This narrative review comprehensively examines the dysregulation of lipid metabolism-associated genes,including fatty acid synthase(FASN),ATPcitrate lyase,acetyl-CoA carboxylases,FA binding proteins,sterol regulatory element-binding proteins,and other key enzymes.These genes facilitate critical oncogenic processes by enhancing FA synthesis,modifying cellular signaling,and supporting cancer cell proliferation,migration,and therapy resistance.Metabolic adaptations observed in GC include increased de novo lipogenesis,altered enzymatic activities,and modified protein lipidation,which contribute to tumor aggressiveness.The review highlights the potential of targeting these metabolic pathways as a therapeutic strategy,demonstrating how inhibiting specific enzymes like FASN,ATP-citrate lyase,and stearoyl-CoA desaturase 1 can induce apoptosis,disrupt cancer stem cell properties,and potentially overcome treatment resistance.By elucidating the intricate interactions between lipid metabolism genes and cancer progression,this review provides insights into novel diagnostic and therapeutic approaches for managing GC. 展开更多
关键词 Lipid metabolism Gastric cancer Oncogenic pathways Fatty acid synthesis Metabolic reprogramming
暂未订购
Targeting mitochondrial dysfunction to intervene in liver cancer
20
作者 Maomao Li Siyao Liang +7 位作者 Le Chang Bingyan Lu Jiahua Cheng Tian Yang Ying Wu Yuhong Lyu Xiaochan He Changwu Yue 《Cancer Biology & Medicine》 2025年第10期1181-1209,共29页
The occurrence and progression of liver cancer are closely associated with mitochondrial dysfunction.Mitochondria exhibit characteristics,such as decreased oxidative phosphorylation efficiency,abnormal accumulation of... The occurrence and progression of liver cancer are closely associated with mitochondrial dysfunction.Mitochondria exhibit characteristics,such as decreased oxidative phosphorylation efficiency,abnormal accumulation of reactive oxygen species in liver cancer and promoting tumor proliferation and drug resistance through the Warburg effect,as the core of energy metabolism and apoptosis regulation.Mutations in mitochondrial DNA(mtDNA)and dysregulation of mitochondrial autophagy(mitophagy)further enhance the invasive and metastatic capabilities of liver cancer.Current targeted therapeutic strategies focus on modulating the activity of respiratory chain complexes,regulating calcium homeostasis,repairing mtDNA,and activating mitochondrial apoptotic pathways.Although these approaches have shown therapeutic effects,challenges persist,such as tumor heterogeneity,insufficient drug specificity,and drug resistance.Future research needs to integrate the concept of precision medicine by focusing on breakthroughs in the molecular mechanisms underlying mitochondrial dysfunction,development of targeted delivery systems,optimization of combination therapy regimens,and screening of biomarkers to provide new pathways for individualized treatment.With advances in technology,targeting mitochondrial dysfunction is expected to become an important breakthrough for improving the prognosis of liver cancer. 展开更多
关键词 Mitochondrial targeting liver cancer therapy mtDNA mutations reactive oxygen species mitochondrial metabolic reprogramming clinical translation
暂未订购
上一页 1 2 19 下一页 到第
使用帮助 返回顶部