In this paper,we shall study structures of even lattice vertex operator algebras by using the geometry of the varieties of their semi-conformal vectors.We first give the varieties of semi-conformal vectors of a family...In this paper,we shall study structures of even lattice vertex operator algebras by using the geometry of the varieties of their semi-conformal vectors.We first give the varieties of semi-conformal vectors of a family of vertex operator algebras V_(√kA_(1)) associated to rank-one positive definite even lattices √kA_(1) for arbitrary positive integers k to characterize these even lattice vertex operator algebras.In such a family of lattice vertex operator algebras V_(√kA_(1)),the vertex operator algebra V_(√2A_(1)) is different from others.Hence we describe the varieties of semi-conformal vectors of V_(√2A_(1)) and the fixed vertex operator subalgebra V^(+)√2A_(1).Moreover,as applications,we study the relations between vertex operator algebras V_(√kA_(1) )and L_(sl_(2))(k,0)for arbitrary positive integers k by the viewpoint of semi-conformal homomorphisms of vertex operator algebras.For case k=2,in the series of rational simple affine vertex operator algebras L_(sl_(2))(k,0)for positive integers k,we show that L_(sl_(2))(2,0)is a unique frame vertex operator algebra with rank 3.展开更多
The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates ...The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates that were successful in preclinical Parkinson's disease animal models have repeatedly failed when tested in clinical trials.While these failures have many possible explanations,it is perhaps time to recognize that the problem lies with the animal models rather than the putative candidate.In other words,the lack of adequate animal models of Parkinson's disease currently represents the main barrier to preclinical identification of potential disease-modifying therapies likely to succeed in clinical trials.However,this barrier may be overcome by the recent introduction of novel generations of viral vectors coding for different forms of alpha-synuclein species and related genes.Although still facing several limitations,these models have managed to mimic the known neuropathological hallmarks of Parkinson's disease with unprecedented accuracy,delineating a more optimistic scenario for the near future.展开更多
Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CA...Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CAR-NK cell therapy has enabled the development of“off-the-shelf”products that bypass the lengthy and expensive cell manufacturing process1.展开更多
Intervertebral disc degeneration is a leading cause of lower back pain and is characterized by pathological processes such as nucleus pulposus cell apoptosis,extracellular matrix imbalance,and annulus fibrosus rupture...Intervertebral disc degeneration is a leading cause of lower back pain and is characterized by pathological processes such as nucleus pulposus cell apoptosis,extracellular matrix imbalance,and annulus fibrosus rupture.These pathological changes result in disc height loss and functional decline,potentially leading to disc herniation.This comprehensive review aimed to address the current challenges in intervertebral disc degeneration treatment by evaluating the regenerative potential of stem cell-based therapies,with a particular focus on emerging technologies such as exosomes and gene vector systems.Through mechanisms such as differentiation,paracrine effects,and immunomodulation,stem cells facilitate extracellular matrix repair and reduce nucleus pulposus cell apoptosis.Despite recent advancements,clinical applications are hindered by challenges such as hypoxic disc environments and immune rejection.By analyzing recent preclinical and clinical findings,this review provided insights into optimizing stem cell therapy to overcome these obstacles and highlighted future directions in the field.展开更多
This paper presents an improved,energy-efficient Model Predictive Current Control(MPCC)strategy based on centroid-based virtual voltage vector synthesis for three-phase inverter-fed induction motor drives in electric ...This paper presents an improved,energy-efficient Model Predictive Current Control(MPCC)strategy based on centroid-based virtual voltage vector synthesis for three-phase inverter-fed induction motor drives in electric vehicle(EV)applications.Unlike conventional finite-set MPCC methods that rely on cost function evaluation over discrete switching states,the proposed approach eliminates the need for look-up tables by employing a pre-defined set of virtual vectors.These centroid-based virtual voltage vectors are synthesized by combining two adjacent active vectors and two nonzero voltage vectors in opposite directions adjacent to the sector replacing the traditional switching set.They approximate the reference voltage vector in both magnitude and phase angle,thereby reducing current tracking error through a simplified cost function.The number of candidate vectors is reduced,preserving computational efficiency.Furthermore,the scheme ensures zero average common-mode voltage(CMV)per sampling interval by completely avoiding zero-voltage vectors(ZVVs).The proposed method reduces torque ripple by up to 17%compared to the conventional approach and lowers stator current total harmonic distortion(THD)by 37%,while ensuring evenly distributed switching transitions among inverter legs.This results in reduced switching losses and enhanced drive efficiency-particularly advantageous in EV applications.Experimental validation under the high-speed extra urban driving cycle(EUDC)and low-speed ECE-R15 cycle,including torque ripple and energy consumption analysis,confirms the effectiveness of the approach,achieving an overall efficiency of 83.3%.展开更多
This paper is devoted to the investigation of the Landau–Ginzburg–Higgs equation(LGHe),which serves as a mathematical model to understand phenomena such as superconductivity and cyclotron waves.The LGHe finds applic...This paper is devoted to the investigation of the Landau–Ginzburg–Higgs equation(LGHe),which serves as a mathematical model to understand phenomena such as superconductivity and cyclotron waves.The LGHe finds applications in various scientific fields,including fluid dynamics,plasma physics,biological systems,and electricity-electronics.The study adopts Lie symmetry analysis as the primary framework for exploration.This analysis involves the identification of Lie point symmetries that are admitted by the differential equation.By leveraging these Lie point symmetries,symmetry reductions are performed,leading to the discovery of group invariant solutions.To obtain explicit solutions,several mathematical methods are applied,including Kudryashov's method,the extended Jacobi elliptic function expansion method,the power series method,and the simplest equation method.These methods yield solutions characterized by exponential,hyperbolic,and elliptic functions.The obtained solutions are visually represented through 3D,2D,and density plots,which effectively illustrate the nature of the solutions.These plots depict various patterns,such as kink-shaped,singular kink-shaped,bell-shaped,and periodic solutions.Finally,the paper employs the multiplier method and the conservation theorem introduced by Ibragimov to derive conserved vectors.These conserved vectors play a crucial role in the study of physical quantities,such as the conservation of energy and momentum,and contribute to the understanding of the underlying physics of the system.展开更多
A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm de...A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.展开更多
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
Node of network has lots of information, such as topology, text and label information. Therefore, node classification is an open issue. Recently, one vector of node is directly connected at the end of another vector. ...Node of network has lots of information, such as topology, text and label information. Therefore, node classification is an open issue. Recently, one vector of node is directly connected at the end of another vector. However, this method actually obtains the performance by extending dimensions and considering that the text and structural information are one-to-one, which is obviously unreasonable. Regarding this issue, a method by weighting vectors is proposed in this paper. Three methods, negative logarithm, modulus and sigmoid function are used to weight-trained vectors, then recombine the weighted vectors and put them into the SVM classifier for evaluation output. By comparing three different weighting methods, the results showed that using negative logarithm weighting achieved better results than the other two using modulus and sigmoid function weighting, and was superior to directly concatenating vectors in the same dimension.展开更多
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie...Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.展开更多
The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collect...The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.展开更多
Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion...Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.展开更多
In this paper,we obtain a vector bundle valued mixed hard Lefschetz theorem.The argument is mainly based on the works of Tien-Cuong Dinh and Viet-Anh Nguyen.
Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the eva...Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the evaluation of numerical weather prediction models.In this study,the authors treat vector winds as a whole by employing a vector field evaluation method,and evaluate the mesoscale model of the China Meteorological Administration(CMA-MESO)and ECMWF forecast,with reference to ERA5 reanalysis,in terms of multiple aspects of vector winds over eastern China in 2022.The results show that the ECMWF forecast is superior to CMA-MESO in predicting the spatial distribution and intensity of 10-m vector winds.Both models overestimate the wind speed in East China,and CMA-MESO overestimates the wind speed to a greater extent.The forecasting skill of the vector wind field in both models decreases with increasing lead time.The forecasting skill of CMA-MESO fluctuates more and decreases faster than that of the ECMWF forecast.There is a significant negative correlation between the model vector wind forecasting skill and terrain height.This study provides a scientific evaluation of the local application of vector wind forecasts of the CMA-MESO model and ECMWF forecast.展开更多
Vector magnetic measurement is increasingly widely used.In order to improve the accuracy of vector magnetic measurement system on board a vehicle,researchers have proposed various calibration methods.Most of them requ...Vector magnetic measurement is increasingly widely used.In order to improve the accuracy of vector magnetic measurement system on board a vehicle,researchers have proposed various calibration methods.Most of them require altering the magnetic vector in the vehicle coordinate system.Exploring the use of geomagnetic variation to change the geomagnetic vector in the vehicle coordinate system,this paper proposes a novel vector magnetic measurement calibration method.In this method,a vector magnetometer mounted on a vehicle and an accurate vector magnetometer separately measure the geomagnetic field at diff erent locations within the same area.Based on the physical principle that the geomagnetic variation at two nearby locations is equal,the calibration parameters of the magnetometer on the vehicle can be determined through a set of equations containing the measurements from the two magnetometers.The theoretical derivation and simulation experiment results demonstrate the feasibility of this method.Therefore,it can serve as a new alternative calibration method,especially in scenarios where a high degree of accuracy in the estimation of calibration parameters is not required.展开更多
To investigate the function of the zinc finger protein BnZAT12 in Brassica napus,bioinformatics analysis was conducted on BnZAT12.The results showed that the open reading frame of BnZAT12 was 477 bp in length,encoding...To investigate the function of the zinc finger protein BnZAT12 in Brassica napus,bioinformatics analysis was conducted on BnZAT12.The results showed that the open reading frame of BnZAT12 was 477 bp in length,encoding 158 amino acid residues.The deduced protein had a molecular weight of 16864.72 Da and a theoretical isoelectric point of 9.68.The phylogenetic tree showed that Brassica napus had the closest relationship with Brassica oleracea belonging to Brassicaceae and the farthest relationship with Oryza sativa.The analysis of the promoter region suggested that BnZAT12 may be regulated by factors such as light,abscisic acid,and methyl jasmonate.Furthermore,the BnZAT12 overexpression vector was constructed by seamless cloning.This study laid a foundation of molecular biology for further elucidating the role of BnZAT12.展开更多
Mosquitoes(Diptera:Culicidae)are vectors of various pathogens of public health concern,but replacing conventional insecticides remains a challenge.In this regard,natural products represent valuable sources of potentia...Mosquitoes(Diptera:Culicidae)are vectors of various pathogens of public health concern,but replacing conventional insecticides remains a challenge.In this regard,natural products represent valuable sources of potential insecticidal compounds,thus increasingly attracting research interest.Commiphora myrrha(T.Nees)Engl.(Burseraceae)is a medicinal plant whose oleo-gum resin is used in food,cosmetics,fragrances,and pharmaceuticals.Herein,the larvicidal potential of its essential oil(EO)was assessed on four mosquito species(Aedes albopictus Skuse,Ae.aegypti L.,Anopheles gambiae Giles and An.stephensi Liston),with LC_(50) values ranging from 4.42 to 16.80 μg/mL.The bio-guided EO fractionation identified furanosesquiterpenes as the main larvicidal compounds.A GC-MS-driven untargeted metabolomic analysis revealed 32 affected metabolic pathways in treated larvae.The EO non-target toxicity on Daphnia magna Straus(LC_(50)=4.51 μL/L)and its cytotoxicity on a human kidney cell line(HEK293)(IC50 of 14.38 μg/mL)were also assessed.This study shows the potential of plant products as innovative insecticidal agents and lays the ground-work for the possible exploitation of C.myrrha EO in the sustainable approaches for mosquito management.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.12475002).
文摘In this paper,we shall study structures of even lattice vertex operator algebras by using the geometry of the varieties of their semi-conformal vectors.We first give the varieties of semi-conformal vectors of a family of vertex operator algebras V_(√kA_(1)) associated to rank-one positive definite even lattices √kA_(1) for arbitrary positive integers k to characterize these even lattice vertex operator algebras.In such a family of lattice vertex operator algebras V_(√kA_(1)),the vertex operator algebra V_(√2A_(1)) is different from others.Hence we describe the varieties of semi-conformal vectors of V_(√2A_(1)) and the fixed vertex operator subalgebra V^(+)√2A_(1).Moreover,as applications,we study the relations between vertex operator algebras V_(√kA_(1) )and L_(sl_(2))(k,0)for arbitrary positive integers k by the viewpoint of semi-conformal homomorphisms of vertex operator algebras.For case k=2,in the series of rational simple affine vertex operator algebras L_(sl_(2))(k,0)for positive integers k,we show that L_(sl_(2))(2,0)is a unique frame vertex operator algebra with rank 3.
基金supported by grants PID2020-120308RB-I00 and PID2023-147802OB-I00 funded by MICIU/AEI/10.13039/501100011033FEDER,UE,by Aligning Science Across Parkinson’s(ref.ASAP-020505)through the Michael J.Fox Foundation for Parkinson’s Research+1 种基金by CiberNed Intramural Collaborative Projects(ref.PI2020/09)by the Spanish Fundación Mutua Madrile?a de Investigación Médica(to JLL)。
文摘The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates that were successful in preclinical Parkinson's disease animal models have repeatedly failed when tested in clinical trials.While these failures have many possible explanations,it is perhaps time to recognize that the problem lies with the animal models rather than the putative candidate.In other words,the lack of adequate animal models of Parkinson's disease currently represents the main barrier to preclinical identification of potential disease-modifying therapies likely to succeed in clinical trials.However,this barrier may be overcome by the recent introduction of novel generations of viral vectors coding for different forms of alpha-synuclein species and related genes.Although still facing several limitations,these models have managed to mimic the known neuropathological hallmarks of Parkinson's disease with unprecedented accuracy,delineating a more optimistic scenario for the near future.
基金supported by grants from the Noncommunicable Chronic Diseases-National Science and Technology Major Project(Grant No.2023ZD0501300)Science Technology Department of Zhejiang Province(Grant No.2021C03117)+2 种基金National Natural Science Foundation of China(Grant No.82350104 and 82170219)Natural Science Foundation of Zhejiang Province,China(Grant No.LY23H080004 and LY24H080001)Medical Health Science and Technology Project of Zhejiang Provincial Health Commission(Grant No.2021KY199)。
文摘Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CAR-NK cell therapy has enabled the development of“off-the-shelf”products that bypass the lengthy and expensive cell manufacturing process1.
基金Supported by Henan Province Key Research and Development Program,No.231111311000Henan Provincial Science and Technology Research Project,No.232102310411+2 种基金Henan Province Medical Science and Technology Key Project,No.LHGJ20220566 and No.LHGJ20240365Henan Province Medical Education Research Project,No.WJLX2023079Zhengzhou Medical and Health Technology Innovation Guidance Program,No.2024YLZDJH022.
文摘Intervertebral disc degeneration is a leading cause of lower back pain and is characterized by pathological processes such as nucleus pulposus cell apoptosis,extracellular matrix imbalance,and annulus fibrosus rupture.These pathological changes result in disc height loss and functional decline,potentially leading to disc herniation.This comprehensive review aimed to address the current challenges in intervertebral disc degeneration treatment by evaluating the regenerative potential of stem cell-based therapies,with a particular focus on emerging technologies such as exosomes and gene vector systems.Through mechanisms such as differentiation,paracrine effects,and immunomodulation,stem cells facilitate extracellular matrix repair and reduce nucleus pulposus cell apoptosis.Despite recent advancements,clinical applications are hindered by challenges such as hypoxic disc environments and immune rejection.By analyzing recent preclinical and clinical findings,this review provided insights into optimizing stem cell therapy to overcome these obstacles and highlighted future directions in the field.
文摘This paper presents an improved,energy-efficient Model Predictive Current Control(MPCC)strategy based on centroid-based virtual voltage vector synthesis for three-phase inverter-fed induction motor drives in electric vehicle(EV)applications.Unlike conventional finite-set MPCC methods that rely on cost function evaluation over discrete switching states,the proposed approach eliminates the need for look-up tables by employing a pre-defined set of virtual vectors.These centroid-based virtual voltage vectors are synthesized by combining two adjacent active vectors and two nonzero voltage vectors in opposite directions adjacent to the sector replacing the traditional switching set.They approximate the reference voltage vector in both magnitude and phase angle,thereby reducing current tracking error through a simplified cost function.The number of candidate vectors is reduced,preserving computational efficiency.Furthermore,the scheme ensures zero average common-mode voltage(CMV)per sampling interval by completely avoiding zero-voltage vectors(ZVVs).The proposed method reduces torque ripple by up to 17%compared to the conventional approach and lowers stator current total harmonic distortion(THD)by 37%,while ensuring evenly distributed switching transitions among inverter legs.This results in reduced switching losses and enhanced drive efficiency-particularly advantageous in EV applications.Experimental validation under the high-speed extra urban driving cycle(EUDC)and low-speed ECE-R15 cycle,including torque ripple and energy consumption analysis,confirms the effectiveness of the approach,achieving an overall efficiency of 83.3%.
基金the South African National Space Agency (SANSA) for funding this work
文摘This paper is devoted to the investigation of the Landau–Ginzburg–Higgs equation(LGHe),which serves as a mathematical model to understand phenomena such as superconductivity and cyclotron waves.The LGHe finds applications in various scientific fields,including fluid dynamics,plasma physics,biological systems,and electricity-electronics.The study adopts Lie symmetry analysis as the primary framework for exploration.This analysis involves the identification of Lie point symmetries that are admitted by the differential equation.By leveraging these Lie point symmetries,symmetry reductions are performed,leading to the discovery of group invariant solutions.To obtain explicit solutions,several mathematical methods are applied,including Kudryashov's method,the extended Jacobi elliptic function expansion method,the power series method,and the simplest equation method.These methods yield solutions characterized by exponential,hyperbolic,and elliptic functions.The obtained solutions are visually represented through 3D,2D,and density plots,which effectively illustrate the nature of the solutions.These plots depict various patterns,such as kink-shaped,singular kink-shaped,bell-shaped,and periodic solutions.Finally,the paper employs the multiplier method and the conservation theorem introduced by Ibragimov to derive conserved vectors.These conserved vectors play a crucial role in the study of physical quantities,such as the conservation of energy and momentum,and contribute to the understanding of the underlying physics of the system.
文摘A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.
文摘Node of network has lots of information, such as topology, text and label information. Therefore, node classification is an open issue. Recently, one vector of node is directly connected at the end of another vector. However, this method actually obtains the performance by extending dimensions and considering that the text and structural information are one-to-one, which is obviously unreasonable. Regarding this issue, a method by weighting vectors is proposed in this paper. Three methods, negative logarithm, modulus and sigmoid function are used to weight-trained vectors, then recombine the weighted vectors and put them into the SVM classifier for evaluation output. By comparing three different weighting methods, the results showed that using negative logarithm weighting achieved better results than the other two using modulus and sigmoid function weighting, and was superior to directly concatenating vectors in the same dimension.
基金supported by the Deanship of Graduate Studies and Scientific Research at University of Bisha for funding this research through the promising program under grant number(UB-Promising-33-1445).
文摘Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
基金supported by the National Key R&D Program of China(Grant2022YFF0503700)the National Natural Science Foundation of China(42474200 and 42174186)。
文摘The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.
基金performed at large-scale research facility"Beam-M"of Bauman Moscow State Technical University following the government task by the Ministry of Science and Higher Education of the Russian Federation(No.FSFN-2024-0007).
文摘Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.
基金supported by the National key R and D Program of China 2020YFA0713100the NSFC(12141104,12371062 and 12431004).
文摘In this paper,we obtain a vector bundle valued mixed hard Lefschetz theorem.The argument is mainly based on the works of Tien-Cuong Dinh and Viet-Anh Nguyen.
基金primarily supported by the National Key R&D Program of China[grant number 2021YFC3000904]the Jiangsu Provincial Key Technology R&D Program[grant number BE2022851]National Natural Science Foundation of China[grant number 42405035]。
文摘Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the evaluation of numerical weather prediction models.In this study,the authors treat vector winds as a whole by employing a vector field evaluation method,and evaluate the mesoscale model of the China Meteorological Administration(CMA-MESO)and ECMWF forecast,with reference to ERA5 reanalysis,in terms of multiple aspects of vector winds over eastern China in 2022.The results show that the ECMWF forecast is superior to CMA-MESO in predicting the spatial distribution and intensity of 10-m vector winds.Both models overestimate the wind speed in East China,and CMA-MESO overestimates the wind speed to a greater extent.The forecasting skill of the vector wind field in both models decreases with increasing lead time.The forecasting skill of CMA-MESO fluctuates more and decreases faster than that of the ECMWF forecast.There is a significant negative correlation between the model vector wind forecasting skill and terrain height.This study provides a scientific evaluation of the local application of vector wind forecasts of the CMA-MESO model and ECMWF forecast.
基金General Project of Basic Research Plan for Natural Sciences in Shaanxi Province,grant number 2023-JC-YB-244Youth Project of Basic Research Plan for Natural Sciences in Shaanxi Province,grant number 2024JC-YBQN-0253.
文摘Vector magnetic measurement is increasingly widely used.In order to improve the accuracy of vector magnetic measurement system on board a vehicle,researchers have proposed various calibration methods.Most of them require altering the magnetic vector in the vehicle coordinate system.Exploring the use of geomagnetic variation to change the geomagnetic vector in the vehicle coordinate system,this paper proposes a novel vector magnetic measurement calibration method.In this method,a vector magnetometer mounted on a vehicle and an accurate vector magnetometer separately measure the geomagnetic field at diff erent locations within the same area.Based on the physical principle that the geomagnetic variation at two nearby locations is equal,the calibration parameters of the magnetometer on the vehicle can be determined through a set of equations containing the measurements from the two magnetometers.The theoretical derivation and simulation experiment results demonstrate the feasibility of this method.Therefore,it can serve as a new alternative calibration method,especially in scenarios where a high degree of accuracy in the estimation of calibration parameters is not required.
文摘To investigate the function of the zinc finger protein BnZAT12 in Brassica napus,bioinformatics analysis was conducted on BnZAT12.The results showed that the open reading frame of BnZAT12 was 477 bp in length,encoding 158 amino acid residues.The deduced protein had a molecular weight of 16864.72 Da and a theoretical isoelectric point of 9.68.The phylogenetic tree showed that Brassica napus had the closest relationship with Brassica oleracea belonging to Brassicaceae and the farthest relationship with Oryza sativa.The analysis of the promoter region suggested that BnZAT12 may be regulated by factors such as light,abscisic acid,and methyl jasmonate.Furthermore,the BnZAT12 overexpression vector was constructed by seamless cloning.This study laid a foundation of molecular biology for further elucidating the role of BnZAT12.
基金granted by the project PRIN 2022“Bioformulations for controlled release of botanical pesticides for sustainable agriculture”(prot.202274BK9L)supported by the Italian Ministry of University and Research(MUR)the Technology agency of the Czech Republic for its financial support concerning botanical pesticide(Project No.FW06010376).
文摘Mosquitoes(Diptera:Culicidae)are vectors of various pathogens of public health concern,but replacing conventional insecticides remains a challenge.In this regard,natural products represent valuable sources of potential insecticidal compounds,thus increasingly attracting research interest.Commiphora myrrha(T.Nees)Engl.(Burseraceae)is a medicinal plant whose oleo-gum resin is used in food,cosmetics,fragrances,and pharmaceuticals.Herein,the larvicidal potential of its essential oil(EO)was assessed on four mosquito species(Aedes albopictus Skuse,Ae.aegypti L.,Anopheles gambiae Giles and An.stephensi Liston),with LC_(50) values ranging from 4.42 to 16.80 μg/mL.The bio-guided EO fractionation identified furanosesquiterpenes as the main larvicidal compounds.A GC-MS-driven untargeted metabolomic analysis revealed 32 affected metabolic pathways in treated larvae.The EO non-target toxicity on Daphnia magna Straus(LC_(50)=4.51 μL/L)and its cytotoxicity on a human kidney cell line(HEK293)(IC50 of 14.38 μg/mL)were also assessed.This study shows the potential of plant products as innovative insecticidal agents and lays the ground-work for the possible exploitation of C.myrrha EO in the sustainable approaches for mosquito management.