期刊文献+
共找到2,146篇文章
< 1 2 108 >
每页显示 20 50 100
Effects of Groove Shape on Microstructure and Mechanical Responses of Laser‑Directed Energy Deposition‑Repaired GH4099 Ni‑Based Superalloy
1
作者 Wei Pan Bin Xu Chong Li 《Acta Metallurgica Sinica(English Letters)》 2025年第6期1003-1011,共9页
Repairing the Ni-based superalloy component remains challenging due to the limited understanding of the role of the defect’s morphology on microstructure and related deformation responses.To address this issue,GH4099... Repairing the Ni-based superalloy component remains challenging due to the limited understanding of the role of the defect’s morphology on microstructure and related deformation responses.To address this issue,GH4099 Ni-based superalloy plate with U-shaped and V-shaped grooves was prepared and repaired by laser-directed energy deposition method using GH4099 powders.Both grooves exhibit three similar regions at the repaired interphase,which are the base metal region with equiaxed grains,repaired region with columnar or elongated equiaxed grains,and a transition region in between.High-temperature gradient in the repaired region induced a high density of substructures,and the repaired region in U-shaped grooves has an even higher temperature gradient due to fewer passes of the melted metal,which induces more metallic carbides in the subgrain boundaries and improves the tensile strength of the repaired samples.However,due to the steep side walls,local vortex might form at the bottom corner of the U-shaped groove,leaving macroscale holes and micro-cracks there.Such defects will decrease the alloy’s ductility.The relationship among groove morphology-macro-and microstructure-mechanical properties is then established,which suggesting the preferred V-shaped groove considering the flatter sidewall and more passes induced near equilibrium microstructure. 展开更多
关键词 Laser-directed energy deposition Components’repairing Ni-based superalloy Groove morphology MICROSTRUCTURE Mechanical properties
原文传递
Achievement of nearly-equal-strength repaired exceeded tolerance hole of 2024 aluminum alloy by ultrasonic-assisted radial-additive friction stir repairing
2
作者 Shude JI Jirui WANG +3 位作者 Zhiqing ZHANG Hua LIU Yifei SUN Yumei YUE 《Chinese Journal of Aeronautics》 2025年第9期459-476,共18页
Radial-Additive Friction Stir Repairing(R-AFSR),which has been developed in recent years for the exceeded tolerance hole,is an innovative technology to realize the one-step repairing.Enhancing the repair strength of e... Radial-Additive Friction Stir Repairing(R-AFSR),which has been developed in recent years for the exceeded tolerance hole,is an innovative technology to realize the one-step repairing.Enhancing the repair strength of exceeded tolerance hole is necessary and meaningful from the perspective of suiting more and more wide-scrapped equipment in the industrial field.UltrasonicAssisted R-AFSR(UA-RAFSR)is proposed as a strategy to achieve the 2024 aluminum(Al)alloy repaired hole with high strength.Analyses of microstructure formation indicate that the addition of ultrasonic eliminated the kissing bond and“S”line,refined the grain size,enlarged the interfacial bonding area and enhanced the atomic diffusion.Thus,the mechanical properties of 2024 Al alloy repaired hole were heightened by ultrasonic,and the maximum compressive shear and tensile strengths respectively reached 214.5 MPa and 297.3 MPa,which were 98.6% and 94.0% of those of the standard mechanical hole.The research results confirm that the UA-RAFSR is a powerful technology for the nearly-equal-strength repair of exceeded tolerance hole. 展开更多
关键词 Ultrasonic-assisted radialadditive friction stir repairing Exceeded tolerance hole 2024 aluminum alloy Formation Mechanical properties
原文传递
Enhanced strength and ductility of laser-directed energy deposition repaired IN718 superalloy via a novel tailored heat treatment 被引量:2
3
作者 You Zhou Xuewei Fang +6 位作者 Naiyuan Xi Xiaoxin Jin Kexin Tang Zhiyan Zhang Qi Zhang Yang Yang Ke Huang 《Journal of Materials Science & Technology》 CSCD 2024年第32期86-101,共16页
High-quality repair of damaged Inconel 718(IN718)superalloy components can achieve great economic benefits.However,the directly double aging(DA)treatment by industrial standards,yields an inferior ductility on the rep... High-quality repair of damaged Inconel 718(IN718)superalloy components can achieve great economic benefits.However,the directly double aging(DA)treatment by industrial standards,yields an inferior ductility on the repaired component than that of the wrought base metal.In this work,wrought IN718 components were repaired by laser-directed energy deposition(LDED),a novel tailored heat treatment(THT)schedule consisting of a short-term low-temperature homogenization,and subsequent DA was sub-sequently conducted to strengthen the repaired IN718 alloys.The microstructure evolution and mechan-ical properties of the DA and THT-treated repaired alloys were comparatively investigated.The results indicated that the THT effectively dissolved most of the hard brittle Laves precipitates in the deposition region with only slight coarsening of the grains in the substrate.As compared to the DA sample,the elon-gation of the THT sample increased remarkably by 88%with only a slight reduction of 19.2 MPa in yield stress.Moreover,the strain distribution of the THT sample was overall more even but then destabilized in a narrow abnormal coarsened grain region caused by the static recrystallization.In general,this study breaks through the limitation of the low ductility of the DA-treated repaired IN718 alloys and provides a promising way to further improve the mechanical properties. 展开更多
关键词 Additive manufacturing Laser repairing Heat treatment schedule Mechanical properties Inconel 718 alloy
原文传递
Experimental and Finite Element Analysis of Corroded High-Pressure Pipeline Repaired by Laminated Composite
4
作者 Seyed Mohammad Reza Abtahi Saeid Ansari Sadrabadi +4 位作者 Gholam Hosein Rahimi Gaurav Singh Hamid Abyar Daniele Amato Luigi Federico 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1783-1806,共24页
Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necess... Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure.One of the methods used in their repairs is the use of layered composites.The composite used must have the necessary strength.Therefore,the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes,including ASME PCC-2,ASME B31.8S,ASME B31.4,ISO 24817 and ASME B31.G.In addition,the experimental tests are replicated numerically using the finite element method.Setting the strain gauges at different distances from the defect location,can reduce the nonlinear effects,deformation,and fluctuations due to the high pressure.The direct relationship between the depth of an axial defect and the stress concentration is observed at the inner side edges of the defect.Composite reparation reduces the non-linearities related to the sharp variation of the geometry and a more reliable numerical simulation could be performed. 展开更多
关键词 High-pressure pipeline composite repair ASME PCC-2 ISO 24817
在线阅读 下载PDF
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
5
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 Carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
在线阅读 下载PDF
Numerical simulation of the modulation to incident laser by the repaired damage site in a fused silica subsurface 被引量:2
6
作者 李莉 向霞 +5 位作者 祖小涛 王海军 袁晓东 蒋晓东 郑万国 戴威 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期223-227,共5页
One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica. In this work, the repaired damage site irradiated by CO2 laser i... One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica. In this work, the repaired damage site irradiated by CO2 laser is simplified to a Gaussian rotation according to the corresponding experimental results. Then, the three-dimensional finite-difference time-domain method is employed to simulate the electric field intensity distribution in the vicinity of this kind of defect in fused silica front subsurface. The simulated results show that the modulation is notable, the Emax is about 2.6 times the irradiated electric field intensity in the fused silica with the damage site (the width is 1.5 μm and depth is 2.3 μm) though the damage site is repaired by CO2 laser. The phenomenon and the theoretical result of the annular laser enhancement existed on the rear surface are first verified effectively, which agrees well with the corresponding experimental results. The relations between the maximal electric field intensity in fused silica with defect depth and width are given respectively. Meanwhile, the corresponding physical mechanism is analysed theoretically in detail. 展开更多
关键词 laser-induced damage fused silica repaired damage site three-dimensional finitedifference time-domain
原文传递
Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation 被引量:1
7
作者 Chao Tan Lin-Jie Zhao +5 位作者 Ming-Jun Chen Jian Cheng Zhao-Yang Yin Qi Liu Hao Yang Wei Liao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第5期288-296,共9页
CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the... CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the effect of repaired morphology of RAM on laser modulation and to improve laser damage threshold of optics,an finite element method(FEM)mathematical model of 351 nm laser irradiating fused silica optics is developed based on Maxwell electromagnetic field equations,to explore the 3D near-field light intensity distribution inside optics with repaired site on its surface.The influences of the cone angle and the size of the repaired site on incident laser modulation are studied as well.The results have shown that for the repaired site with a cone angle of 73.3°,the light intensity distribution has obvious three-dimensional characteristics.The relative light intensity on z-section has a circularly distribution,and the radius of the annular intensification zone increases with the decrease of z.While the distribution of maximum relative light intensity on y-section is parabolical with the increase of y.As the cone angle of the repaired site decreases,the effect of the repaired surface on light modulation becomes stronger,leading to a weak resistance to laser damage.Moreover,the large size repaired site would also reduce the laser damage threshold.Therefore,a repaired site with a larger cone angle and smaller size is preferred in practical CO2 laser repairing of surface damage.This work will provide theoretical guidance for the design of repaired surface topography,as well as the improvement of RAM process. 展开更多
关键词 fused silica laser repaired surface optical modulation finite element method(FEM)
原文传递
Effect of structural parameters of Gaussian repaired pit on light intensity distribution inside KH_2PO_4 crystal
8
作者 肖勇 陈明君 +3 位作者 程健 廖威 王海军 李明全 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期540-547,共8页
KH2PO4 (KDP) crystal with excellent optical properties is a very important element of inertial confinement fusion (ICF) device. However, KDP crystal surface micro-defects severely reduce the crystal laser damage t... KH2PO4 (KDP) crystal with excellent optical properties is a very important element of inertial confinement fusion (ICF) device. However, KDP crystal surface micro-defects severely reduce the crystal laser damage threshold, affecting the crystal service life. In this paper, Gaussian repaired pit is used to replace the crystal surface micro-defects, in order to improve the laser damage resistance of the KDP crystal with surface micro-defects. At first, the physical model of Gaussian repaired pit is built by Fourier model method, and the accuracy of the method is analyzed. It is found that the calculation error can be reduced by increasing the product of the width-period ratio and the truncation constant of the repaired pit. The calculation results about the physical model of Gaussian repaired pit show that the light intensity distribution within the crystal is symmetrical, and there are evidently enhanced light intensity regions in the crystal. Meanwhile, the maximum relative intensity inside the KDP crystal decreases gradually with the increase of the width of the Gaussian repaired pit. Secondly, the Gaussian repaired pits with different widths and the same depth of 20 μm are processed by micro-milling. Their surfaces are very smooth and present the ductile cutting state under the microscope. Finally, the laser damage threshold of the Gaussian repaired pits on the surface of the KDP crystal sample is measured by a 3 ω, 6-ns laser. The results showthat the maximum threshold of the Gaussian repaired pits is 3.12 J/cm2, which is 60% higher than the threshold of initial damage point, and the laser damage threshold increases with the increase of the width of the Gaussian repaired pit. 展开更多
关键词 KH2PO4 Gaussian repaired pit Fourier modal method laser damage threshold
原文传递
Appropriate Heart Rate in a Patient with Repaired Tetralogy of Fallot
9
作者 Aya Miyazaki Hideki Uemura +5 位作者 Yasuyo Takeuchi Junya Tomida Yasuo Ono Yoshifumi Fujimoto Norie Mitsushita Akio Ikai 《Congenital Heart Disease》 SCIE 2022年第6期647-652,共6页
Appropriate heart rate in a failing pulmonary ventricle remains unknown, particularly in congenital heart diseasewith unique hemodynamics. A 71-year-old male with repaired tetralogy of Fallot and a pacemaker for a sin... Appropriate heart rate in a failing pulmonary ventricle remains unknown, particularly in congenital heart diseasewith unique hemodynamics. A 71-year-old male with repaired tetralogy of Fallot and a pacemaker for a sinusnode dysfunction suffered from heart failure symptoms with preserved left ventricular function. Simply changingthe pacemaker’s lower rate from 60 to 75 bpm, New York Heart Association classification improved from III to II,and hemodynamic parameters drastically improved. We regarded this case as informative. Appropriate heart ratecould be higher in congenital patients with failing right and non-failing left ventricles than in adults with malfunctioningLV. 展开更多
关键词 Heart rate repaired tetralogy of Fallot failing right ventricle pacemaker lower rate the right-left ventricular interaction
暂未订购
Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming 被引量:12
10
作者 Shiwei Ci Jingjing Liang +2 位作者 Jinguo Li Yizhou Zhou Xiaofeng Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期23-34,共12页
In this work,the microstructure and tensile properties of DD32 single-crystal(SC)superalloy repaired by laser metal forming(LMF)using pulsed laser have been studied in detail.The microstructures of the deposited sampl... In this work,the microstructure and tensile properties of DD32 single-crystal(SC)superalloy repaired by laser metal forming(LMF)using pulsed laser have been studied in detail.The microstructures of the deposited samples and the tensile-ruptured samples were characterized by optical microscopy(OM),transmission electron microscope(TEM)and scanning electron microscope(SEM).Due to high cooling rate,the primary dendrite spacing in the deposited area(17.2μm)was apparently smaller than that in the substrate area(307μm),and the carbides in the deposited samples were also smaller compared with that in the substrate area.The formation of(γ+γ’)eutectic in the initial layer of repaired SC was inhibited because of the high cooling rate.As the deposition proceeded,the cooling rate decreased,and the(γ+γ’)eutectic increased gradually.The(γ+γ’)eutectic at heat-affected zone(HAZ)in the molten pool dissolved partly because of the high temperature at HAZ,but there were still residual eutectics.Tensile test results showed that tensile behavior of repaired SC at different temperatures was closely related to the MC carbides,solidification porosity,γ’phase,and(γ+γ’)eutectic.At moderate temperature,the samples tested fractured preferentially at the substrate area due to the fragmentation of the coarse MC carbide in the substrate area.At elevated temperature,the(γ+γ’)eutectic and solidification porosity in the deposited area became the source of cracks,which deteriorated the high-temperature properties and made the samples rupture at the deposited area preferentially. 展开更多
关键词 DD32 PULSED-LASER Repairing Single-crystal superalloy MICROSTRUCTURES Tensile property
原文传递
Microstructure and mechanical properties of laser additive repaired Ti17 titanium alloy 被引量:12
11
作者 Zhuang ZHAO Jing CHEN +3 位作者 Qiang ZHANG Hua TAN Xin LIN Wei-dong HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第12期2613-2621,共9页
Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of las... Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of laser additive repaired(LARed)specimen were investigated.The results show that,cellular substructures are observed in the laser deposited zone(LDZ),rather than the typicalαlaths morphology due to lack of enough subsequent thermal cycles.The cellular substructures lead to lower micro-hardness in the LDZ compared with the wrought substrate zone which consists of duplex microstructure.The tensile test results indicate that the tensile deformation process of the LARed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and fracture in the laser repaired zone with a mixed dimple and cleavage mode.The tensile strength of the LARed specimen is slightly higher than that of the wrought specimen and the elongation of11.7%is lower. 展开更多
关键词 laser additive repair Ti17 titanium alloy microstructure mechanical properties deformation behavior
在线阅读 下载PDF
Material parameter modeling and solution technique using birth–death element for notched metallic panel repaired with bonded composite patch 被引量:4
12
作者 Tong Lei Li Shiqiu Xiong Junjiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第2期445-452,共8页
This paper seeks to outline a novel three-layer model and a new birth-dteath element solution technique to evaluate static strength of notched metallic panel repaired with bonded com- posite patch and to optimize mate... This paper seeks to outline a novel three-layer model and a new birth-dteath element solution technique to evaluate static strength of notched metallic panel repaired with bonded com- posite patch and to optimize material parameters. The higher order 3D, 8-node isotropic solid ele- ment and 8-node anisotropic layered solid element with three degrees of freedom per node are respectively implemented to model substrate panel, adhesive layer and composite patch to establish three-layer model of repaired panel. The new solving technique based on birth-death element is developed to allow solution of the stress pattern of repaired panel for identifying failure mode. The new model and its solution are used to model failure mode and residual strength of repaired panel, and the obtained results have a good agreement with the experimental findings. Finally, the influences of material parameter of adhesive layer and composite patch on the residual strength of repaired panel are investigated for optimizing material properties to meet operational and envi- ronmental constraints. 展开更多
关键词 Birth-death elementBonding Bonding repair Composite patch Residual strength Three-layer model
原文传递
Viscoelasticity of repaired sciatic nerve by poly(lactic-co-glycolic acid) tubes 被引量:4
13
作者 Chengdong Piao Peng Li +1 位作者 Guangyao Liu Kun Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第33期3131-3138,共8页
Medical-grade synthetic poly(lactic-co-glycolic acid) polymer can be used as a biomaterial for nerve repair because of its good biocompatibility, biodegradability and adjustable degradation rate. The stress relaxati... Medical-grade synthetic poly(lactic-co-glycolic acid) polymer can be used as a biomaterial for nerve repair because of its good biocompatibility, biodegradability and adjustable degradation rate. The stress relaxation and creep properties of peripheral nerve can be greatly improved by repair with poly(lactic-co-glycolic acid) tubes. "Fen sciatic nerve specimens were harvested from fresh corpses within 24 hours of death, and were prepared into sciatic nerve injury models by creating a 10 mm defect in each specimen. Defects were repaired by anastomosis with nerve autografts and poly(lactic-co-glycolic acid) tubes. Stress relaxation and creep testing showed that at 7 200 seconds the sciatic nerve anastomosed by poly(lactic-co-glycolic acid) tubes exhibited a greater decrease in stress and increase in strain than those anastomosed by nerve autografts. These findings suggest that poly(lactic-co-glycolic acid) exhibits good viscoelasticity to meet the biomechanical require- ments for a biomaterial used to repair sciatic nerve injury. 展开更多
关键词 neural regeneration peripheral nerve injury sciatic nerve injury model nerve autograftpoly(lactic-co-glycolic acid) TRANSPLANTATION repair stress relaxation CREEP biomaterialneuroregeneration
暂未订购
Microstructure and wear behavior of IC10 directionally solidified superalloy repaired by directed energy deposition 被引量:2
14
作者 Guan Liu Dong Du +3 位作者 Kaiming Wang Ze Pu Dongqi Zhang Baohua Chang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第34期71-78,共8页
Directed energy deposition has been used to repair superalloy components in aero engines and gas turbines.However,the microstructure and properties are generally inhomogeneous in components because of the different pr... Directed energy deposition has been used to repair superalloy components in aero engines and gas turbines.However,the microstructure and properties are generally inhomogeneous in components because of the different processing histories.Here,the microstructures and wear behavior of different zones(substrate,HAZ,and deposit)are investigated for the IC10 directionally solidified superalloy repaired by the directed energy deposition process.It is found that the microstructure of the deposited layers is strongly textured with a<001>-fiber texture in the building direction,and the texture intensity is continuously increased along the building direction.Two kinds ofγ’phase(primary and secondaryγ’phase)can be found in the heat-affected zone(HAZ),and the average size of primaryγ’phase is smaller than that in the substrate due to liquation.In the deposit layers,the size ofγ’phase is much smaller than those in the substrate and the primaryγ’phase of HAZ;both size and the fraction of theγ’phase decreases with the increase of building height.The wear rate of the substrate is the smallest,indicating the best wear resistance;while the wear rate of HAZ is the largest,indicating the worst wear resistance in the repaired sample.The wear rates in the deposit layers increase from the bottom to the top zones,showing a decreasing wear resistance.Abrasive wear is found to be the dominant wear mechanism of the repaired alloy,and the resistance to which is closely related to the fraction ofγ’phase in the microstructure.The understanding of the influence of microstructure on wear resistance allows for a more informed application of inhomogeneous superalloy components repaired by directed energy deposition in industry. 展开更多
关键词 Directed energy deposition Directionally solidified superalloy MICROSTRUCTURE Wear behavior Repairing
原文传递
Dynamic analysis of the composite laminated repaired perforated plates by using multi-patch IGA method 被引量:2
15
作者 Jamshid FAZILATI Vahid KHALAFI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期266-280,共15页
The bonded repair techniques seem to be the most frequent procedures in the aviation maintenance.The achieved composite repaired perforated thin-walled plate is a complex geometry with high numerical analysis cost.The... The bonded repair techniques seem to be the most frequent procedures in the aviation maintenance.The achieved composite repaired perforated thin-walled plate is a complex geometry with high numerical analysis cost.The NURBS-based Isogeometric Analysis(IGA)proposes a sensible and affordable tool to carry out such geometry analysis.In this context,a well-known technique is to divide the original geometry assembly into number of simple neighbors connected geometries.In the present study the free vibration analysis of the perforated plates repaired on one side with an external bonded composite laminated patch is investigated.A multi-patch geometry modeling approach is implemented in line with the first order shear deformation theory of plates.In order to hold the geometry integrity and uniformity,all the degrees of freedom between adjacent geometry patches are completely tied through implementing a Nitsche method.To show the effectiveness and accuracy of the developed formulation,some representative results are extracted and compared with those from literature.The effects of geometrical as well as material parameters including boundary condition,cutout shape,and repair layup on the dynamic response of the repaired perforated plates are then investigated. 展开更多
关键词 Composite laminate Perforated plate Bonded repair Isogeometric analysis(IGA) Multi-patch model
原文传递
Performance of Epoxy-Repaired Corroded Reinforced Concrete Beams 被引量:1
16
作者 李洪明 吴瑾 +1 位作者 王喆 尚保康 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第5期579-584,共6页
Reinforcement corrosion has a serious impact on the durability and safety of reinforced concrete structures.Six reinforced concrete(RC)beam specimens are constructed.After beam specimens are subjected to accelerated c... Reinforcement corrosion has a serious impact on the durability and safety of reinforced concrete structures.Six reinforced concrete(RC)beam specimens are constructed.After beam specimens are subjected to accelerated corrosion with the constant current,beam specimens are repaired with epoxy mortar and the flexural test of beams is investigated.Then the behaviors of repaired corroded reinforced concrete beams are evaluated.The experimental results show that cracking and ultimate loads of corroded RC beams are enhanced after being repaired.And the strain distributions measured across sections of beam specimens still obey the assumption of plane section.After being repaired,the number of cracks decreases and the crack spacing increases. 展开更多
关键词 CORROSION reinforced concrete beam epoxy mortar flexural behavior REPAIR
在线阅读 下载PDF
Fracture analysis of cracked metallic plate repaired with adhesive bonding composite patch
17
作者 Su Weiguo Mu Zhitao 《Engineering Sciences》 EI 2014年第1期93-96,共4页
Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhes... Fatigue crack growth test of cracked metallic plate repaired with adhesive bonding composite patch was conducted to study the fracture behavior of crack patching. The failure mode was that crack grows along with adhesive debonding. The crack length and debonding area were measured at different numbers of cycles. The nonlinear three- dimensional(3D)finite element(FE)model considering adhesive debonding and crack growth simultaneously was developed. The experimental and analytical results were in good agreement with each other. 展开更多
关键词 adhesively bonded composite repair FATIGUE crack growth life FE model
在线阅读 下载PDF
Numerical and Experimental Study on Stiffened Composite Panel Repaired by Bolted Joints under Compressive Load
18
作者 Jifeng Xu Yuanpei Lan +1 位作者 Xingming Zhang Kui Du 《Journal of Applied Mathematics and Physics》 2018年第8期1763-1771,共9页
Numerical and experimental study was conducted to investigate the failure mode and strength performance of stiffened composite panel repaired by bolted joints under compressive load, and the results were then compared... Numerical and experimental study was conducted to investigate the failure mode and strength performance of stiffened composite panel repaired by bolted joints under compressive load, and the results were then compared with those from virgin stiffened composite panel without any damage. A finite element analysis model was established for repaired and virgin stiffened composite panels under compressive load, the 3D Hashin criteria was applied to identify the composite structure failure, and the secondary stress criteria was adopted to identify the adhesive failure between the base laminate and the stiffener. The failure modes of repaired stiffened composite panels were stiffened composite panels breaking off along the bolt joints. The experimental results were consistent with the finite element analysis results, indicating the reliability of the finite element analysis model. 展开更多
关键词 Stiffened Composite PANEL BOLTED JOINTS REPAIR Compression Performance 3D FINITE ELEMENT Model
暂未订购
Structural Behavior of Repaired Reinforced Concrete Beams with Glued Steel Plate and Carbon Fiber
19
作者 Aamer Najim Abbas 《Journal of Civil Engineering and Architecture》 2014年第12期1556-1566,共11页
This paper investigates the strength and deformation characteristics of reinforced normal and high-strength concrete rectangular beams which failed in shear and repaired by external bonding of carbon fiber and steel p... This paper investigates the strength and deformation characteristics of reinforced normal and high-strength concrete rectangular beams which failed in shear and repaired by external bonding of carbon fiber and steel plate. Five simply supported reinforced concrete beams with shear reinforcement are tested, three of which are made with NSC (normal-strength concrete) and the other two with HSC (high-strength concrete). The span of the simply supported beams is 0.9 m with 100 mm wide by 200 mm deep cross section. All five beams are tested under four-point bending. Careful repair process is adopted and proved successful. The aim is to restore or increase shear strength of these beams and to monitor their post-repair load-deflection behavior. The effect of concrete compressive strength on the behavior and strength of beams before and after repair is also investigated. Shear cracks patterns and their evolution are observed and discussed. 展开更多
关键词 REPAIR carbon fiber steel plate.
在线阅读 下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部