Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ...Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.展开更多
Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,w...Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,we propose HUANNet(High-Resolution Unified Attention Network),a convolutional neural network designed to capture both local features and rich semantic information through a high-resolution representation learning framework,while optimizing computational distribution across parallel branches.HUANNet introduces three core modules:the High-Resolution Attention Module(HRAM),which enhances feature extraction by optimizing multiresolution feature fusion;the Unified Multi-Scale Attention Module(UMAM),which integrates spatial,channel,and convolutional kernel information through an attention mechanism applied across multiple levels of the network;and the Grid-Assisted Point Matching Module(GPMM),which stabilizes and improves point-to-point matching by leveraging grid-based mechanisms.Extensive experiments show that HUANNet achieves competitive results on the ShanghaiTech Part A/B crowd counting datasets and sets new state-of-the-art performance on dense object counting datasets such as CARPK and XRAY-IECCD,demonstrating the effectiveness and versatility of HUANNet.展开更多
In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The e...In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation.展开更多
Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Class...Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Classifier(GPT2-ICC),which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins.GPT2-ICC integrates representation learning with a large language model(LLM)-based classifier,enabling highly accurate identification of potential ion channels.Several potential ion channels were predicated from the unannotated human proteome,further demonstrating GPT2-ICC’s generalization ability.This study marks a significant advancement in artificial-intelligence-driven ion channel research,highlighting the adaptability and effectiveness of combining representation learning with LLMs to address the challenges of imbalanced protein sequence data.Moreover,it provides a valuable computational tool for uncovering previously uncharacterized ion channels.展开更多
A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such...A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation.展开更多
Artificial intelligence(AI)researchers and cheminformatics specialists strive to identify effective drug precursors while optimizing costs and accelerating development processes.Digital molecular representation plays ...Artificial intelligence(AI)researchers and cheminformatics specialists strive to identify effective drug precursors while optimizing costs and accelerating development processes.Digital molecular representation plays a crucial role in achieving this objective by making molecules machine-readable,thereby enhancing the accuracy of molecular prediction tasks and facilitating evidence-based decision making.This study presents a comprehensive review of small molecular representations and AI-driven drug discovery downstream tasks utilizing these representations.The research methodology begins with the compilation of small molecule databases,followed by an analysis of fundamental molecular representations and the models that learn these representations from initial forms,capturing patterns and salient features across extensive chemical spaces.The study then examines various drug discovery downstream tasks,including drug-target interaction(DTI)prediction,drug-target affinity(DTA)prediction,drug property(DP)prediction,and drug generation,all based on learned representations.The analysis concludes by highlighting challenges and opportunities associated with machine learning(ML)methods for molecular representation and improving downstream task performance.Additionally,the representation of small molecules and AI-based downstream tasks demonstrates significant potential in identifying traditional Chinese medicine(TCM)medicinal substances and facilitating TCM target discovery.展开更多
Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-represent...Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-representation is either a string representation or a band representation by using the coefficient quivers.It is worth noting that for a given band and a positive integer,there exists a unique band representation up to isomorphism.展开更多
The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce t...The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.展开更多
The purpose of this article is to depart from the conventional belief that John Donne,a vibrant 17th-century writer,is a full-blown metaphysical poet as widely claimed while also acknowledging the poetic ingenuity of ...The purpose of this article is to depart from the conventional belief that John Donne,a vibrant 17th-century writer,is a full-blown metaphysical poet as widely claimed while also acknowledging the poetic ingenuity of John Donne.While Donne’s poetry is rich in matter and manner,and his poems are caked in wit,intellectual superiority,and apt exploration of telling themes,dressing him fully in borrowed robes seems a stretch.Some of Donne’s poems,without a shred of doubt,contain flavors of metaphysical poetry,but the term“metaphysical”seems to be unsuitable for poems such as“A Valediction:Forbidding Mourning”.展开更多
Dear Editor,This letter proposes an end-to-end feature disentangled Transformer(FDTs)for entanglement-free and semantic feature representation to enable accurate and trustworthy pathology grading of squamous cell carc...Dear Editor,This letter proposes an end-to-end feature disentangled Transformer(FDTs)for entanglement-free and semantic feature representation to enable accurate and trustworthy pathology grading of squamous cell carcinoma(SCC).Existing vision transformers(ViTs)can implement representation learning for SCC grading,however,they all adopt the class-patch token fuzzy mapping for pattern prediction probability or window down-sampling to enhance the representation to contextual information.展开更多
When the G20 was created in 1999 in the wake of the Asian financial crisis,few imagined it would one day become the nerve centre of global governance.Twenty-six years later,the G20 members,which represent 85 percent o...When the G20 was created in 1999 in the wake of the Asian financial crisis,few imagined it would one day become the nerve centre of global governance.Twenty-six years later,the G20 members,which represent 85 percent of the global GDP and two-thirds of the world population,are once again navigating a turbulent era marked by geopolitical rivalry,economic fragmentation and widening inequality.展开更多
十二生肖在中国流传千年,那这些生肖是怎么选出来的呢?People in China have 12 zodiac animals.Each animal represents one year in the Chinese calendar.These animals are Rat,Ox,Tiger,Rabbit,Dragon,Snake,Horse,Goat,Monkey,Roo...十二生肖在中国流传千年,那这些生肖是怎么选出来的呢?People in China have 12 zodiac animals.Each animal represents one year in the Chinese calendar.These animals are Rat,Ox,Tiger,Rabbit,Dragon,Snake,Horse,Goat,Monkey,Rooster,Dog and Pig.展开更多
The escalating complexity and heterogeneity of modern energy systems—particularly in smart grid and distributed energy infrastructures—has intensified the need for intelligent and scalable security vulnerability cla...The escalating complexity and heterogeneity of modern energy systems—particularly in smart grid and distributed energy infrastructures—has intensified the need for intelligent and scalable security vulnerability classification.To address this challenge,we propose Vulnerability2Vec,a graph-embedding-based framework designed to enhance the automated classification of security vulnerabilities that threaten energy system resilience.Vulnerability2Vec converts Common Vulnerabilities and Exposures(CVE)text explanations to semantic graphs,where nodes represent CVE IDs and key terms(nouns,verbs,and adjectives),and edges capture co-occurrence relationships.Then,it embeds the semantic graphs to a low-dimensional vector space with random-walk sampling and skip-gram with negative sampling.It is possible to identify the latent relationships and structural patterns that traditional sparse vector methods fail to capture.Experimental results demonstrate a classification accuracy of up to 80%,significantly outperforming baseline methods.This approach offers a theoretical basis for classifying vulnerability types as structured semantic patterns in complex software systems.The proposed method models the semantic structure of vulnerabilities,providing a theoretical foundation for their classification.展开更多
The event-based vision sensor(EVS),which can generate efficient spiking data streams by exclusively detecting motion,exemplifies neuromorphic vision methodologies.Generally,its inherent lack of texture features limits...The event-based vision sensor(EVS),which can generate efficient spiking data streams by exclusively detecting motion,exemplifies neuromorphic vision methodologies.Generally,its inherent lack of texture features limits effectiveness in complex vision processing tasks,necessitating supplementary visual information.However,to date,no event-based hybrid vision solution has been developed that preserves the characteristics of complete spike data streams to support synchronous computation architectures based on spiking neural network(SNN).In this paper,we present a novel spike-based sensor with digitized pixels,which integrates the event detection structure with the pulse frequency modulation(PFM)circuit.This design enables the simultaneous output of spiking data that encodes both temporal changes and texture information.Fabricated in 180 nm process,the proposed sensor achieves a resolution of 128×128,a maximum event rate of 960 Meps,a grayscale frame rate of 117.1 kfps,and a measured power consumption of 60.1 mW,which is suited for high-speed,low-latency,edge SNNbased vision computing systems.展开更多
Coupled thermo-hydro-mechanical(THM)processes in fractured rock are playing a crucial role in geoscience and geoengineering applications.Diverse and conceptually distinct approaches have emerged over the past decades ...Coupled thermo-hydro-mechanical(THM)processes in fractured rock are playing a crucial role in geoscience and geoengineering applications.Diverse and conceptually distinct approaches have emerged over the past decades in both continuum and discontinuum perspectives leading to significant progress in their comprehending and modeling.This review paper offers an integrated perspective on existing modeling methodologies providing guidance for model selection based on the initial and boundary conditions.By comparing various models,one can better assess the uncertainties in predictions,particularly those related to the conceptual models.The review explores how these methodologies have significantlyenhanced the fundamental understanding of how fractures respond to fluid injection and production,and improved predictive capabilities pertaining to coupled processes within fractured systems.It emphasizes the importance of utilizing advanced computational technologies and thoroughly considering fundamental theories and principles established through past experimental evidence and practical experience.The selection and calibration of model parameters should be based on typical ranges and applied to the specificconditions of applications.The challenges arising from inherent heterogeneity and uncertainties,nonlinear THM coupled processes,scale dependence,and computational limitations in representing fieldscale fractures are discussed.Realizing potential advances on computational capacity calls for methodical conceptualization,mathematical modeling,selection of numerical solution strategies,implementation,and calibration to foster simulation outcomes that intricately reflectthe nuanced complexities of geological phenomena.Future research efforts should focus on innovative approaches to tackle the hurdles and advance the state-of-the-art in this critical fieldof study.展开更多
Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to...Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to encompass broader considerations such as ecosystem stability, community resilience to climate change, and enhancement of human well-being. Given these multifaceted objectives, it is imperative to judiciously allocate resources to effectively conserve biodiversity by identifying strategically significant areas for conservation, particularly for mountainous areas. In this study, we evaluated the representativeness of the protected area network in the Qin ling Mountains concerning species diversity, ecosystem services, climate stability and ecological stability. The results indicate that some of the ecological indicators are spatially correlated with topographic gradient effects. The conservation priority areas predominantly lie in the northern foothills, the southeastern, and southwestern parts of the Qinling Mountain with areas concentrated at altitudes between 1,500-2,000 m and slopes between 40°-50° as hotspots. The conservation priority areas identified through the framework of inclusive conservation optimization account for 22.9 % of the Qinling Mountain. Existing protected areas comprise only 6.1 % of the Qinling Mountain and 13.18 % of the conservation priority areas. This will play an important role in achiev ing sustainable development in the region and in meeting the post-2020 biodiversity target. The framework can advance the different objectives of achieving a quadruple win and can also be extended to other regions.展开更多
Humans and animals have a fundamental ability to use experiences and environmental information to organize behavior.It often happens that humans and animals make decisions and prepare actions under uncertain situation...Humans and animals have a fundamental ability to use experiences and environmental information to organize behavior.It often happens that humans and animals make decisions and prepare actions under uncertain situations.Uncertainty would significantly affect the state of animals’minds,but may not be reflected in behavior.How to“read animals’mind state”under different situations is a challenge.Here,we report that neuronal activity in the medial prefrontal cortex(mPFC)of rats can reflect the environmental uncertainty when the task situation changes from certain to uncertain.Rats were trained to perform behavioral tasks under certain and uncertain situations.Under certain situations,rats were required to simply repeat two nose-poking actions that each triggered short auditory tone feedback(single-task situation).Whereas under the uncertain situation,the feedback could randomly be either the previous tone or a short musical rhythm.No additional action was required upon the music feedback,and the same secondary nose-poking action was required upon the tone feedback(dual-task situation);therefore,the coming task was uncertain before action initiation.We recorded single-unit activity from the mPFC when the rats were performing the tasks.We found that in the dual task,when uncertainty was introduced,many mPFC neurons were actively engaged in dealing with the uncertainty before the task initiation,suggesting that the rats could be aware of the task situation change and encode the information in the mPFC before the action of task initiation.展开更多
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac...Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods.展开更多
Optical singularities are topological defects of electromagnetic fields;they include phase singularity in scalar fields,polarization singularity in vector fields,and three-dimensional(3D)singularities such as optical ...Optical singularities are topological defects of electromagnetic fields;they include phase singularity in scalar fields,polarization singularity in vector fields,and three-dimensional(3D)singularities such as optical skyrmions.The exploitation of photonic microstructures to generate and manipulate optical singularities has attracted wide research interest in recent years,with many photonic microstructures having been devised to this end.Accompanying these designs,scattered phenomenological theories have been proposed to expound the working mechanisms behind individual designs.In this work,instead of focusing on a specific type of microstructure,we concentrate on the most common geometric features of these microstructures—namely,symmetries—and revisit the process of generating optical singularities in microstructures from a symmetry viewpoint.By systematically employing the projection operator technique in group theory,we develop a widely applicable theoretical scheme to explore optical singularities in microstructures with rosette(i.e.,rotational and reflection)symmetries.Our scheme agrees well with previously reported works and further reveals that the eigenmodes of a symmetric microstructure can support multiplexed phase singularities in different components,such as out-of-plane,radial,azimuthal,and left-and right-handed circular components.Based on these phase singularities,more complicated optical singularities may be synthesized,including C points,V points,L lines,Néel-and bubble-type optical skyrmions,and optical lattices,to name a few.We demonstrate that the topological invariants associated with optical singularities are protected by the symmetries of the microstructure.Lastly,based on symmetry arguments,we formulate a so-called symmetry matching condition to clarify the excitation of a specific type of optical singularity.Our work establishes a unified theoretical framework to explore optical singularities in photonic microstructures with symmetries,shedding light on the symmetry origin of multidimensional and multiplexed optical singularities and providing a symmetry perspective for exploring many singularity-related effects in optics and photonics.展开更多
In recent years,the transformer model has demonstrated excellent performance in computer vision(CV)applications.The key lies in its guided representation attention mechanism,which uses dot-product to depict complex fe...In recent years,the transformer model has demonstrated excellent performance in computer vision(CV)applications.The key lies in its guided representation attention mechanism,which uses dot-product to depict complex feature relationships,and comprehensively understands the context semantics to obtain feature weights.Then feature enhancement is implemented by guiding the target matrix through feature weights.However,the uncertainty and inconsistency of features are widespread that prone to confusion in the description of relationships within dot-product attention mechanisms.To solve this problem,this paper proposed a novel approximate-guided representation learning methodology for vision transformer.The kernelised matroids fuzzy rough set is defined,wherein the closed sets inside kernelised fuzzy information granules of matroids structures can constitute the subspace of lower approximation in rough sets.Thus,the kernel relation is employed to characterise image feature granules that will be reconstructed according to the independent set in matroids theory.Then,according to the characteristics of the closed set within matroids,the feature attention weight is formed by using the lower approximation to realise the approximate guidance of features.The approximate-guided representation mechanism can be flexibly deployed as a plug-and-play component in a wide range of CV tasks.Extensive empirical results demonstrate that the proposed method outperforms the majority of advanced prevalent models,especially in terms of robustness.展开更多
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01296).
文摘Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.
基金funded by the National Natural Science Foundation of China(62273213,62472262,62572287)Natural Science Foundation of Shandong Province(ZR2024MF144)+1 种基金Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)Taishan Scholarship Construction Engineering.
文摘Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,we propose HUANNet(High-Resolution Unified Attention Network),a convolutional neural network designed to capture both local features and rich semantic information through a high-resolution representation learning framework,while optimizing computational distribution across parallel branches.HUANNet introduces three core modules:the High-Resolution Attention Module(HRAM),which enhances feature extraction by optimizing multiresolution feature fusion;the Unified Multi-Scale Attention Module(UMAM),which integrates spatial,channel,and convolutional kernel information through an attention mechanism applied across multiple levels of the network;and the Grid-Assisted Point Matching Module(GPMM),which stabilizes and improves point-to-point matching by leveraging grid-based mechanisms.Extensive experiments show that HUANNet achieves competitive results on the ShanghaiTech Part A/B crowd counting datasets and sets new state-of-the-art performance on dense object counting datasets such as CARPK and XRAY-IECCD,demonstrating the effectiveness and versatility of HUANNet.
基金supported by the National Natural Science Foundation of China(Nos.12072027,62103052,61603346 and 62103379)the Henan Key Laboratory of General Aviation Technology,China(No.ZHKF-230201)+3 种基金the Funding for the Open Research Project of the Rotor Aerodynamics Key Laboratory,China(No.RAL20200101)the Key Research and Development Program of Henan Province,China(Nos.241111222000 and 241111222900)the Key Science and Technology Program of Henan Province,China(No.232102220067)the Scholarship Funding from the China Scholarship Council(No.202206030079).
文摘In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation.
基金funded by grants from the National Key Research and Development Program of China(Grant Nos.:2022YFE0205600 and 2022YFC3400504)the National Natural Science Foundation of China(Grant Nos.:82373792 and 82273857)the Fundamental Research Funds for the Central Universities,China,and the East China Normal University Medicine and Health Joint Fund,China(Grant No.:2022JKXYD07001).
文摘Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Classifier(GPT2-ICC),which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins.GPT2-ICC integrates representation learning with a large language model(LLM)-based classifier,enabling highly accurate identification of potential ion channels.Several potential ion channels were predicated from the unannotated human proteome,further demonstrating GPT2-ICC’s generalization ability.This study marks a significant advancement in artificial-intelligence-driven ion channel research,highlighting the adaptability and effectiveness of combining representation learning with LLMs to address the challenges of imbalanced protein sequence data.Moreover,it provides a valuable computational tool for uncovering previously uncharacterized ion channels.
基金Shanghai Frontier Science Research Center for Modern Textiles,Donghua University,ChinaOpen Project of Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment,Zhengzhou University of Light Industry,China(No.IM202303)National Key Research and Development Program of China(No.2019YFB1706300)。
文摘A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation.
基金supported by the Shenzhen Key Laboratory of Intelligent Bioinformatics(No.ZDSYS20220422103800001)the Shenzhen Science and Technology Program(No.JCYJ20230807140709020)+2 种基金National Natural Science Foundation of China(Nos.62402489,U22A2041,and 62373172)the China Postdoctoral Science Foundation(No.2023M743688)Guangdong Basic and Applied Basic Research Foundation(Nos.2024A1515011960 and 2023A1515110570)。
文摘Artificial intelligence(AI)researchers and cheminformatics specialists strive to identify effective drug precursors while optimizing costs and accelerating development processes.Digital molecular representation plays a crucial role in achieving this objective by making molecules machine-readable,thereby enhancing the accuracy of molecular prediction tasks and facilitating evidence-based decision making.This study presents a comprehensive review of small molecular representations and AI-driven drug discovery downstream tasks utilizing these representations.The research methodology begins with the compilation of small molecule databases,followed by an analysis of fundamental molecular representations and the models that learn these representations from initial forms,capturing patterns and salient features across extensive chemical spaces.The study then examines various drug discovery downstream tasks,including drug-target interaction(DTI)prediction,drug-target affinity(DTA)prediction,drug property(DP)prediction,and drug generation,all based on learned representations.The analysis concludes by highlighting challenges and opportunities associated with machine learning(ML)methods for molecular representation and improving downstream task performance.Additionally,the representation of small molecules and AI-based downstream tasks demonstrates significant potential in identifying traditional Chinese medicine(TCM)medicinal substances and facilitating TCM target discovery.
文摘Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-representation is either a string representation or a band representation by using the coefficient quivers.It is worth noting that for a given band and a positive integer,there exists a unique band representation up to isomorphism.
基金National Natural Science Foundation of China(12161013)Research Projects of Guizhou University of Commerce in 2024。
文摘The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.
文摘The purpose of this article is to depart from the conventional belief that John Donne,a vibrant 17th-century writer,is a full-blown metaphysical poet as widely claimed while also acknowledging the poetic ingenuity of John Donne.While Donne’s poetry is rich in matter and manner,and his poems are caked in wit,intellectual superiority,and apt exploration of telling themes,dressing him fully in borrowed robes seems a stretch.Some of Donne’s poems,without a shred of doubt,contain flavors of metaphysical poetry,but the term“metaphysical”seems to be unsuitable for poems such as“A Valediction:Forbidding Mourning”.
基金supported by the National Natural Science Foundation of China(62272078)the Chongqing Natural Science Foundation(CSTB2023NSCQ-LZX0069).
文摘Dear Editor,This letter proposes an end-to-end feature disentangled Transformer(FDTs)for entanglement-free and semantic feature representation to enable accurate and trustworthy pathology grading of squamous cell carcinoma(SCC).Existing vision transformers(ViTs)can implement representation learning for SCC grading,however,they all adopt the class-patch token fuzzy mapping for pattern prediction probability or window down-sampling to enhance the representation to contextual information.
文摘When the G20 was created in 1999 in the wake of the Asian financial crisis,few imagined it would one day become the nerve centre of global governance.Twenty-six years later,the G20 members,which represent 85 percent of the global GDP and two-thirds of the world population,are once again navigating a turbulent era marked by geopolitical rivalry,economic fragmentation and widening inequality.
文摘十二生肖在中国流传千年,那这些生肖是怎么选出来的呢?People in China have 12 zodiac animals.Each animal represents one year in the Chinese calendar.These animals are Rat,Ox,Tiger,Rabbit,Dragon,Snake,Horse,Goat,Monkey,Rooster,Dog and Pig.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the Convergence Security Core Talent Training Business Support Program(IITP-2025-RS-2023-00266605,50%)in part by the Institute of Information&Communications Technology Planning&Evaluation(lITP)grant funded by the Korea government(MSIT)(RS-2025-02305436,Development of Digital Innovative Element Technologies for Rapid Prediction of Potential Complex Disasters and Continuous Disaster Prevention,30%)supported by the Chung-Ang University Graduate Research Scholar-ship in 2023(20%).
文摘The escalating complexity and heterogeneity of modern energy systems—particularly in smart grid and distributed energy infrastructures—has intensified the need for intelligent and scalable security vulnerability classification.To address this challenge,we propose Vulnerability2Vec,a graph-embedding-based framework designed to enhance the automated classification of security vulnerabilities that threaten energy system resilience.Vulnerability2Vec converts Common Vulnerabilities and Exposures(CVE)text explanations to semantic graphs,where nodes represent CVE IDs and key terms(nouns,verbs,and adjectives),and edges capture co-occurrence relationships.Then,it embeds the semantic graphs to a low-dimensional vector space with random-walk sampling and skip-gram with negative sampling.It is possible to identify the latent relationships and structural patterns that traditional sparse vector methods fail to capture.Experimental results demonstrate a classification accuracy of up to 80%,significantly outperforming baseline methods.This approach offers a theoretical basis for classifying vulnerability types as structured semantic patterns in complex software systems.The proposed method models the semantic structure of vulnerabilities,providing a theoretical foundation for their classification.
基金supported in part by the National Key Research and Development Program of China(Grant No.2022YFB2804401)the National Natural Science Foundation of China(Grant Nos.62334008,62134004,62404218)+1 种基金the Beijing Natural Science Foundation(Grant No.Z220005)Chinese Academy of Sciences(Grant No.ZDBS-LY-JSC008).
文摘The event-based vision sensor(EVS),which can generate efficient spiking data streams by exclusively detecting motion,exemplifies neuromorphic vision methodologies.Generally,its inherent lack of texture features limits effectiveness in complex vision processing tasks,necessitating supplementary visual information.However,to date,no event-based hybrid vision solution has been developed that preserves the characteristics of complete spike data streams to support synchronous computation architectures based on spiking neural network(SNN).In this paper,we present a novel spike-based sensor with digitized pixels,which integrates the event detection structure with the pulse frequency modulation(PFM)circuit.This design enables the simultaneous output of spiking data that encodes both temporal changes and texture information.Fabricated in 180 nm process,the proposed sensor achieves a resolution of 128×128,a maximum event rate of 960 Meps,a grayscale frame rate of 117.1 kfps,and a measured power consumption of 60.1 mW,which is suited for high-speed,low-latency,edge SNNbased vision computing systems.
基金funding from the European Research Council(ERC)under the European Union’s Horizon 2020 Research and Innovation Program through the Starting Grant GEoREST(grant agreement No.801809)support by MICIU/AEI/10.13039/501100011033 and by"European Union Next Generation EU/PRTR"through the‘Ramón y Cajal’fellowship(reference RYC2021-032780-I)+9 种基金funding by MICIU/AEI/10.13039/501100011033 and by“ERDF,EU”through the‘HydroPoreII’project(reference PID2022-137652NBC44)support by the Institute for Korea Spent Nuclear Fuel(iKSNF)National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and ICT,MSIT)(2021M2E1A1085196)support by the Swedish Radiation Safety(SSM),Swedish Transport Administration(Trafikverket),Swedish Rock Engineering Foundation(BeFo),and Nordic Energy Research(Grant 187658)supported by the US Department of Energy(DOE),the Officeof Nuclear Energy,Spent Fuel and Waste Science and Technology Campaign,and by the US Department of Energy(DOE),the Office of Basic Energy Sciences,Chemical Sciences,Geosciences,and Biosciences Division both under Contract Number DE-AC02-05CH11231 with Lawrence Berkeley National Laboratorysupport from the US National Science Foundation(grant CMMI-2239630)funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(grant agreement No.101002507)the UK Natural Environment Research Council(NERC)for funding SeisGreen Project(Grant No.NE/W009293/1)which supported this workthe Royal Society UK for supporting this research through fellowship UF160443IMEDEA is an accredited"Maria de Maeztu Excellence Unit"(Grant CEX2021-001198,funded by MICIU/AEI/10.13039/501100011033).
文摘Coupled thermo-hydro-mechanical(THM)processes in fractured rock are playing a crucial role in geoscience and geoengineering applications.Diverse and conceptually distinct approaches have emerged over the past decades in both continuum and discontinuum perspectives leading to significant progress in their comprehending and modeling.This review paper offers an integrated perspective on existing modeling methodologies providing guidance for model selection based on the initial and boundary conditions.By comparing various models,one can better assess the uncertainties in predictions,particularly those related to the conceptual models.The review explores how these methodologies have significantlyenhanced the fundamental understanding of how fractures respond to fluid injection and production,and improved predictive capabilities pertaining to coupled processes within fractured systems.It emphasizes the importance of utilizing advanced computational technologies and thoroughly considering fundamental theories and principles established through past experimental evidence and practical experience.The selection and calibration of model parameters should be based on typical ranges and applied to the specificconditions of applications.The challenges arising from inherent heterogeneity and uncertainties,nonlinear THM coupled processes,scale dependence,and computational limitations in representing fieldscale fractures are discussed.Realizing potential advances on computational capacity calls for methodical conceptualization,mathematical modeling,selection of numerical solution strategies,implementation,and calibration to foster simulation outcomes that intricately reflectthe nuanced complexities of geological phenomena.Future research efforts should focus on innovative approaches to tackle the hurdles and advance the state-of-the-art in this critical fieldof study.
基金supported by the National Natural Science Foun-dation of China(Grant No.72349002).
文摘Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to encompass broader considerations such as ecosystem stability, community resilience to climate change, and enhancement of human well-being. Given these multifaceted objectives, it is imperative to judiciously allocate resources to effectively conserve biodiversity by identifying strategically significant areas for conservation, particularly for mountainous areas. In this study, we evaluated the representativeness of the protected area network in the Qin ling Mountains concerning species diversity, ecosystem services, climate stability and ecological stability. The results indicate that some of the ecological indicators are spatially correlated with topographic gradient effects. The conservation priority areas predominantly lie in the northern foothills, the southeastern, and southwestern parts of the Qinling Mountain with areas concentrated at altitudes between 1,500-2,000 m and slopes between 40°-50° as hotspots. The conservation priority areas identified through the framework of inclusive conservation optimization account for 22.9 % of the Qinling Mountain. Existing protected areas comprise only 6.1 % of the Qinling Mountain and 13.18 % of the conservation priority areas. This will play an important role in achiev ing sustainable development in the region and in meeting the post-2020 biodiversity target. The framework can advance the different objectives of achieving a quadruple win and can also be extended to other regions.
基金supported by the National Natural Science Foundation of China(32060199,32360197,31971035,and 31771182)the Jiangxi Province Natural Science Foundation(20224ACB206016).
文摘Humans and animals have a fundamental ability to use experiences and environmental information to organize behavior.It often happens that humans and animals make decisions and prepare actions under uncertain situations.Uncertainty would significantly affect the state of animals’minds,but may not be reflected in behavior.How to“read animals’mind state”under different situations is a challenge.Here,we report that neuronal activity in the medial prefrontal cortex(mPFC)of rats can reflect the environmental uncertainty when the task situation changes from certain to uncertain.Rats were trained to perform behavioral tasks under certain and uncertain situations.Under certain situations,rats were required to simply repeat two nose-poking actions that each triggered short auditory tone feedback(single-task situation).Whereas under the uncertain situation,the feedback could randomly be either the previous tone or a short musical rhythm.No additional action was required upon the music feedback,and the same secondary nose-poking action was required upon the tone feedback(dual-task situation);therefore,the coming task was uncertain before action initiation.We recorded single-unit activity from the mPFC when the rats were performing the tasks.We found that in the dual task,when uncertainty was introduced,many mPFC neurons were actively engaged in dealing with the uncertainty before the task initiation,suggesting that the rats could be aware of the task situation change and encode the information in the mPFC before the action of task initiation.
基金the financial support from Natural Science Foundation of Gansu Province(Nos.22JR5RA217,22JR5RA216)Lanzhou Science and Technology Program(No.2022-2-111)+1 种基金Lanzhou University of Arts and Sciences School Innovation Fund Project(No.XJ2022000103)Lanzhou College of Arts and Sciences 2023 Talent Cultivation Quality Improvement Project(No.2023-ZL-jxzz-03)。
文摘Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods.
基金supported by the National Natural Science Foun-dation of China(62301596 and 62288101)Shaanxi Provincial Science and Technology Innovation Team(23-CX-TD-48)+4 种基金the KU Leuven internal funds:the C1 Project(C14/19/083)the Interdisciplinary Network Project(IDN/20/014)the Small Infrastructure Grant(KA/20/019)the Research Foundation of Flanders(FWO)Project(G090017N,G088822N,and V408823N)the Danish National Research Foundation(DNRF165).
文摘Optical singularities are topological defects of electromagnetic fields;they include phase singularity in scalar fields,polarization singularity in vector fields,and three-dimensional(3D)singularities such as optical skyrmions.The exploitation of photonic microstructures to generate and manipulate optical singularities has attracted wide research interest in recent years,with many photonic microstructures having been devised to this end.Accompanying these designs,scattered phenomenological theories have been proposed to expound the working mechanisms behind individual designs.In this work,instead of focusing on a specific type of microstructure,we concentrate on the most common geometric features of these microstructures—namely,symmetries—and revisit the process of generating optical singularities in microstructures from a symmetry viewpoint.By systematically employing the projection operator technique in group theory,we develop a widely applicable theoretical scheme to explore optical singularities in microstructures with rosette(i.e.,rotational and reflection)symmetries.Our scheme agrees well with previously reported works and further reveals that the eigenmodes of a symmetric microstructure can support multiplexed phase singularities in different components,such as out-of-plane,radial,azimuthal,and left-and right-handed circular components.Based on these phase singularities,more complicated optical singularities may be synthesized,including C points,V points,L lines,Néel-and bubble-type optical skyrmions,and optical lattices,to name a few.We demonstrate that the topological invariants associated with optical singularities are protected by the symmetries of the microstructure.Lastly,based on symmetry arguments,we formulate a so-called symmetry matching condition to clarify the excitation of a specific type of optical singularity.Our work establishes a unified theoretical framework to explore optical singularities in photonic microstructures with symmetries,shedding light on the symmetry origin of multidimensional and multiplexed optical singularities and providing a symmetry perspective for exploring many singularity-related effects in optics and photonics.
基金supported in part by the National Natural Science Foundation of China(62471205,62462040)Yunnan Fundamental Research Projects(202301AV070003)+1 种基金Major Science and Technology Projects in Yunnan Province(202302AG050009,202202AD080013)Sichuan Provincial Key Laboratory of Philosophy and Social Science for Language Intelligence in Special Education Major Project(YYZN-2024-1).
文摘In recent years,the transformer model has demonstrated excellent performance in computer vision(CV)applications.The key lies in its guided representation attention mechanism,which uses dot-product to depict complex feature relationships,and comprehensively understands the context semantics to obtain feature weights.Then feature enhancement is implemented by guiding the target matrix through feature weights.However,the uncertainty and inconsistency of features are widespread that prone to confusion in the description of relationships within dot-product attention mechanisms.To solve this problem,this paper proposed a novel approximate-guided representation learning methodology for vision transformer.The kernelised matroids fuzzy rough set is defined,wherein the closed sets inside kernelised fuzzy information granules of matroids structures can constitute the subspace of lower approximation in rough sets.Thus,the kernel relation is employed to characterise image feature granules that will be reconstructed according to the independent set in matroids theory.Then,according to the characteristics of the closed set within matroids,the feature attention weight is formed by using the lower approximation to realise the approximate guidance of features.The approximate-guided representation mechanism can be flexibly deployed as a plug-and-play component in a wide range of CV tasks.Extensive empirical results demonstrate that the proposed method outperforms the majority of advanced prevalent models,especially in terms of robustness.