期刊文献+
共找到943篇文章
< 1 2 48 >
每页显示 20 50 100
Prevention of grafted liver from reperfusive injury 被引量:4
1
作者 Kai Ma Yang Yu Xian-Min Bu Yan-Jun Li Xian-Wei Dai Liang Wang Yang Dai Hai-Ying Zhao Xiang-Hong Yang Department of General Surgery,Second Clinical College,China Medical University,Shenyang 110003,Liaoning Province,ChinaDepartrnent of Physiology,Shenyang Physical Education College,Shenyang,Liaoning Province,ChinaDepartment of Pathology,China Medical University,Shenyang,Liaoning Province,China 《World Journal of Gastroenterology》 SCIE CAS CSCD 2001年第4期572-574,共3页
INTRODUCTIONThe incidence of primary non-function(PNF)of grafted liver in the early postoperative stage is 2%-23%[1-4],its main cause is the ischemic-rechemic injure[5,6].In this experiment,anisodamine was added into ... INTRODUCTIONThe incidence of primary non-function(PNF)of grafted liver in the early postoperative stage is 2%-23%[1-4],its main cause is the ischemic-rechemic injure[5,6].In this experiment,anisodamine was added into the preserving fluid and the grafted liver was rewarmed at different temperatures to protect the cell membranc and prevent ischemic-reperfusive injury. 展开更多
关键词 Liver Transplantation Animals Body Temperature Drugs Chinese Herbal Free Radical Scavengers HEPATOCYTES Lipid Peroxidation LIVER Male Microscopy Electron RATS Rats Wistar Reactive Oxygen Species Reperfusion Injury control Research Support Non-U.S. Gov't Solanaceous Alkaloids Superoxide Dismutase
暂未订购
Voltage-dependent anion channel 1 oligomerization regulates PANoptosis in retinal ischemia–reperfusion injury 被引量:1
2
作者 Hao Wan Xiaoxia Ban +6 位作者 Ye He Yandi Yang Ximin Hu Lei Shang Xinxing Wan Qi Zhang Kun Xiong 《Neural Regeneration Research》 2026年第4期1652-1664,共13页
Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,... Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,and necroptosis.Oligomerization of mitochondrial voltage-dependent anion channel 1 is an important pathological event in regulating cell death in retinal ischemia–reperfusion injury.However,its role in PANoptosis remains largely unknown.In this study,we demonstrated that voltage-dependent anion channel 1 oligomerization-mediated mitochondrial dysfunction was associated with PANoptosis in retinal ischemia–reperfusion injury.Inhibition of voltage-dependent anion channel 1 oligomerization suppressed mitochondrial dysfunction and PANoptosis in retinal cells subjected to ischemia–reperfusion injury.Mechanistically,mitochondria-derived reactive oxygen species played a central role in the voltagedependent anion channel 1-mediated regulation of PANoptosis by promoting PANoptosome assembly.Moreover,inhibiting voltage-dependent anion channel 1 oligomerization protected against PANoptosis in the retinas of rats subjected to ischemia–reperfusion injury.Overall,our findings reveal the critical role of voltage-dependent anion channel 1 oligomerization in regulating PANoptosis in retinal ischemia–reperfusion injury,highlighting voltage-dependent anion channel 1 as a promising therapeutic target. 展开更多
关键词 1-methyl-4-phenyl-1 2 3 6-TETRAHYDROPYRIDINE apoptosis ischemia–reperfusion injury mitochondrial dysfunction NECROPTOSIS oxidative stress PANoptosis PYROPTOSIS reactive oxygen species voltage-dependent anion channel 1
暂未订购
Fibrotic scar formation after cerebral ischemic stroke:Targeting the Sonic hedgehog signaling pathway for scar reduction
3
作者 Jun Wen Hao Tang +14 位作者 Mingfen Tian Ling Wang Qinghuan Yang Yong Zhao Xuemei Li Yu Ren Jiani Wang Li Zhou Yongjun Tan Haiyun Wu Xinrui Cai Yilin Wang Hui Cao Jianfeng Xu Qin Yang 《Neural Regeneration Research》 2026年第2期756-768,共13页
Recent studies have shown that fibrotic scar formation following cerebral ischemic injury has varying effects depending on the microenvironment.However,little is known about how fibrosis is induced and regulated after... Recent studies have shown that fibrotic scar formation following cerebral ischemic injury has varying effects depending on the microenvironment.However,little is known about how fibrosis is induced and regulated after cerebral ischemic injury.Sonic hedgehog signaling participates in fibrosis in the heart,liver,lung,and kidney.Whether Shh signaling modulates fibrotic scar formation after cerebral ischemic stroke and the underlying mechanisms are unclear.In this study,we found that Sonic Hedgehog expression was upregulated in patients with acute ischemic stroke and in a middle cerebral artery occlusion/reperfusion injury rat model.Both Sonic hedgehog and Mitofusin 2 showed increased expression in the middle cerebral artery occlusion rat model and in vitro fibrosis cell model induced by transforming growth factor-beta 1.Activation of the Sonic hedgehog signaling pathway enhanced the expression of phosphorylated Smad 3 and Mitofusin 2 proteins,promoted the formation of fibrotic scars,protected synapses or promoted synaptogenesis,alleviated neurological deficits following middle cerebral artery occlusion/reperfusion injury,reduced cell apoptosis,facilitated the transformation of meninges fibroblasts into myofibroblasts,and enhanced the proliferation and migration of meninges fibroblasts.The Smad3 phosphorylation inhibitor SIS3 reversed the effects induced by Sonic hedgehog signaling pathway activation.Bioinformatics analysis revealed significant correlations between Sonic hedgehog and Smad3,between Sonic hedgehog and Mitofusin 2,and between Smad3 and Mitofusin 2.These findings suggest that Sonic hedgehog signaling may influence Mitofusin 2 expression by regulating Smad3 phosphorylation,thereby modulating the formation of early fibrotic scars following cerebral ischemic stroke and affecting prognosis.The Sonic Hedgehog signaling pathway may serve as a new therapeutic target for stroke treatment. 展开更多
关键词 central nervous system FIBROBLASTS fibrosis ischemic stroke Mitofusin 2 middle cerebral artery occlusion/reperfusion P-Smad3 Sonic Hedgehog SMAD3 TOM20
暂未订购
Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury:PERK as a potential target for intervention 被引量:5
4
作者 Ju Zheng Yixin Li +8 位作者 Ting Zhang Yanlin Fu Peiyan Long Xiao Gao Zhengwei Wang Zhizhong Guan Xiaolan Qi Wei Hong Yan Xiao 《Neural Regeneration Research》 SCIE CAS 2025年第5期1455-1466,共12页
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb... Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury. 展开更多
关键词 APOPTOSIS ATF4 AUTOPHAGY C/EBP homologous protein cerebral ischemia/reperfusion injury EIF2Α endoplasmic reticulum stress PERK
暂未订购
Overexpression of low-density lipoprotein receptor prevents neurotoxic polarization of astrocytes via inhibiting NLRP3 inflammasome activation in experimental ischemic stroke 被引量:3
5
作者 Shuai Feng Juanji Li +6 位作者 Tingting Liu Shiqi Huang Xiangliang Chen Shen Liu Junshan Zhou Hongdong Zhao Ye Hong 《Neural Regeneration Research》 SCIE CAS 2025年第2期491-502,共12页
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit... Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke. 展开更多
关键词 inflammation ischemia/reperfusion injury ischemic stroke low-density lipoprotein receptor neuroprotective astrocytes neurotoxic astrocytes NLRP3 inflammasome POLARIZATION
暂未订购
Neuroprotective potential for mitigating ischemia-reperfusion-induced damage 被引量:1
6
作者 Zi Ye Runqing Liu +6 位作者 Hangxing Wang Aizhen Zuo Cen Jin Nan Wang Huiqi Sun Luqian Feng Hua Yang 《Neural Regeneration Research》 SCIE CAS 2025年第8期2199-2217,共19页
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Curre... Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Current studies have elucidated the neuroprotective role of the sirtuin protein family(Sirtuins)in modulating cerebral ischemia-reperfusion injury.However,the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration.In this review,the origin and research progress of Sirtuins are summarized,suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury,including inflammation,oxidative stress,blood-brain barrier damage,apoptosis,pyroptosis,and autophagy.The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways,such as nuclear factor-kappa B signaling,oxidative stress mediated by adenosine monophosphate-activated protein kinase,and the forkhead box O.This review also summarizes the potential of endogenous substances,such as RNA and hormones,drugs,dietary supplements,and emerging therapies that regulate Sirtuins expression.This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors.While Sirtuins show promise as a potential target for the treatment of cerebral ischemiareperfusion injury,most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans,potentially influencing the efficacy of Sirtuinstargeting drug therapies.Overall,this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury. 展开更多
关键词 apoptosis autophagy blood-brain barrier dietary supplements drug HORMONES inflammation NEUROPROTECTION oxidative stress prognosis PYROPTOSIS reperfusion injury risk factors RNA THERAPEUTICS
暂未订购
Role of nitric oxide in cerebral ischemia/reperfusion injury:A biomolecular overview 被引量:1
7
作者 Roberto Anaya-Prado Abraham I Canseco-Villegas +14 位作者 Roberto Anaya-Fernández Michelle Marie Anaya-Fernandez Miguel A Guerrero-Palomera Citlalli Guerrero-Palomera Ivan F Garcia-Ramirez Daniel Gonzalez-Martinez Consuelo Cecilia Azcona-Ramírez Claudia Garcia-Perez Airim L Lizarraga-Valencia Aranza Hernandez-Zepeda Jacqueline F Palomares-Covarrubias Jorge HA Blackaller-Medina Jacqueline Soto-Hintze Mayra C Velarde-Castillo Dayri A Cruz-Melendrez 《World Journal of Clinical Cases》 SCIE 2025年第10期9-13,共5页
Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expre... Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI. 展开更多
关键词 Nitric oxide Cerebral ischemia/reperfusion injury Nitric oxide synthase Reactive nitrogen species NITROSYLATION
暂未订购
Targeting intracellular autophagic process for the treatment of post-stroke ischemia/reperfusion injury 被引量:1
8
作者 Jun Hu Zekai Hu +4 位作者 Jiayi Xia Yeping Chen Dennis Cordato Qi Cheng Jie Wang 《Animal Models and Experimental Medicine》 2025年第3期389-404,共16页
Cerebral ischemia/reperfusion(I/R)injury is an important pathophysiological condition of ischemic stroke that involves a variety of physiological and pathological cell death pathways,including autophagy,apoptosis,necr... Cerebral ischemia/reperfusion(I/R)injury is an important pathophysiological condition of ischemic stroke that involves a variety of physiological and pathological cell death pathways,including autophagy,apoptosis,necroptosis,and phagoptosis,among which autophagy is the most studied.We have reviewed studies published in the past 5 years regarding the association between autophagy and cerebral I/R injury.To the best of our knowledge,this is the first review article summarizing potential candidates targeting autophagic pathways in the treatment of I/R injury post ischemic stroke.The findings of this review may help to better understand the pathogenesis and mechanisms of I/R events and bridge the gap between basic and translational research that may lead to the development of novel therapeutic approaches for I/R injury. 展开更多
关键词 AUTOPHAGY cerebral ischemia ischemia/reperfusion injury STROKE TREATMENT
暂未订购
Role of Ferroptosis in Cerebral Ischemia- Reperfusion Injury 被引量:1
9
作者 Jianmeng Lv Tao Wang +3 位作者 Yajuan Pan Juan Liu Zheng Han Xuan Wang 《Journal of Clinical and Nursing Research》 2025年第5期8-18,共11页
Ferroptosis is a novel form of non-apoptotic cell death that has been widely studied in recent years and is involved in a variety of pathophysiological processes.The core treatment goal of ischemic stroke is to restor... Ferroptosis is a novel form of non-apoptotic cell death that has been widely studied in recent years and is involved in a variety of pathophysiological processes.The core treatment goal of ischemic stroke is to restore blood flow as early as possible,while the pathological mechanism of reperfusion injury after restoring blood flow is complex,involving oxidative stress,calcium overload,and inflammatory response.In recent years,more and more studies have found that ferroptosis mediation is involved in the occurrence and development of cerebral ischemia-reperfusion injury.This paper elaborates on the concept,mechanisms,and regulation of ferroptosis,detailing its role in cerebral ischemia-reperfusion injury and potential inhibition strategies.The aim is to deepen the understanding of ferroptosis in this pathological process and provide insights for possible targeted therapies. 展开更多
关键词 Ferroptosis Ischemic stroke Reperfusion injury Targeted therapy
暂未订购
Maintaining moderate levels of hypochlorous acid promotes neural stem cell proliferation and differentiation in the recovery phase of stroke
10
作者 Lin-Yan Huang Yi-De Zhang +9 位作者 Jie Chen Hai-Di Fan Wan Wang Bin Wang Ju-Yun Ma Peng-Peng Li Hai-Wei Pu Xin-Yian Guo Jian-Gang Shen Su-Hua Qi 《Neural Regeneration Research》 SCIE CAS 2025年第3期845-857,共13页
It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases ... It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function. 展开更多
关键词 cell differentiation cerebral ischemia/reperfusion injury CHLORINATION hypochlorous acid MICROGLIA neural stem cell NEUROGENESIS nuclear translocation stroke β-catenin
暂未订购
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
11
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
暂未订购
miR-1 Promotes Apoptosis and Aggravates Myocardial Ischemia–Reperfusion Injury by Downregulating Insulin-Like Growth Factor-1
12
作者 Zhen Lei Fei Yan +5 位作者 Yan Shu Tengyun Liang Mengwen Zhang Xinzhou Wang Haixia Gao Hong Wu 《Chinese Medicine and Natural Products》 2025年第3期162-171,共10页
Objective MicroRNA-1(miR-1)aggravates myocardial ischemia–reperfusion(I/R)injury,whereas insulin-like growth factor-1(IGF-1)maintains cardiomyocyte homeostasis.In this study,the aim is to investigate whether miR-1 ca... Objective MicroRNA-1(miR-1)aggravates myocardial ischemia–reperfusion(I/R)injury,whereas insulin-like growth factor-1(IGF-1)maintains cardiomyocyte homeostasis.In this study,the aim is to investigate whether miR-1 can exacerbate I/R injury through the regulation of IGF-1.Methods The infarct area,lactate dehydrogenase,miR-1 level,and apoptosis level were examined in the Langendorff isolated rat I/R model.The hypoxia–reoxygenation model of rat cardiacmyocytes and H9c2 cells were developed to determine the levels of miR-1,IGF-1 mRNA,and IGF-1 protein.Furthermore,the dual-luciferase assay was used to verify the relationship between miR-1 and IGF-1.Results Overexpression of miR-1 increased the level of apoptosis and decreased the IGF-1 expression.However,inhibition of miR-1 expression decreased the level of apoptosis,alleviated the degree of injury,and increased the IGF-1 expression.Overexpression of IGF-1 also reduced the degree of cellular damage and level of apoptosis caused by the overexpression of miR-1.When IGF-1 was knocked down,myocardial cells displayed more severe damage and a higher apoptosis level,even with decreased levels of miR-1.Conclusion miR-1 promotes apoptosis and aggravates I/R injury by downregulating IGF-1. 展开更多
关键词 MIR-1 insulin-like growth factor-1 myocardial ischemia–reperfusion injury hypoxia–reperfusion injury APOPTOSIS
原文传递
Does ischemic preconditioning enhance sports performance more than placebo or no intervention?A systematic review with meta-analysis
13
作者 Hiago L.R.Souza Géssyca T.Oliveira +5 位作者 Anderson Meireles Marcelo P.dos Santos Joao G.Vieira Rhai A.Arriel Stephen D.Patterson Moacir Marocolo 《Journal of Sport and Health Science》 2025年第2期21-34,共14页
Background:Ischemic preconditioning(IPC)is purported to have beneficial effects on athletic performance,although findings are inconsistent,with some studies reporting placebo effects.The majority of studies have inves... Background:Ischemic preconditioning(IPC)is purported to have beneficial effects on athletic performance,although findings are inconsistent,with some studies reporting placebo effects.The majority of studies have investigated IPC alongside a placebo condition,but without a control condition that was devoid of experimental manipulation,thereby limiting accurate determination of the IPC effects.Therefore,the aims of this study were to assess the impact of the IPC intervention,compared to both placebo and no intervention,on exercise capacity and athletic performance.Methods:A systematic search of PubMed,Embase,SPORTDiscus,Cochrane Library,and Latin American and Caribbean Health Sciences Literature(LILACS)covering records from their inception until July 2023 was conducted.To qualify for inclusion,studies had to apply IPC as an acute intervention,comparing it with placebo and/or control conditions.Outcomes of interest were performance(force,number of repetitions,power,time to exhaustion,and time trial performance),physiological measurements(maximum oxygen consumption,and heart rate),or perceptual measurements(RPE).For each outcome measure,we conducted 3 independent meta-analyses(IPC vs.placebo,IPC vs.control,placebo vs.control)using an inverse-variance random-effects model.The between-treatment effects were quantified by the standardized mean difference(SMD),accompanied by their respective 95%confidence intervals.Additionally,we employed the Grading of Recommendations,Assessment,Development and Evaluation(GRADE)approach to assess the level of certainty in the evidence.Results:Seventy-nine studies were included in the quantitative analysis.Overall,IPC demonstrates a comparable effect to the placebo condition(using a low-pressure tourniquet),irrespective of the subjects'training level(all outcomes presenting p>0.05),except for the outcome of time to exhaustion,which exhibits a small magnitude effect(SMD=0.37;p=0.002).Additionally,the placebo exhibited effects notably greater than the control condition(outcome:number of repetitions;SMD=0.45;p=0.03),suggesting a potential influence of participants'cognitive perception on the outcomes.However,the evidence is of moderate to low certainty,regardless of the comparison or outcome.Conclusion:IPC has significant effects compared to the control intervention,but it did not surpass the placebo condition.Its administration might be influenced by the cognitive perception of the receiving subject,and the efficacy of IPC as an ergogenic strategy for enhancing exercise capacity and athletic performance remains questionable. 展开更多
关键词 DECEPTION Nocebo effects Athletic performance REPERFUSION TOURNIQUETS
在线阅读 下载PDF
Sinomenine exerts cardioprotective effects in a rat model of myocardial ischemia/reperfusion injury
14
作者 Meng-Na Sun Bei-Bei Fan +4 位作者 Yan-Tao Zhang Ming Lin Kun Yan Ankit Kumar Zhao Gao 《Asian Pacific Journal of Tropical Biomedicine》 2025年第12期496-505,共10页
Objective:To evaluate the cardioprotective effects of sinomenine using the ischemia/reperfusion(I/R)rat model.Methods:Wistar rats were randomly divided into 6 groups:group Ⅰ with reperfusion,group Ⅱ perfused with si... Objective:To evaluate the cardioprotective effects of sinomenine using the ischemia/reperfusion(I/R)rat model.Methods:Wistar rats were randomly divided into 6 groups:group Ⅰ with reperfusion,group Ⅱ perfused with sinomenine,group Ⅲ perfused with 5-hydroxydecanoate(5-HD),group Ⅳ perfused with 5-HD+sinomenine,group Ⅴ perfused with L-nitro arginine methyl ester(L-NAME),group Ⅵ perfused with L-NAME+sinomenine.Myocardial ischemia was induced by interrupting the aortic blood supply for 30 min,followed by reperfusion(55 min).Cardiac,hepatic,antioxidant,and inflammatory parameters were assessed.Additionally,endothelin,tissue factor,platelet-activating factor,plasminogen activator inhibitor,plasma fibrinogen,and thromboxane B2 were also analyzed.Results:Administration of 5-HD or L-NAME,used as the selective antagonist of mitoKATP and NO system,respectively,resulted in significantly increased levels of premature ventricular complexes,lactate dehydrogenase,ventricular fibrillation,ventricular tachycardia,and arrhythmia intensity(P<0.05).In contrast,sinomenine significantly reduced the level of troponin Ⅰ,lactate dehydrogenase,creatine kinase,and creatine kinase MB compared to the 5-HD group and the L-NAME group(P<0.05).Additionally,sinomenine significantly reduced malondialdehyde level and enhanced the levels of superoxide dismutase,glutathione peroxidase,catalase,and glutathione/glutathione disulfide ratio(P<0.05).It also significantly suppressed the levels of endothelin-1,platelet-activating factor,tissue factor,plasminogen activator inhibitor 1,thromboxane B2,and plasma fibrinogen(P<0.05).Conclusions:These results suggest that sinomenine exhibits significant cardioprotection effects against I/R-induced cardiac injury in rats. 展开更多
关键词 SINOMENINE ARRHYTHMIA Ischemia reperfusion Mitochondrial KATP channel Myocardial infarction THROMBOSIS
暂未订购
Profiling and bioinformatics analyses of circular RNAs in myocardial ischemia/reperfusion injury model in mice
15
作者 Jiao-Ni Wang Ying-Ying Zhou +1 位作者 Yong-Wei Yu Jun Chen 《World Journal of Cardiology》 2025年第1期65-77,共13页
BACKGROUND Myocardial ischemia/reperfusion(I/R)injury,which is associated with high morbidity and mortality,is a main cause of unexpected myocardial injury after acute myocardial infarction.However,the underlying mech... BACKGROUND Myocardial ischemia/reperfusion(I/R)injury,which is associated with high morbidity and mortality,is a main cause of unexpected myocardial injury after acute myocardial infarction.However,the underlying mechanism remains unclear.Circular RNAs(circRNAs),which are formed from protein-coding genes,can sequester microRNAs or proteins,modulate transcription and interfere with splicing.Authoritative studies suggest that circRNAs may play an important role in myocardial I/R injury.AIM To explore the role and mechanism of circRNAs in myocardial I/R injury.METHODS We constructed a myocardial I/R injury model using ligation of the left anterior descending coronary artery,and evaluated the success of the validated model using triphenyltetrazolium chloride and hematoxylin-eosin staining.Then,left ventricular samples from different groups were selected for mRNA-sequence,and differential gene screening was performed on the obtained results.The differentially obtained mRNAs were divided into up-regulated and down-regulated according to their expression levels,and Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)functional enrichment analysis were performed,respectively.Then,the obtained circRNA and microRNA(miRNA)were paired for analysis,and the binding sites of miRNA and mRNA were virtual screened.Finally,the obtained circRNA,miRNA and mRNA were constructed by ceRNA mutual most useful network.RESULTS We used an RNA sequencing array to investigate the expression signatures of circRNAs in myocardial I/R injury using three samples from the I/R group and three samples from the sham group.A total of 142 upregulated and 121 downregulated circRNAs were found to be differentially expressed(fold change≥2,P<0.05).GO and KEGG functional analyses of these circRNAs were performed.GO analysis revealed that these circRNAs were involved mainly in cellular and intracellular processes.KEGG analysis demonstrated that 6 of the top 20 pathways were correlated with cell apoptosis.Furthermore,a circRNA-miRNA coexpression network and ceRNA network based on these genes were constructed,revealing that mmu-circ-0001452,mmu-circ-0001637,and mmu-circ-0000870 might be key regulators of myocardial I/R injury.CONCLUSION This research provides new insights into the mechanism of myocardial I/R,which mmu-circ-0001452,mmu-circ-0001637,and mmu-circ-0000870 are expected to be new therapeutic targets for myocardial I/R injury. 展开更多
关键词 Rna-sequencing Circular RNA MicroRNA CeRNA Myocardial ischemia/reperfusion Bioinformatics analyses
暂未订购
Towards comprehensive care in crush syndrome:Expanding the multidisciplinary framework
16
作者 Luca Galassi Federica Facchinetti 《World Journal of Orthopedics》 2025年第9期76-79,共4页
Crush syndrome demands an integrated multidisciplinary approach that spans acute surgical decisions and long-term functional recovery.In response to Khan et al’s recent systematic review,we propose complementary pers... Crush syndrome demands an integrated multidisciplinary approach that spans acute surgical decisions and long-term functional recovery.In response to Khan et al’s recent systematic review,we propose complementary perspectives that address two underrepresented dimensions:Vascular surgical decision-making and psychiatric rehabilitation.We emphasize the use of intraoperative technologies such as indocyanine green fluorescence angiography and compartment pressure monitoring to guide limb salvage strategies and reperfusion management.Additionally,we advocate for the systematic integration of mental health screening and trauma-informed psychiatric care to address the high prevalence of psychological distress in survivors.Embedding these domains into standardized protocols could enhance both short-and long-term outcomes,particularly in highimpact trauma and disaster settings. 展开更多
关键词 Crush syndrome Compartment syndrome Reperfusion injury THROMBOEMBOLISM FASCIOTOMY Mental health Multidisciplinary management
暂未订购
Time-Course of Changes in Astrocyte Endfeet Damage in the Hippocampus Following Experimental Ischemia and Reperfusion Injury
17
作者 Myoung Cheol Shin Tae-KyeongLee +4 位作者 DaeWon Kim Joon Ha Park Moo-Ho Won Choong-Hyun Lee Ji Hyeon Ahn 《BIOCELL》 2025年第6期1071-1083,共13页
Background:Astrocyte endfeet(AEF)serves as a key element of the blood-brain barrier and is important for the survival and maintenance of neuronal function.However,the immunohistochemical and ultrastructural changes of... Background:Astrocyte endfeet(AEF)serves as a key element of the blood-brain barrier and is important for the survival and maintenance of neuronal function.However,the immunohistochemical and ultrastructural changes of AEF in the CA1 and CA3 areas of the hippocampus over time following cerebral ischemia-reperfusion(IR)injury have not been well elucidated.Objectives:We investigated chronological changes in AEF in the gerbil hippocampal CA1 area from 3 h to 10 days following transient forebrain ischemia(TFI),and examined their association with neuronal death and tissue repair following IR injury.Changes in the CA3 area were also examined at 10 days post-TFI for comparative purposes.Methods:Neuronal death was confirmed using histochemistry,immunohistochemistry,and histofluorescence.Changes in AEF were examined by double immunofluorescence with glial fibrillary acidic protein(GFAP)and glucose transporter 1(GLUT1),and by transmission electron microscopy(TEM)for ultrastructural changes.Results:Significant TFI-induced neuronal death occurred in the CA1 area on day 5 following IR injury and persisted until 10 days after TFI,while no neuronal death(or loss)was found in the CA3 area after TFI.Looking at TFI-induced changes in AEF,at 3 and 6 h after TFI,GFAP-immunoreactive(+)AEF in the CA1 area appeared swollen and harbored enlarged,dark mitochondria,and the swelling was reduced by 1-day post-TFI.On 2 and 5 days following TFI,GFAP+AEF were markedly enlarged and fragmented,containing shrunken mitochondria,vacuolations,and sparse organelles.Ten days post-TFI,the ends of GFAP+astrocytic processes extended to microvessels,appeared edematous,and were filled with cellular debris.In the CA3 area,AEF was slightly dilated at 10 days after TFI.These findings indicate that damage to or disruption of AEF in the CA1 area occurs in the early phase after 5-min TFI but is rarely observed in the CA3 area.Conclusion:Taken together,damage to or disruption of AEF following ischemic insults may be strongly linked to neuronal death/loss. 展开更多
关键词 Astrocyte endfeet blood-brain barrier HIPPOCAMPUS ischemia and reperfusion injury ULTRASTRUCTURE
暂未订购
20-Hydroxyecdysone Partially Alleviates Ischemia/Reperfusion-Induced Damage of Mouse Hind Limb Skeletal Muscle
18
作者 Alena A.Semenova Anastasia D.Igoshkina +7 位作者 Alena A.Cherepanova Natalia V.Mikina Anastasia E.Stepanova Olga E.Krasnoshchekova Vyacheslav A.Sharapov Rimma G.Savchenko Lyudmila V.Parfenova Mikhail V.Dubinin 《BIOCELL》 2025年第3期437-450,共14页
Objectives:Skeletal muscle ischemia/reperfusion injury(IRI)occurs as a result of a marked reduction in arterial perfusion to a limb and can lead to tissue death and threaten limb viability.This work assessed the effec... Objectives:Skeletal muscle ischemia/reperfusion injury(IRI)occurs as a result of a marked reduction in arterial perfusion to a limb and can lead to tissue death and threaten limb viability.This work assessed the effects of 20-hydroxyecdysone(20E)on hindlimb skeletal tissue following tourniquet-induced ischemia/reperfusion injury.Methods:Animals were divided into 4 groups—control group(Control),Control+20E(C+20E),mice with IRI(IRI),and mice with IRI+20E(IRI+20E).IRI was modeled by applying a tourniquet to the hind limb for 2 h with reperfusion for 1 h.5 mg/kg of 20E was administered intraperitoneally for 14 days.Afterward,the physical activity of mice,the histological structure of the quadriceps femoris,the expression of genes encoding proteins induced by hypoxia and involved in tissue adaptation to ischemia,and the functional parameters of skeletal muscle mitochondria were assessed.Results:It was shown that IRI of the limbs leads to functional disorders,depression of muscle function,accumulation of malondialdehyde(MDA)in mitochondria,and a decrease in their Ca2+buffering capacity,as well as an increase in the expression of HIF-1α,VGEF-A,PGC1αand PDGF-BB genes associated with adaptation to ischemia.20E reduced the intensity of degenerative processes in skeletal muscles,which was expressed in a decrease in the number of centrally nucleated fibers.Analysis of gene expression levels indicated a high degree of adaptation of animals to IRI.20E reduced the level of MDA in mitochondria,but did not affect the rate of respiration and calcium retention capacity of organelles both in normal conditions and during IRI.Conclusion:20E partially alleviates the skeletal muscle damage caused by IRI and can be used as part of combination therapy. 展开更多
关键词 Skeletal muscle ISCHEMIA/REPERFUSION 20-HYDROXYECDYSONE MITOCHONDRIA oxidative stress
暂未订购
Guiera senegalensis Alleviates Ischemia Renal Reperfusion Injury in Albinos Wistar Rats
19
作者 Mama Sy Fatoumata Bah +4 位作者 Mouhamed Chérif Dial Robert Foko Racha Kamenda Ibondou Cheikh Diop Abdoulaye Séga Diallo 《Open Journal of Pathology》 2025年第1期16-27,共12页
Introduction: Renal ischemia-reperfusion (IR) is responsible for injuries such as destruction or dysfunction of tubular epithelial cells with inflammatory reaction and oxidative stress. Several therapeutic methods hav... Introduction: Renal ischemia-reperfusion (IR) is responsible for injuries such as destruction or dysfunction of tubular epithelial cells with inflammatory reaction and oxidative stress. Several therapeutic methods have been tested to alleviate ischemia-perfusion injury, ranging from using anti-inflammatory drugs, antioxidants, and plants from traditional pharmacopeia to administering RNA interference. However, there is currently no effective therapeutic option available for the treatment of renal IR injury, other than supportive therapies such as renal replacement therapy or hydration. Objective: This present study aimed to evaluate the effect of Guiera senegalensis on renal ischemia reperfusion, a recognized plant for its antioxidant and anti-inflammatory properties. Materials and Methods: Twenty-four (24) adult male Wistar rats were divided into four following groups: SLAM (subjected to a median laparotomy with simulated ischemia);GUIERRA (animals that received 250 mg/kg of guierra senegalensis orally, once a day, for 5 days, with simulated renal ischemia);IR (animals that underwent laparotomy followed by clamping of bilateral renal pedicles for 45 min and followed by reperfusion);GUIERRA + IR (animals given GUIERRA at the dosage of 250 mg/kg per day, for 5 days and then subjected to renal ischemia-reperfusion). Data analysis was performed by ANOVA, and a significance level of p Results: Compared with the I/R group, rats in the GUIERRA + IR group showed reduced histopathological damage scores (p Conclusion: The results of this preliminary work suggest that Guiera senegalensis decreases the degree of tissue damage in renal ischemia-reperfusion cases. This plant seems to be a promising therapeutic;further studies could help to precise the targets of its compounds on ischemia-reperfusion pathways. 展开更多
关键词 Ischemia Reperfusion Acute Kidney Injury Guiera senegalensis Tubular Degenerescence
暂未订购
Theoretical and practical development of Fu's subcutaneous needling for pain treatment:Novel integration between traditional wisdom and modern medicine
20
作者 Zhonghua Fu 《Journal of Traditional Chinese Medical Sciences》 2025年第4期447-453,共7页
Fu's subcutaneous needling(FSN)represents a non-pharmacological therapy that employs disposable needles for subcutaneous application,primarily targeting the relaxation of tightened muscles,invigoration of blood ci... Fu's subcutaneous needling(FSN)represents a non-pharmacological therapy that employs disposable needles for subcutaneous application,primarily targeting the relaxation of tightened muscles,invigoration of blood circulation,and alleviation of local tissue ischemia.Originating from traditional acupuncture and modern techniques,FSN effectively treats muscle-related conditions,including soft tissue injuries,neck-shoulder-back pain,visceral pain,and non-painful diseases.Its unique features encompass shallow needling,the swaying movement technique,and an emphasis on governing the spirit.FSN is characterized by rapid therapeutic responses,high repeatability,and minimal side effects,adhering to the keep it simple,stupid(KISS)principle in research by emphasizing simplicity and efficacy.By mechanically releasing chronic muscle tension,FSN improves arterial blood flow,halts pathological leakage of intracellular adenosine triphosphate(ATP),and consequently resolves pain.This therapy offers a promising and safe approach for pain management and muscular health,deserving vigorous promotion and further scientific investigation. 展开更多
关键词 Fu's subcutaneous needling Tightened muscle Swaying movement Reperfusion approach
暂未订购
上一页 1 2 48 下一页 到第
使用帮助 返回顶部