期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Essential role of the iron-sulfur cluster binding domain of the primase regulatory subunit Pri2 in DNA replication initiation
1
作者 Lili Liu Mingxia Huang 《Protein & Cell》 SCIE CAS CSCD 2015年第3期194-210,共17页
DNA primase catalyzes de novo synthesis of a short RNA primer that is further extended by replicative DNA polymerases during initiation of DNA replication. The eukaryotic primase is a heterodimeric enzyme comprising a... DNA primase catalyzes de novo synthesis of a short RNA primer that is further extended by replicative DNA polymerases during initiation of DNA replication. The eukaryotic primase is a heterodimeric enzyme comprising a catalytic subunit Pril and a regulatory subunit Pri2. Pri2 is responsible for facilitating optimal RNA primer synthesis by Pril and mediating interaction between Pril and DNA polymerase o for transition from RNA synthesis to DNA elongation. All eukaryotic Pri2 proteins contain a conserved C-terminal iron-sulfur (Fe-S) cluster-binding domain that is critical for primase catalytic activity in vitro. Here we show that mutations at conserved cysteine ligands for the Pri2 Fe-S cluster markedly decrease the protein stability, thereby causing S phase arrest at the restrictive temperature. Furthermore, Pri2 cysteine mutants are defective in loading of the entire DNA pol α-primase complex onto early replication origins resulting in defective initiation. Importantly, assembly of the Fe-S cluster in Pri2 is impaired not only by mutations at the conserved cysteine ligands but also by increased oxidative stress in the sodlA mutant lacking the Cu/Zn superoxide dismutase. Together these findings highlight the critical role of Pri2's Fe-S cluster domain in replication initiation in vivo and suggest a molecular basis for how DNA replication can be influenced by changes in cellular redox state. 展开更多
关键词 pdmase Pri2 iron-sulfur cluster replication initiation
原文传递
A Combined Computational and Experimental Study on the Structure-Regulation Relationships of Putative Mammalian DNA Replication Initiator GINS 被引量:4
2
作者 Reiko Hayashi Takako Arauchi +2 位作者 Moe Tategu Yuya Goto Kenichi Yoshida 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2006年第3期156-164,共9页
GINS, a heterotetramer of SLD5, PSF1, PSF2, and PSF3 proteins, is an emerging chromatin factor recognized to be involved in the initiation and elongation step of DNA replication. Although the yeast and Xenopus GINS ge... GINS, a heterotetramer of SLD5, PSF1, PSF2, and PSF3 proteins, is an emerging chromatin factor recognized to be involved in the initiation and elongation step of DNA replication. Although the yeast and Xenopus GINS genes are well documented, their orthologous genes in higher eukaryotes are not fully characterized. In this study, we report the genomic structure and transcriptional regulation of mammalian GINS genes. Serum stimulation increased the GINS mRNA levels in human cells. Reporter gene assay using putative GINS promoter sequences revealed that the expression of mammalian GINS is regulated by 17β-Estradiolstimulated estrogen receptor a, and human PSF3 acts as a gene responsive to transcription factor E2F1. The goal of this study is to present the current data so as to encourage further work in the field of GINS gene regulation and functions in mammalian cells. 展开更多
关键词 DNA replication initiation bioinformatics gene structure gene regulation 17Β-ESTRADIOL transcription factor E2F1
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部