Our dependency on energy is so vital that it makes it difficult to imagine how humans can live on our planet earth without it.The demand for electricity,for example,is directly related to the growth of the population ...Our dependency on energy is so vital that it makes it difficult to imagine how humans can live on our planet earth without it.The demand for electricity,for example,is directly related to the growth of the population worldwide,and presently,to meet this demand,we need both renewable and nonrenewable energy.While nonrenewable energy has its shortcomings(negative impact on climate change,for example),renewable energy is not enough to address the ever-changing demand for energy.One way to address this need is to become more innovative,use technology more effectively,and be aware of the costs associated with different sources of renewable energy.In the case of nuclear power plants,new innovative centered around small modular reactors(SMRs)of generation 4th of these plants make them safer and less costly to own them as well as to protect them via means of cyber-security against any attack by smart malware.Of course,understanding the risks and how to address them is an integral part of the study.Natural sources of energy,such as wind and solar,are suggesting other innovating technical approaches.In this article,we are studying these factors holistically,and details have been laid out in a book by the authors’second volume of series title as Knowledge Is Power in Four Dimensions under Energy subtitle.展开更多
Dramatic climate change, caused by over consumption of coal, oil and other traditional energy sources, as well as exhaustion of their reserves, imposed technological need to look for their substitution with new, renew...Dramatic climate change, caused by over consumption of coal, oil and other traditional energy sources, as well as exhaustion of their reserves, imposed technological need to look for their substitution with new, renewable energy sources. The exploitation of these new forms of energy, solar, wind, earth and bio-fuels, initiated the development and application of new technologies, so far unused in practice. Rapid development and wide application of installations for use of renewable energy in many households and companies opened a whole new risk and danger in the fire protection field. With the purpose of introducing this problem to engineers in the area of fire protection, health and safety at work, this paper systematically presents various types of facilities for exploitation of renewable energy sources as well as potential dangers, risks and issues related to their safe operation.展开更多
With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distributi...With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distribution system(GS)by utilizing the benefits of RESs enhances service restoration.In this context,this paper proposes a coordinated service restoration framework that considers the uncertainty in RESs and the bi-directional restoration interactions between the PS and GS.Additionally,a coordinated service restoration model is developed considering the two systems’interdependency and the GS’s dynamic characteristics.The objective is to maximize the system resilience index while adhering to operational,dynamic,restoration logic,and interdependency constraints.A method for managing uncertainties in RES output is employed,and convexification techniques are applied to address the nonlinear constraints arising from the physical laws of the IPGS,thereby reducing solution complexity.As a result,the service restoration optimization problem of the IPGS can be formulated as a computationally tractable mixed-integer second-order cone programming problem.The effectiveness and superiority of the proposed framework are demonstrated through numerical simulations conducted on the interdependent IEEE 13-bus PS and 9-node GS.The comparative results show that the proposed framework improves the system resilience index by at least 65.07%compared to traditional methods.展开更多
The globe faces an urgent need to close the energy demand-supply gap.Addressing this difficulty requires constructing a Hybrid Renewable Energy System(HRES),which has proven to be the most appropriate solution.HRES al...The globe faces an urgent need to close the energy demand-supply gap.Addressing this difficulty requires constructing a Hybrid Renewable Energy System(HRES),which has proven to be the most appropriate solution.HRES allows for integrating two or more renewable energy resources,successfully addressing the issue of intermittent availability of non-conventional energy resources.Optimization is critical for improving the HRES’s performance parameters during implementation.This study focuses on HRES using solar and biomass as renewable energy supplies and appropriate energy storage technologies.However,energy fluctuations present a problem with the power quality of HRES.To address this issue,the research paper introduces the Generalized Dynamic Progressive Neural Fuzzy Controller(GDPNFC),which regulates power flow within the proposed HRES.Furthermore,a unique approach called Enhanced Multi-Objective Monarch Butterfly Optimization(EMMBO)is used to optimize technical parameters.The simulation tool used in the research work is HOMER(Hybrid Optimization of Multiple Energy Resources)-PRO,and the system’s power quality is assessed using MATLAB 2016.The research paper concludes with comparing the performance of existing systems to the proposed system in terms of power loss and Total Harmonic Distortion(THD).It was established that the proposed technique involving EMMBO outperformed existing methods in technical optimization.展开更多
Power systems in Germany mainly containing intermittently operating renewable sources require load/frequency control which is performed up to now at the AC transmissioh and distribution levels. Frequency control can b...Power systems in Germany mainly containing intermittently operating renewable sources require load/frequency control which is performed up to now at the AC transmissioh and distribution levels. Frequency control can be achieved by employing short-and long-term storage plants buffering and complementing renewable energy sources. A representative grid consists of a natural-gas-fired plant serving as frequency leader, long-term storage plant, wind-power farm with associated short-term storage plantfor energy buffering, and photovoltaic farm with associated short-term storage plant interconnected by a long transmission line to two load circuits. Transient analysis is performed with Mathemafica solving the differential equation system for frequency variation. Powerflow through the AC transmission line is limited by its impedance. The long transmission line must be segmented to achieve stability and voltage control over an 800 km distance. The renewable plants must be operated together with the storage plants in order tominimize frequency variations by smoothing the power output of renewable plants, achieving step-wise control of the transmission-line power. Although to date only AC Iransmission lines in Germany exist, it is anticipated that within the next 10 years these will beaugmented by DC high-voltage lines.展开更多
We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, di...We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, distribution grid connection capacity can be doubled. We also present the setting and fi rst results of a fi eld test for validating the approach in a rural distribution grid in northern Germany.展开更多
The purpose of this research was to study economic incentives to use renewable energy sources in the Republic of Kazakhstan and to give suggestions for production and circulation of the "green" certificates as a new...The purpose of this research was to study economic incentives to use renewable energy sources in the Republic of Kazakhstan and to give suggestions for production and circulation of the "green" certificates as a new financial instrument. The author analyzed European Union and Kazakhstani experience of economic incentives to reduce emissions and introduction of renewable energy sources. As a result of conducted research, the proposal to produce and circulate new financial instruments in Kazakhstan is made; as well as economic and environmental factors of renewable energy sources in the Republic of Kazakhstan are defined.展开更多
In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the...In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.展开更多
Mining industry is a substantial consumer of the energy indispensable to power mining and mineral processing equipment and processes. As more and more mine operations move to remote locations, the access to reliable, ...Mining industry is a substantial consumer of the energy indispensable to power mining and mineral processing equipment and processes. As more and more mine operations move to remote locations, the access to reliable, secure and environment friendly energy sources becomes a key concern. At present, a great majority of remote mines relies heavily on diesel fuel that has to be transported over long distances. In this context, some of the renewable energy sources such as wind power or solar energy seem to provide potentially interesting and viable alternatives. Mine operations, however, have a very particular character, much different from other industries and from other potential applications of renewable power sources. This paper presents operational conditions of some mining operations, particularly those in remote regions, in the context of their energy needs. The authors analyse current and future capacities to decrease a reliance of remote mines on conventional fuels and energy. The paper also analyses and discusses the conditions to be met by alternative energy sources so that they might become a viable alternative for remote mining operations.展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) o...This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.展开更多
RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (v...RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.展开更多
Improving the quality of life for Earth's growing population is a complex task that requires the development of new technologies and materials. Perhaps the biggest challenge is access to clean and renewable energy...Improving the quality of life for Earth's growing population is a complex task that requires the development of new technologies and materials. Perhaps the biggest challenge is access to clean and renewable energy sources that can drive a sustainable future. Photovoltaics, today mainly represented by silicon-based solar cells, convert solar energy into electricity and is already an important component in the renewable energy portfolio.展开更多
Multi-port converters are considered as exceeding earlier period decade owing to function in a combination of different energy sources in a single processing unit.Renewable energy sources are playing a significant rol...Multi-port converters are considered as exceeding earlier period decade owing to function in a combination of different energy sources in a single processing unit.Renewable energy sources are playing a significant role in the modern energy system with rapid development.In renewable sources like fuel combustion and solar energy,the generated voltages change due to their environmental changes.To develop energy resources,electric power generation involved huge awareness.The power and output voltages are plays important role in our work but it not considered in the existing system.For considering the power and voltage,Gaussian PI Controller-Maxpooling Deep Convolutional Neural Network Classifier(GPIC-MDCNNC)Model is introduced for the grid-connected renewable energy system.The input information is collected from two input sources.After that,input layer transfer information to hidden layer 1 fuzzy PI is employed for controlling voltage in GPIC-MDCNNC Model.Hidden layer 1 is transferred to hidden layer 2.Gaussian activation is employed for determining the output voltage with help of the controller.At last,the output layer offers the last value in GPIC-MDCNNC Model.The designed method was confirmed using one and multiple sources by stable and unpredictable input voltages.GPIC-MDCNNC Model increases the performance of grid-connected renewable energy systems by enhanced voltage value compared with state-of-the-art works.The control technique using GPIC-MDCNNC Model increases the dynamics of hybrid energy systems connected to the grid.展开更多
To achieve more precise monitoring of state fluctuations in the power network close to renewable energy sources, it is necessary to utilize phasor measurements and shorten the time interval between state estimations. ...To achieve more precise monitoring of state fluctuations in the power network close to renewable energy sources, it is necessary to utilize phasor measurements and shorten the time interval between state estimations. For large-scale power systems, however, estimating all of their states with shorter time intervals means a drastic increase in computational burden. As a tradeoff between accuracy and computational efficiency, a multi-time interval forecasting-aided state estimation approach is proposed in this paper, where states with various degrees of fluctuations are estimated asynchronously with different time intervals. Based on the newest state estimate, forecasting-aided state estimators are employed to predict states at time moments prior to the next round of measurement update and state estimation. Extensive numerical tests have demonstrated the effectiveness of the proposed approach.展开更多
The significant increase in the proportion of renewable energy sources(RESs)has elevated risks of extreme ramp events and frequency instability in power systems.In recent years,frequency stability events have occurred...The significant increase in the proportion of renewable energy sources(RESs)has elevated risks of extreme ramp events and frequency instability in power systems.In recent years,frequency stability events have occurred in several countries/regions worldwide due to flexibility deficiencies.Generation flexibility has emerged as a critical factor influencing the frequency stability of power systems.This paper proposes a domain of attraction(DOA)-based quantitative method to assess the frequency stability region of power systems with a high proportion of RESs,considering generation flexibility constraints.First,ramp rate is adopted as the core indicator to characterize generation flexibility within automatic generation control(AGC)timescale,through which a nonlinear AGC model with rate saturation constraints is established.Second,the concept of DOA is introduced to define the stability region of the nonlinear AGC.Third,a quadratic Lyapunov-based estimation method is employed to quantitatively analyze the DOA of the nonlinear AGC at different generation flexibility levels.Simulation results demonstrate that increased generation flexibility expands the estimated DOA of the nonlinear AGC,whereas generation flexibility deficiency induces AGC instability.Moreover,state trajectory and time-domain simulation verify that the proposed estimation method accurately represents the stability region of the nonlinear AGC.展开更多
With the development of science and technology,the social demand for energy is also increasing.However,the traditional method of energy supply primarily relies on non-renewable resources for energy conversion.While th...With the development of science and technology,the social demand for energy is also increasing.However,the traditional method of energy supply primarily relies on non-renewable resources for energy conversion.While this conventional approach can expedite the energy conversion process,it also results in irreversible ecological hazards.To solve the above problems,the use of renewable clean energy is proposed.In this paper,a droplet generator is proposed to integrate the rotating structure with the body effect power generation for the tiny energy of raindrops.This droplet generator can increase the speed of droplets leaving the dielectric layer and reduce the effect of continuously falling droplets on the droplet-based electricity generator(DEG).It is demonstrated that the instantaneous power of the generator can reach 0.9 mW,which can be a good solution to the power supply needs of some small power supply equipment,and thereafter is beneficial to the self-powering of the equipment in rainy days.展开更多
As the proportion of renewable energy sources continues to increase,the local damping contributions of sources in power system decrease,posing a challenge to the power system stability.Therefore,online tracking of the...As the proportion of renewable energy sources continues to increase,the local damping contributions of sources in power system decrease,posing a challenge to the power system stability.Therefore,online tracking of the damping contributions of each source is crucial for the prevention of low-frequency oscillations.This paper proposes an online tracking method of local damping under ambient data.The proposed method is based on dissipation energy spectrum analysis(DESA)and the energy dissipation factor(EDF).First,the feasibility of using frequency-domain analysis for the dissipation energy of generator is analyzed.The frequency spectral function of dissipation energy of generator is then derived by integrating with Parseval’s theorem,and the EDF is defined.Second,the generator energy dissipation factor(GEDF)for the dominant oscillation mode frequency is established.The modal information of the dominant oscillation in the power system is obtained through DESA.The relationship between the frequency spectral function and eigenvalues is also established.Finally,an online tracking method of local damping is proposed based on DESA and GEDF.The effectiveness of the proposed method is validated through simulations on a four-machine 11-bus power system and an actual power system in Northwest China.展开更多
Numerous renewable energy sources(RESs)are coupled with the power grid through power electronics to advance low-carbon objectives.These RESs predominantly connect to the AC collection network via inverters,with the el...Numerous renewable energy sources(RESs)are coupled with the power grid through power electronics to advance low-carbon objectives.These RESs predominantly connect to the AC collection network via inverters,with the electricity they produce either transmitted over long distances through high-voltage lines or utilized locally within the distribution system.The unique interfacing of RESs alters their fault response characteristics,typically resulting in limited fault currents,frequency deviations,and fluctuating sequence impedance angles.Therefore,existing protection principles based on fault signatures of synchronous generators will face significant challenges including distance relays,directional elements,differential relays,phase selectors,and overcurrent relays.To solve these issues,innovative protection technologies have been developed to bolster grid stability and security.Furthermore,the superior controllability of power converters presents an opportunity to devise effective control strategies that can adapt existing protection mechanisms to function correctly in this new energy landscape.Nevertheless,the complexity of fault behaviors exhibited by RESs necessitates further refinement of these schemes.Therefore,this paper aims to consolidate current research methodologies and explore prospective avenues for future investigation.展开更多
A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presente...A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller.展开更多
文摘Our dependency on energy is so vital that it makes it difficult to imagine how humans can live on our planet earth without it.The demand for electricity,for example,is directly related to the growth of the population worldwide,and presently,to meet this demand,we need both renewable and nonrenewable energy.While nonrenewable energy has its shortcomings(negative impact on climate change,for example),renewable energy is not enough to address the ever-changing demand for energy.One way to address this need is to become more innovative,use technology more effectively,and be aware of the costs associated with different sources of renewable energy.In the case of nuclear power plants,new innovative centered around small modular reactors(SMRs)of generation 4th of these plants make them safer and less costly to own them as well as to protect them via means of cyber-security against any attack by smart malware.Of course,understanding the risks and how to address them is an integral part of the study.Natural sources of energy,such as wind and solar,are suggesting other innovating technical approaches.In this article,we are studying these factors holistically,and details have been laid out in a book by the authors’second volume of series title as Knowledge Is Power in Four Dimensions under Energy subtitle.
文摘Dramatic climate change, caused by over consumption of coal, oil and other traditional energy sources, as well as exhaustion of their reserves, imposed technological need to look for their substitution with new, renewable energy sources. The exploitation of these new forms of energy, solar, wind, earth and bio-fuels, initiated the development and application of new technologies, so far unused in practice. Rapid development and wide application of installations for use of renewable energy in many households and companies opened a whole new risk and danger in the fire protection field. With the purpose of introducing this problem to engineers in the area of fire protection, health and safety at work, this paper systematically presents various types of facilities for exploitation of renewable energy sources as well as potential dangers, risks and issues related to their safe operation.
基金funded by the Science and Technology Project of State Grid Shanxi Electric Power Company(5205E0230001).
文摘With the development of integrated power and gas distribution systems(IPGS)incorporating renewable energy sources(RESs),coordinating the restoration processes of the power distribution system(PS)and the gas distribution system(GS)by utilizing the benefits of RESs enhances service restoration.In this context,this paper proposes a coordinated service restoration framework that considers the uncertainty in RESs and the bi-directional restoration interactions between the PS and GS.Additionally,a coordinated service restoration model is developed considering the two systems’interdependency and the GS’s dynamic characteristics.The objective is to maximize the system resilience index while adhering to operational,dynamic,restoration logic,and interdependency constraints.A method for managing uncertainties in RES output is employed,and convexification techniques are applied to address the nonlinear constraints arising from the physical laws of the IPGS,thereby reducing solution complexity.As a result,the service restoration optimization problem of the IPGS can be formulated as a computationally tractable mixed-integer second-order cone programming problem.The effectiveness and superiority of the proposed framework are demonstrated through numerical simulations conducted on the interdependent IEEE 13-bus PS and 9-node GS.The comparative results show that the proposed framework improves the system resilience index by at least 65.07%compared to traditional methods.
文摘The globe faces an urgent need to close the energy demand-supply gap.Addressing this difficulty requires constructing a Hybrid Renewable Energy System(HRES),which has proven to be the most appropriate solution.HRES allows for integrating two or more renewable energy resources,successfully addressing the issue of intermittent availability of non-conventional energy resources.Optimization is critical for improving the HRES’s performance parameters during implementation.This study focuses on HRES using solar and biomass as renewable energy supplies and appropriate energy storage technologies.However,energy fluctuations present a problem with the power quality of HRES.To address this issue,the research paper introduces the Generalized Dynamic Progressive Neural Fuzzy Controller(GDPNFC),which regulates power flow within the proposed HRES.Furthermore,a unique approach called Enhanced Multi-Objective Monarch Butterfly Optimization(EMMBO)is used to optimize technical parameters.The simulation tool used in the research work is HOMER(Hybrid Optimization of Multiple Energy Resources)-PRO,and the system’s power quality is assessed using MATLAB 2016.The research paper concludes with comparing the performance of existing systems to the proposed system in terms of power loss and Total Harmonic Distortion(THD).It was established that the proposed technique involving EMMBO outperformed existing methods in technical optimization.
文摘Power systems in Germany mainly containing intermittently operating renewable sources require load/frequency control which is performed up to now at the AC transmissioh and distribution levels. Frequency control can be achieved by employing short-and long-term storage plants buffering and complementing renewable energy sources. A representative grid consists of a natural-gas-fired plant serving as frequency leader, long-term storage plant, wind-power farm with associated short-term storage plantfor energy buffering, and photovoltaic farm with associated short-term storage plant interconnected by a long transmission line to two load circuits. Transient analysis is performed with Mathemafica solving the differential equation system for frequency variation. Powerflow through the AC transmission line is limited by its impedance. The long transmission line must be segmented to achieve stability and voltage control over an 800 km distance. The renewable plants must be operated together with the storage plants in order tominimize frequency variations by smoothing the power output of renewable plants, achieving step-wise control of the transmission-line power. Although to date only AC Iransmission lines in Germany exist, it is anticipated that within the next 10 years these will beaugmented by DC high-voltage lines.
文摘We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, distribution grid connection capacity can be doubled. We also present the setting and fi rst results of a fi eld test for validating the approach in a rural distribution grid in northern Germany.
文摘The purpose of this research was to study economic incentives to use renewable energy sources in the Republic of Kazakhstan and to give suggestions for production and circulation of the "green" certificates as a new financial instrument. The author analyzed European Union and Kazakhstani experience of economic incentives to reduce emissions and introduction of renewable energy sources. As a result of conducted research, the proposal to produce and circulate new financial instruments in Kazakhstan is made; as well as economic and environmental factors of renewable energy sources in the Republic of Kazakhstan are defined.
文摘In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.
文摘Mining industry is a substantial consumer of the energy indispensable to power mining and mineral processing equipment and processes. As more and more mine operations move to remote locations, the access to reliable, secure and environment friendly energy sources becomes a key concern. At present, a great majority of remote mines relies heavily on diesel fuel that has to be transported over long distances. In this context, some of the renewable energy sources such as wind power or solar energy seem to provide potentially interesting and viable alternatives. Mine operations, however, have a very particular character, much different from other industries and from other potential applications of renewable power sources. This paper presents operational conditions of some mining operations, particularly those in remote regions, in the context of their energy needs. The authors analyse current and future capacities to decrease a reliance of remote mines on conventional fuels and energy. The paper also analyses and discusses the conditions to be met by alternative energy sources so that they might become a viable alternative for remote mining operations.
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
文摘This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.
文摘RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.
基金financially supported by the National Science Foundation of China grant (62322407, 22279034, 52261145698, W2421103)Shanghai Science and Technology Innovation Action Plan (22ZR1418900, 24110714100)+1 种基金the Swedish Research Council (project grant no. 2020-04538)the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Link?ping University (Faculty Grant SFO Mat LiU no. 2009 00971)。
文摘Improving the quality of life for Earth's growing population is a complex task that requires the development of new technologies and materials. Perhaps the biggest challenge is access to clean and renewable energy sources that can drive a sustainable future. Photovoltaics, today mainly represented by silicon-based solar cells, convert solar energy into electricity and is already an important component in the renewable energy portfolio.
文摘Multi-port converters are considered as exceeding earlier period decade owing to function in a combination of different energy sources in a single processing unit.Renewable energy sources are playing a significant role in the modern energy system with rapid development.In renewable sources like fuel combustion and solar energy,the generated voltages change due to their environmental changes.To develop energy resources,electric power generation involved huge awareness.The power and output voltages are plays important role in our work but it not considered in the existing system.For considering the power and voltage,Gaussian PI Controller-Maxpooling Deep Convolutional Neural Network Classifier(GPIC-MDCNNC)Model is introduced for the grid-connected renewable energy system.The input information is collected from two input sources.After that,input layer transfer information to hidden layer 1 fuzzy PI is employed for controlling voltage in GPIC-MDCNNC Model.Hidden layer 1 is transferred to hidden layer 2.Gaussian activation is employed for determining the output voltage with help of the controller.At last,the output layer offers the last value in GPIC-MDCNNC Model.The designed method was confirmed using one and multiple sources by stable and unpredictable input voltages.GPIC-MDCNNC Model increases the performance of grid-connected renewable energy systems by enhanced voltage value compared with state-of-the-art works.The control technique using GPIC-MDCNNC Model increases the dynamics of hybrid energy systems connected to the grid.
基金supported in part by the National Natural Science Foundation of China(No.51977115).
文摘To achieve more precise monitoring of state fluctuations in the power network close to renewable energy sources, it is necessary to utilize phasor measurements and shorten the time interval between state estimations. For large-scale power systems, however, estimating all of their states with shorter time intervals means a drastic increase in computational burden. As a tradeoff between accuracy and computational efficiency, a multi-time interval forecasting-aided state estimation approach is proposed in this paper, where states with various degrees of fluctuations are estimated asynchronously with different time intervals. Based on the newest state estimate, forecasting-aided state estimators are employed to predict states at time moments prior to the next round of measurement update and state estimation. Extensive numerical tests have demonstrated the effectiveness of the proposed approach.
基金supported in part by Science and Technology Project of State Grid Corporation of China(No.5100-202336015A-1-1-ZN)。
文摘The significant increase in the proportion of renewable energy sources(RESs)has elevated risks of extreme ramp events and frequency instability in power systems.In recent years,frequency stability events have occurred in several countries/regions worldwide due to flexibility deficiencies.Generation flexibility has emerged as a critical factor influencing the frequency stability of power systems.This paper proposes a domain of attraction(DOA)-based quantitative method to assess the frequency stability region of power systems with a high proportion of RESs,considering generation flexibility constraints.First,ramp rate is adopted as the core indicator to characterize generation flexibility within automatic generation control(AGC)timescale,through which a nonlinear AGC model with rate saturation constraints is established.Second,the concept of DOA is introduced to define the stability region of the nonlinear AGC.Third,a quadratic Lyapunov-based estimation method is employed to quantitatively analyze the DOA of the nonlinear AGC at different generation flexibility levels.Simulation results demonstrate that increased generation flexibility expands the estimated DOA of the nonlinear AGC,whereas generation flexibility deficiency induces AGC instability.Moreover,state trajectory and time-domain simulation verify that the proposed estimation method accurately represents the stability region of the nonlinear AGC.
文摘With the development of science and technology,the social demand for energy is also increasing.However,the traditional method of energy supply primarily relies on non-renewable resources for energy conversion.While this conventional approach can expedite the energy conversion process,it also results in irreversible ecological hazards.To solve the above problems,the use of renewable clean energy is proposed.In this paper,a droplet generator is proposed to integrate the rotating structure with the body effect power generation for the tiny energy of raindrops.This droplet generator can increase the speed of droplets leaving the dielectric layer and reduce the effect of continuously falling droplets on the droplet-based electricity generator(DEG).It is demonstrated that the instantaneous power of the generator can reach 0.9 mW,which can be a good solution to the power supply needs of some small power supply equipment,and thereafter is beneficial to the self-powering of the equipment in rainy days.
基金supported by National Key Research and Development Program of China(No.2021YFB2400800).
文摘As the proportion of renewable energy sources continues to increase,the local damping contributions of sources in power system decrease,posing a challenge to the power system stability.Therefore,online tracking of the damping contributions of each source is crucial for the prevention of low-frequency oscillations.This paper proposes an online tracking method of local damping under ambient data.The proposed method is based on dissipation energy spectrum analysis(DESA)and the energy dissipation factor(EDF).First,the feasibility of using frequency-domain analysis for the dissipation energy of generator is analyzed.The frequency spectral function of dissipation energy of generator is then derived by integrating with Parseval’s theorem,and the EDF is defined.Second,the generator energy dissipation factor(GEDF)for the dominant oscillation mode frequency is established.The modal information of the dominant oscillation in the power system is obtained through DESA.The relationship between the frequency spectral function and eigenvalues is also established.Finally,an online tracking method of local damping is proposed based on DESA and GEDF.The effectiveness of the proposed method is validated through simulations on a four-machine 11-bus power system and an actual power system in Northwest China.
基金carried out with the European Union’s Horizon ResearchInnovation Programme under Marie Sklodowska-Curie Grant Agreement(No.101145934)UKRI Postdoctoral Fellowships Guarantee(No.EP/Z002168/1).
文摘Numerous renewable energy sources(RESs)are coupled with the power grid through power electronics to advance low-carbon objectives.These RESs predominantly connect to the AC collection network via inverters,with the electricity they produce either transmitted over long distances through high-voltage lines or utilized locally within the distribution system.The unique interfacing of RESs alters their fault response characteristics,typically resulting in limited fault currents,frequency deviations,and fluctuating sequence impedance angles.Therefore,existing protection principles based on fault signatures of synchronous generators will face significant challenges including distance relays,directional elements,differential relays,phase selectors,and overcurrent relays.To solve these issues,innovative protection technologies have been developed to bolster grid stability and security.Furthermore,the superior controllability of power converters presents an opportunity to devise effective control strategies that can adapt existing protection mechanisms to function correctly in this new energy landscape.Nevertheless,the complexity of fault behaviors exhibited by RESs necessitates further refinement of these schemes.Therefore,this paper aims to consolidate current research methodologies and explore prospective avenues for future investigation.
基金This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 2020/01/11742.
文摘A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller.