期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A New Fast Edge Detection Algorithm Based on NAM-structured Plane Decomposition
1
作者 WU Xueli CHEN Chuanbo SAREM Mudar HUANG Wei 《Geo-Spatial Information Science》 2009年第4期281-288,共8页
The nonsymmetry and antipacking pattern representation model (NAM), inspired by the concept of the packing problem, uses a set of subpatterns to represent an original pattern. The NAM is a promising method for image... The nonsymmetry and antipacking pattern representation model (NAM), inspired by the concept of the packing problem, uses a set of subpatterns to represent an original pattern. The NAM is a promising method for image representation because of its ability to focus on the interesting subsets of an image. In this paper, we develop a new method for gray-scale image representation based on NAM, called NAM-structured plane decomposition (NAMPD), in which each subpattern is associated with a rectangular region in the image. The luminance function of pixels in this region is approximated by an oblique plane model. Then, we propose a new and fast edge detection algorithm based on NAMPD. The theoretical analyses and experimental results presented in this paper show that the edge detection algorithm using NAMPD performs faster than the classical ones because it permits the execution of operations on subpatterns instead of pixels. 展开更多
关键词 nonsymmetry and antipacking pattern representation model (NAM) packing problem image processing edge detection
原文传递
PGG:An Online Pattern Based Approach for Stream Variation Management
2
作者 唐绿岸 崔斌 +3 位作者 李红燕 苗高杉 杨冬青 周新彪 《Journal of Computer Science & Technology》 SCIE EI CSCD 2008年第4期497-515,共19页
Many database applications require efficient processing of data streams with value variations and fluctuant sampling frequency. The variations typically imply fundamental features of the stream and important domain kn... Many database applications require efficient processing of data streams with value variations and fluctuant sampling frequency. The variations typically imply fundamental features of the stream and important domain knowledge of underlying objects. In some data streams, successive events seem to recur in a certain time interval, but the data indeed evolves with tiny differences as time elapses. This feature, so called pseudo periodicity, poses a new challenge to stream variation management. This study focuses on the online management for variations over such streams. The idea can be applied to many scenarios such as patient vital signal monitoring in medical applications. This paper proposes a new method named Pattern Growth Graph (PGG) to detect and manage variations over evolving streams with following features: 1) adopts the wave-pattern to capture the major information of data evolution and represent them compactly; 2) detects the variations in a single pass over the stream with the help of wave-pattern matching algorithm; 3) only stores different segments of the pattern for incoming stream, and hence substantially compresses the data without losing important information; 4) distinguishes meaningful data changes from noise and reconstructs the stream with acceptable accuracy. Extensive experiments on real datasets containing millions of data items, as well as a prototype system, are carried out to demonstrate the feasibility and effectiveness of the proposed scheme. 展开更多
关键词 data stream noise reorganization pattern representation variation management
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部