Jumping from place to place, replicating food, biological or mechanical parts or beaming up somebody, may not be fiction, rather an issue of practical implementation as shall be observed in this paper. Devices like tr...Jumping from place to place, replicating food, biological or mechanical parts or beaming up somebody, may not be fiction, rather an issue of practical implementation as shall be observed in this paper. Devices like transporter, food replicators or warp drive intrigue our imagination. This paper is intended to show that Jump drive is an issue of coordinate transformation. Changing location from planet X to planet Y does not necessarily require travelling a distance D connecting between the two planets. The theoretical knowledge of changing the location from coordinate X to coordinate Y exists;we do that in signal processing, but, we have not yet developed such a machine. The present paper shows the feasibility of jump drive;however, much work needs to be done on the implementation.展开更多
DNA replication is a crucial process for species survival, nevertheless it is not clear which factors define origin selection in multicellular eukaryotes. Developmental gene amplification systems, such as the one desc...DNA replication is a crucial process for species survival, nevertheless it is not clear which factors define origin selection in multicellular eukaryotes. Developmental gene amplification systems, such as the one described during ovarian follicles development in Drosophila melanogaster, are useful tools for studying of DNA replication process in these organisms. We previously described that the well characterized third chromosome amplified domain of D. melanogater displays three intrinsically bent DNA sites: b1, localized at an amplification control element (ACE3), b2 and b3, both localized at the preferential origin ori-β. This proposal aimed to construct a Drosophila transformation vector, which contains a short deletion at the ACE3, in order to reduce the intrinsically bent DNA site b1, and analyze the functional role of this site in the gene amplification process. Through a series of cloning steps, we obtained a Big Parent vector derivative, containing a deletion at the positions 176-180 bp, inside the ACE3. The generation of a Drosophila transformation vector displays a reduced intrinsically bent DNA site in the third chromosome amplified domain, it will allow the analysis of the functional role of this curvature in developmental gene amplification, providing new insights on replication initiation in D. melanogaster and the function of intrinsically bent DNA sites.展开更多
Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(...Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(SSB1 and SSB2).However,the functional divergence of these two SSB copies in plants remains largely unknown,and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete.In this study,phylogenetic,gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants.Based on accurate long-read sequencing results,ssb1 and ssb2 mutants had decreased copy numbers for both mitochondrial DNA(mtDNA)and plastid DNA(ptDNA),accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes.Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.展开更多
The DNA replication stress(RS)response is crucial for maintaining cellular homeostasis and promoting physiological longevity.However,the mechanisms by which long-lived species,such as bats,regulate RS to maintain geno...The DNA replication stress(RS)response is crucial for maintaining cellular homeostasis and promoting physiological longevity.However,the mechanisms by which long-lived species,such as bats,regulate RS to maintain genomic stability remain unclear.Also,recent studies have uncovered noncanonical roles of ribosome-associated factors in maintaining genomic stability.In this study,somatic skin fibroblasts from the long-lived big-footed bat(Myotis pilosus)were examined,with results showing that bat cells exhibited enhanced RS tolerance compared to mouse cells.Comparative transcriptome analysis under RS conditions revealed pronounced species-specific transcriptional differences,including robust up-regulation of ribosome biogenesis genes in bat cells and a markedly reduced activation of the P53 signaling pathway.These features emphasize a distinct homeostatic strategy in bat cells.Nuclear fragile X mental retardation-interacting protein 1(Nufip1),a ribosome-associated factor highly expressed in bat fibroblasts,was identified as a potential integrator of ribosomal and P53 signaling via its association with ribosomal protein S27-like(Rps27l).These findings provide direct cellular and molecular evidence for a noncanonical RS response in bats,highlighting a deeper understanding of the biological characteristics and genomic maintenance mechanisms of long-lived species.展开更多
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
Virus-encoding RNA-dependent RNA polymerase(RdRp)is essential for genome replication and gene transcription of human coronaviruses(HCoVs),including severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).We previo...Virus-encoding RNA-dependent RNA polymerase(RdRp)is essential for genome replication and gene transcription of human coronaviruses(HCoVs),including severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).We previously identified the interaction between the catalytic subunit NSP12 of SARS-CoV-2 RdRp and the host protein CREB-regulated transcription coactivator 3(CRTC3),a member of the CRTC family that regulates cyclic AMP response element-binding protein(CREB)-mediated transcriptional activation.Currently,the implication of CRTC3 in the pathogenesis of HCoVs is poorly understood.Herein,we demonstrated that CRTC3 attenuates RdRp activity and SARS-CoV-2 genome replication,therefore reducing the production of progeny viruses.The interaction of CRTC3 with NSP12 contributes to its inhibitory effect on RdRp activity.Furthermore,we expanded the suppressive effects of two other CRTC family members(CRTC1 and CRTC2)on the RdRp activities of lethal HCoVs,including SARS-CoV-2 and Middle East respiratory syndrome coronavirus(MERS-CoV),along with the CREB antagonization.Overall,our research suggests that CRTCs restrict the replication of HCoVs and are antagonized by CREB,which not only provides new insights into the replication regulation of HCoVs,but also offers important information for the development of anti-HCoV interventions.展开更多
Objective: To evaluate the therapeutic efficacy of replicative adenovirus CNHK500 in the treatment of hepatocellular carcinoma. Methods: Virus proliferation assay, cell viability assay and Western blot were performed ...Objective: To evaluate the therapeutic efficacy of replicative adenovirus CNHK500 in the treatment of hepatocellular carcinoma. Methods: Virus proliferation assay, cell viability assay and Western blot were performed to assess the selective replication and cytolysis of CNHK500 in telomerase positive liver cancer cells Hep3B, HepGII, SMMC7721 and in normal cells. Results: The replicative multiples of CNHK500 in HepGII, Hep3B and SMMC7221 after 96 h of virus proliferation were 52 000, 396 984.9 and 632 911.3 fold respectively, similar to those of wtAd5. However, CNHK500 demonstrated more significant attenuated replicative ability in normal cell lines than wtAd5. CNHK500 replicated only 3.1-100 fold at 96 h, while the wtAd5 still reached 3160-17 357 fold. CNHK500 could cause half of HepGII cells death within 7 days at MOI 2, in Hep3B cell lines the IC50 was as low as MOI 0.01, whereas the IC50 in BJ cell was as high as MOI 1000. CNHK500 E1A protein could only be detected in hepatocellular cancer cells but not in normal cells under normoxia. E1B protein could only be detected under hypoxia condition at a MOI of 1. Conclusion: CNHK500 can efficiently replicate in and kill liver cancer cells as well as wtAd5 do while it is severely attenuated in proliferation and cytolysis among normal cells. It would be a prominsing strategy for liver cancer tratment.展开更多
Objective: To evaluate the tumor selectivity and therapeutic efficiency of replication-competent adenovirus CNHK300 on human breast cancer cells. Methods: RT-PCR was used to detect the hTERT mRNA activity in various...Objective: To evaluate the tumor selectivity and therapeutic efficiency of replication-competent adenovirus CNHK300 on human breast cancer cells. Methods: RT-PCR was used to detect the hTERT mRNA activity in various breast cancer and normal fibroblast cell lines. Virus proliferation assay, cell viability assay and Western blot were applied to evaluate the proliferation and cytolysis selectivity of CNHK300. Results: The telomerase activity of MCF-7, BT-549 and SK-BR-3 was positive, while telomerase in MRC-5 and BJ was negative. The progeny virus titers in MCF-7, BT-549 and SK-BR-3 after 48 h of CNHK300 exposure was 40 625, 1 265 and 20 000 fold higher than those of 0 h, even slightly higher than those of wtAd5 (except in SK-BR-3). ONYX-015 virus proliferation ability was weaker than that of CNHK300 in cancer cells. However, CNHK300 exhibited attenuated replicative ability as compared with wtAd5 in MRC-5 and BJ. The CNHK300 replicatative multiple was 63 and 192 fold at 48 h respectively, while the wtAd5 still multiplied 3 160-4 846 fold. CNHK300 could cause about half of breast cancer cells to die within 7 days at MOI 10 pfu/cell and below, whereas the IC50 in BJ and MRC-5 was as high as MOI 100 pfu/cell. CNHK300 E1A protein could be detected in breast cancer cells and 293 cells but not in normal fibroblast cells. Conclusion: hTERT promoter can successfully modulate the CNHK300 to be selectively replicated in breast cancer cells positive for telomerase, which may be a potential treatment strategy in breast cancer.展开更多
文摘Jumping from place to place, replicating food, biological or mechanical parts or beaming up somebody, may not be fiction, rather an issue of practical implementation as shall be observed in this paper. Devices like transporter, food replicators or warp drive intrigue our imagination. This paper is intended to show that Jump drive is an issue of coordinate transformation. Changing location from planet X to planet Y does not necessarily require travelling a distance D connecting between the two planets. The theoretical knowledge of changing the location from coordinate X to coordinate Y exists;we do that in signal processing, but, we have not yet developed such a machine. The present paper shows the feasibility of jump drive;however, much work needs to be done on the implementation.
文摘DNA replication is a crucial process for species survival, nevertheless it is not clear which factors define origin selection in multicellular eukaryotes. Developmental gene amplification systems, such as the one described during ovarian follicles development in Drosophila melanogaster, are useful tools for studying of DNA replication process in these organisms. We previously described that the well characterized third chromosome amplified domain of D. melanogater displays three intrinsically bent DNA sites: b1, localized at an amplification control element (ACE3), b2 and b3, both localized at the preferential origin ori-β. This proposal aimed to construct a Drosophila transformation vector, which contains a short deletion at the ACE3, in order to reduce the intrinsically bent DNA site b1, and analyze the functional role of this site in the gene amplification process. Through a series of cloning steps, we obtained a Big Parent vector derivative, containing a deletion at the positions 176-180 bp, inside the ACE3. The generation of a Drosophila transformation vector displays a reduced intrinsically bent DNA site in the third chromosome amplified domain, it will allow the analysis of the functional role of this curvature in developmental gene amplification, providing new insights on replication initiation in D. melanogaster and the function of intrinsically bent DNA sites.
基金supported by grants from the National Natural Science Foundation of China(32170238,32400191)Guangdong Basic and Applied Basic Research Foundation(2023A1515111029)+2 种基金the Science,Technology and Innovation Commission of Shenzhen Municipality(RCYX20200714114538196)the Chinese Academy of Agricultural Sciences Elite Youth Program(grant 110243160001007)the Guangdong Pearl River Talent Program(2021QN02N792)。
文摘Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(SSB1 and SSB2).However,the functional divergence of these two SSB copies in plants remains largely unknown,and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete.In this study,phylogenetic,gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants.Based on accurate long-read sequencing results,ssb1 and ssb2 mutants had decreased copy numbers for both mitochondrial DNA(mtDNA)and plastid DNA(ptDNA),accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes.Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.
基金supported by the Applied Basic Research Programs of Science and Technology Commission Foundation of Yunnan Province(202401AT070186 to K.Q.L.,202201AS070044 to B.Z.)Yunnan Province(202305AH340006 to B.Z.)Kunming Science and Technology Bureau(2022SCP007 to B.Z.)。
文摘The DNA replication stress(RS)response is crucial for maintaining cellular homeostasis and promoting physiological longevity.However,the mechanisms by which long-lived species,such as bats,regulate RS to maintain genomic stability remain unclear.Also,recent studies have uncovered noncanonical roles of ribosome-associated factors in maintaining genomic stability.In this study,somatic skin fibroblasts from the long-lived big-footed bat(Myotis pilosus)were examined,with results showing that bat cells exhibited enhanced RS tolerance compared to mouse cells.Comparative transcriptome analysis under RS conditions revealed pronounced species-specific transcriptional differences,including robust up-regulation of ribosome biogenesis genes in bat cells and a markedly reduced activation of the P53 signaling pathway.These features emphasize a distinct homeostatic strategy in bat cells.Nuclear fragile X mental retardation-interacting protein 1(Nufip1),a ribosome-associated factor highly expressed in bat fibroblasts,was identified as a potential integrator of ribosomal and P53 signaling via its association with ribosomal protein S27-like(Rps27l).These findings provide direct cellular and molecular evidence for a noncanonical RS response in bats,highlighting a deeper understanding of the biological characteristics and genomic maintenance mechanisms of long-lived species.
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
基金supported by grants from the National Natural Science Foundation of China(32071236)the National Science Fund for Distinguished Young Scholars(32225001)+6 种基金the 1.3.5 Project for Disciplines Excellence of West China Hospital,Sichuan University(ZYGD23018)Key Science and Technology Research Projects in Key Areas of the Corps(2023AB053)the National Key Research and Development Program of China(2022YFC2303700)the Joint Project of Pengzhou People's Hospital with Southwest Medical University(2024PZXNYD02)Project funded by China Postdoctoral Science Foundation(2020M683304)Sichuan Science and Technology Support Project(2021YJ0502)Post-Doctor Research Project,West China Hospital,Sichuan University(2020HXBH082).
文摘Virus-encoding RNA-dependent RNA polymerase(RdRp)is essential for genome replication and gene transcription of human coronaviruses(HCoVs),including severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).We previously identified the interaction between the catalytic subunit NSP12 of SARS-CoV-2 RdRp and the host protein CREB-regulated transcription coactivator 3(CRTC3),a member of the CRTC family that regulates cyclic AMP response element-binding protein(CREB)-mediated transcriptional activation.Currently,the implication of CRTC3 in the pathogenesis of HCoVs is poorly understood.Herein,we demonstrated that CRTC3 attenuates RdRp activity and SARS-CoV-2 genome replication,therefore reducing the production of progeny viruses.The interaction of CRTC3 with NSP12 contributes to its inhibitory effect on RdRp activity.Furthermore,we expanded the suppressive effects of two other CRTC family members(CRTC1 and CRTC2)on the RdRp activities of lethal HCoVs,including SARS-CoV-2 and Middle East respiratory syndrome coronavirus(MERS-CoV),along with the CREB antagonization.Overall,our research suggests that CRTCs restrict the replication of HCoVs and are antagonized by CREB,which not only provides new insights into the replication regulation of HCoVs,but also offers important information for the development of anti-HCoV interventions.
基金This work is supported by International Cooperation Important Project of National Natural Science Foundation of China(No.30120160824)the State 863 High Technology R&D Project of China(No.2001AA217031).
文摘Objective: To evaluate the therapeutic efficacy of replicative adenovirus CNHK500 in the treatment of hepatocellular carcinoma. Methods: Virus proliferation assay, cell viability assay and Western blot were performed to assess the selective replication and cytolysis of CNHK500 in telomerase positive liver cancer cells Hep3B, HepGII, SMMC7721 and in normal cells. Results: The replicative multiples of CNHK500 in HepGII, Hep3B and SMMC7221 after 96 h of virus proliferation were 52 000, 396 984.9 and 632 911.3 fold respectively, similar to those of wtAd5. However, CNHK500 demonstrated more significant attenuated replicative ability in normal cell lines than wtAd5. CNHK500 replicated only 3.1-100 fold at 96 h, while the wtAd5 still reached 3160-17 357 fold. CNHK500 could cause half of HepGII cells death within 7 days at MOI 2, in Hep3B cell lines the IC50 was as low as MOI 0.01, whereas the IC50 in BJ cell was as high as MOI 1000. CNHK500 E1A protein could only be detected in hepatocellular cancer cells but not in normal cells under normoxia. E1B protein could only be detected under hypoxia condition at a MOI of 1. Conclusion: CNHK500 can efficiently replicate in and kill liver cancer cells as well as wtAd5 do while it is severely attenuated in proliferation and cytolysis among normal cells. It would be a prominsing strategy for liver cancer tratment.
基金This work was supported by International Cooperation Important Project of National Natural Sciences Foundation of China(No. 30120160824) and the State 863 High Technology R&D Project of China (No. 2001AA217031)
文摘Objective: To evaluate the tumor selectivity and therapeutic efficiency of replication-competent adenovirus CNHK300 on human breast cancer cells. Methods: RT-PCR was used to detect the hTERT mRNA activity in various breast cancer and normal fibroblast cell lines. Virus proliferation assay, cell viability assay and Western blot were applied to evaluate the proliferation and cytolysis selectivity of CNHK300. Results: The telomerase activity of MCF-7, BT-549 and SK-BR-3 was positive, while telomerase in MRC-5 and BJ was negative. The progeny virus titers in MCF-7, BT-549 and SK-BR-3 after 48 h of CNHK300 exposure was 40 625, 1 265 and 20 000 fold higher than those of 0 h, even slightly higher than those of wtAd5 (except in SK-BR-3). ONYX-015 virus proliferation ability was weaker than that of CNHK300 in cancer cells. However, CNHK300 exhibited attenuated replicative ability as compared with wtAd5 in MRC-5 and BJ. The CNHK300 replicatative multiple was 63 and 192 fold at 48 h respectively, while the wtAd5 still multiplied 3 160-4 846 fold. CNHK300 could cause about half of breast cancer cells to die within 7 days at MOI 10 pfu/cell and below, whereas the IC50 in BJ and MRC-5 was as high as MOI 100 pfu/cell. CNHK300 E1A protein could be detected in breast cancer cells and 293 cells but not in normal fibroblast cells. Conclusion: hTERT promoter can successfully modulate the CNHK300 to be selectively replicated in breast cancer cells positive for telomerase, which may be a potential treatment strategy in breast cancer.