Often in longitudinal studies, some subjects complete their follow-up visits, but others miss their visits due to various reasons. For those who miss follow-up visits, some of them might learn that the event of intere...Often in longitudinal studies, some subjects complete their follow-up visits, but others miss their visits due to various reasons. For those who miss follow-up visits, some of them might learn that the event of interest has already happened when they come back. In this case, not only are their event times interval-censored, but also their time-dependent measurements are incomplete. This problem was motivated by a national longitudinal survey of youth data. Maximum likelihood estimation (MLE) method based on expectation-maximization (EM) algorithm is used for parameter estimation. Then missing information principle is applied to estimate the variance-covariance matrix of the MLEs. Simulation studies demonstrate that the proposed method works well in terms of bias, standard error, and power for samples of moderate size. The national longitudinal survey of youth 1997 (NLSY97) data is analyzed for illustration.展开更多
Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to con...Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to convenience, high accuracy, and cost-effectiveness. Manual counting from pre-recorded video footage can be prone to inconsistencies and errors, leading to inaccurate counts. Besides, there are no standard guidelines for collecting video data and conducting manual counts from the recorded videos. This paper aims to comprehensively assess the accuracy of manual counts from pre-recorded videos and introduces guidelines for efficiently collecting video data and conducting manual counts by trained individuals. The accuracy assessment of the manual counts was conducted based on repeated counts, and the guidelines were provided from the experience of conducting a traffic survey on forty strip mall access points in Baton Rouge, Louisiana, USA. The percentage of total error, classification error, and interval error were found to be 1.05 percent, 1.08 percent, and 1.29 percent, respectively. Besides, the percent root mean square errors (RMSE) were found to be 1.13 percent, 1.21 percent, and 1.48 percent, respectively. Guidelines were provided for selecting survey sites, instruments and timeframe, fieldwork, and manual counts for an efficient traffic data collection survey.展开更多
文摘Often in longitudinal studies, some subjects complete their follow-up visits, but others miss their visits due to various reasons. For those who miss follow-up visits, some of them might learn that the event of interest has already happened when they come back. In this case, not only are their event times interval-censored, but also their time-dependent measurements are incomplete. This problem was motivated by a national longitudinal survey of youth data. Maximum likelihood estimation (MLE) method based on expectation-maximization (EM) algorithm is used for parameter estimation. Then missing information principle is applied to estimate the variance-covariance matrix of the MLEs. Simulation studies demonstrate that the proposed method works well in terms of bias, standard error, and power for samples of moderate size. The national longitudinal survey of youth 1997 (NLSY97) data is analyzed for illustration.
文摘Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to convenience, high accuracy, and cost-effectiveness. Manual counting from pre-recorded video footage can be prone to inconsistencies and errors, leading to inaccurate counts. Besides, there are no standard guidelines for collecting video data and conducting manual counts from the recorded videos. This paper aims to comprehensively assess the accuracy of manual counts from pre-recorded videos and introduces guidelines for efficiently collecting video data and conducting manual counts by trained individuals. The accuracy assessment of the manual counts was conducted based on repeated counts, and the guidelines were provided from the experience of conducting a traffic survey on forty strip mall access points in Baton Rouge, Louisiana, USA. The percentage of total error, classification error, and interval error were found to be 1.05 percent, 1.08 percent, and 1.29 percent, respectively. Besides, the percent root mean square errors (RMSE) were found to be 1.13 percent, 1.21 percent, and 1.48 percent, respectively. Guidelines were provided for selecting survey sites, instruments and timeframe, fieldwork, and manual counts for an efficient traffic data collection survey.