Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intellig...Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.展开更多
Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex syst...Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints.This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization(MNEHHO)algorithm to address the allocation of HRES components.The proposed approach integrates key technical parameters,including charge-discharge efficiency,storage device configurations,and renewable energy fraction.We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability.The MNEHHO algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities.The model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving significant reductions in costs and emissions compared to conventional methods.The enhanced search mechanisms of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions.Experimental results demonstrate concrete improvements in solution quality(up to 46% improvement in objective value)and computational efficiency(average coefficient of variance of 24%-27%)across diverse institutional settings.This confirms the robustness and scalability of our method under various operational scenarios,providing a reliable framework for solving renewable energy allocation problems.展开更多
Bionic interfaces exhibit multiscale features with various functions that reduce energy consumption and produce renewable resources to support life,triggering them an emerging area of technological revolution in many ...Bionic interfaces exhibit multiscale features with various functions that reduce energy consumption and produce renewable resources to support life,triggering them an emerging area of technological revolution in many disciplines.To improve the design and fabrication flexibility,additive manufacturing(AM)technology has been attempted to achieve multiscale structures and reconstruct biological functions at interfaces.Emerging AM of bionic interfaces has led to substantial advancements in renewable energy applications in recent years,but some challenges remain to be overcome.This review first presents a basic understanding of bionic mechanisms and typical manufacturing techniques especially AM.Subsequently,it emphasizes the latest progress of the bionic interfaces and AM on various renewable energy applications,such as those for wetting-controlled surfaces,energy harvesting,water treatment,batteries,and catalysts.Finally,it discusses some challenges and provides insights on how bionic interfaces and AM provide innovative solutions for next-generation renewable energy applications.展开更多
Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible...Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible part of crops.This forces bioplastics to competewith food production because the crops that produce bioplastics can also be used for human nutrition.That is why the article’s main focus is on creating bioplastics using renewable,non-food raw materials(cellulose,lignin,etc.).Eco-friendly composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)with reed and hemp waste as a filler.The physic-chemical features of the structure and surface,as well as the technological characteristics of reed and hemp waste as the organic fillers for renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid),were studied.Theeffect of the fractional composition analysis,morphology,and nature of reed and hempwaste on the quality of the design of eco-friendly biodegradable composites and their ability to disperse in the matrix of renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch and poly(lactic acid)was carried out.The influence of different content and morphology of reed and hemp waste on the composite characteristics was investigated.It is shown that the most optimal direction for obtaining strong eco-friendly biodegradable composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)is associated with the use of waste reed stalks,with its optimal content at the level of 50 wt.%.展开更多
In this research work,the localized generation from renewable resources and the distribution of energy to agricultural loads,which is a local microgrid concept,have been considered,and its feasibility has been assesse...In this research work,the localized generation from renewable resources and the distribution of energy to agricultural loads,which is a local microgrid concept,have been considered,and its feasibility has been assessed.Two dispatch algorithms,named Cycle Charging and Load Following,are implemented to find the optimal solution(i.e.,net cost,operation cost,carbon emission.energy cost,component sizing,etc.)of the hybrid system.The microgrid is also modeled in the DIgSILENT Power Factory platform,and the respective power system responses are then evaluated.The development of dispatch algorithms specifically tailored for agricultural applications has enabled to dynamically manage energy flows,responding to fluctuating demands and resource availability in real-time.Through careful consideration of factors such as seasonal variations and irrigation requirements,these algorithms have enhanced the resilience and adaptability of the microgrid to dynamic operational conditions.However,it is revealed that both approaches have produced the same techno-economic results showing no significant difference.This illustrates the fact that the considered microgrid can be implemented with either strategy without significant fluctuation in performance.The study has shown that the harmful gas emission has also been limited to only 17,928 kg/year of CO_(2),and 77.7 kg/year of Sulfur Dioxide.For the proposed microgrid and load profile of 165.29 kWh/day,the net present cost is USD 718,279,and the cost of energy is USD 0.0463 with a renewable fraction of 97.6%.The optimal sizes for PV,Bio,Grid,Electrolyzer,and Converter are 1494,500,999,999,500,and 495 kW,respectively.For a hydrogen tank(HTank),the optimal size is found to be 350 kg.This research work provides critical insights into the techno-economic feasibility and environmental impact of integrating biomass-PV-hydrogen storage-Grid hybrid renewable microgrids into agricultural settings.展开更多
Accurate and effective assessment of hydrothermal resources is crucial in the geothermal industry,given that the global installed capacity for direct use(173303 MW)significantly exceeds that for geothermal power(16260...Accurate and effective assessment of hydrothermal resources is crucial in the geothermal industry,given that the global installed capacity for direct use(173303 MW)significantly exceeds that for geothermal power(16260 MW).Despite the widespread application of various geothermal resource assessment methods,including the volumetric method,Monte Carlo method,analogy,statistical analysis,and numerical methods,there are still limitations faced in terms of data precision and model uncertainty assessment,fracture heterogeneity,boundary conditions,renewable energy attributes,integration of geothermal compensation mechanisms under the“extraction-injection”balance,diversification of economic evaluation metrics,and the establishment of standardized assessment criteria.This review outlines the various methods suitable for different stages of the hydrothermal resource assessment process,and proposes future technical approaches for sustainable development,including improving the accuracy of assessments and establishing standards for geothermal resource evaluation methods,in order to enhance the efficiency of geothermal resource utilization.展开更多
The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage...The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.展开更多
The article presents the results of a study on the possibility of synthesizing biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)[P(3HB-co-4HB)]from renewable waste fish oil(WFO)by the Cupriavidus necator B-10...The article presents the results of a study on the possibility of synthesizing biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)[P(3HB-co-4HB)]from renewable waste fish oil(WFO)by the Cupriavidus necator B-10646 bacterium.For the first time,waste oil generated during the processing of Sprattus balticus in the pro-duction of sprats was used as the main carbon substrate for the synthesis of P(3HB-co-4HB),andε-caprolactone was used as a precursor instead of the more expensiveγ-butyrolactone.Samples of P(3HB-co-4HB)with a 4HB monomer content from 7.4 to 11.6 mol.%were synthesized,and values of the bacterial biomass yield and the total yield of the copolymer were comparable with the control(where butyric acid was used as carbon source).The following properties of the samples were studied:molecular weight,temperature characteristics,thermal behavior,isothermal crystallization of melts,and the formation of spherulites.The renewable fatty substrate of complex composition was used to synthesize samples of technologically advanced low-crystallinity P(3HB-co-4HB)with significant proportions of 4HB,without impairing the physicochemical properties of the polymer.The biotech-nological process involving the use of renewable WFO andε-caprolactone can be employed to reduce the costs of producing a promising“green”bioplastic and make it more affordable.展开更多
With the rapid development of industry,the environmental problems caused by heavy metal arsenic and antimony are becoming increasingly serious.Therefore,it is urgent to solve the problem of arsenic and antimony pollut...With the rapid development of industry,the environmental problems caused by heavy metal arsenic and antimony are becoming increasingly serious.Therefore,it is urgent to solve the problem of arsenic and antimony pollution in the water environment.Renewable carbon-based materials,as a kind of adsorbent widely used in wastewater treatment,have been the focus of scholars’research for many years.In this review,the preparation methods,characteristics,and applications of renewable carbon-based materials(biochar,activated carbon,carbon nanotubes,and graphene)for the removal of arsenic and antimony are described in detail.Based on adsorption kinetics,isothermal adsorption,temperature,pH,and coexisting ions,we discuss the process of adsorption of arsenic and antimony by renewable carbon-based materials,explore the mechanism of adsorption of anions in water by renewable carbon-basedmaterials,and comparatively analyze the differences in adsorption performance of arsenic and antimony by different renewable carbon-based materials.Compared with biochar,activated carbon,carbon nanotube,and graphene renewable materials loaded with iron-manganese oxides have better removal effects on arsenic and antimony wastewater.Extensive research data shows that biochar,as a renewable material,is recommended,followed by activated carbon.Both are recommended because of their excellent adsorption properties and low production costs.Finally,the prospects and challenges of the application of renewable carbon-based materials in wastewater treatment are discussed,and the directions and development trends of future research are pointed out,which provide references and insights for further promoting the application of renewable carbon-based materials in wastewater treatment.展开更多
With the proposed carbon-neutrality targets,intermittent renewable energy will become increasingly significant for the power sector in the future.It is vital to study its development paths,particularly for wind power ...With the proposed carbon-neutrality targets,intermittent renewable energy will become increasingly significant for the power sector in the future.It is vital to study its development paths,particularly for wind power and photovoltaics,while considering constraints on diffusion potential.Using learning curves,dynamic programming,and Bass models,this study analyzes technological diffusion trends to determine the most cost-effective development route for intermittent renewable energy power generation in China by 2060.This study simplifies reality by examining the individual diffusion processes of wind and photovoltaic power,focusing on the self-diffusion characteristics of the two technologies.The study assumes that self-diffusion is the primary driver of future development and describe the influence of multiple factors.The study finds that supportive policies are key drivers of development in the early stages of intermittent renewable energy deployment,especially for photovoltaics.The current diffusion scale of photovoltaics has a greater positive impact on its future development than that of wind power due to lower costs.In the long term,the phased goal for 2030 is projected to be met ahead of schedule,and the majority of future intermittent renewable energy output is expected to come from photovoltaics.The rapid development phases of photovoltaic and wind power conclude at similar times,but the maximum diffusion potential of photovoltaics is higher than that of wind power.Investment constraints and technological levels affect the initial and middle phases of the development path,but their effects are limited.The capacity of the power grid remains the key constraint in the entire research field.展开更多
The Chinese government promises to reach the carbon emission peak by 2030 and achieve the carbon neutrality by 2060.Renewable energy development is important for achieving this target.Local governments’behaviors and ...The Chinese government promises to reach the carbon emission peak by 2030 and achieve the carbon neutrality by 2060.Renewable energy development is important for achieving this target.Local governments’behaviors and attitudes might be influenced by neighbors.Therefore,this study uses simultaneous autoregressive models(SAR)to examine the peer effects on renewable energy development across China’s provinces and explain the imbalanced renewable energy developments across regions in China.The results exemplified:①The peer effects exist in China and the endogenous interaction is the main cause.②The interaction between geographically adjacent provinces have greatest peer effects.③Both competition mechanism and learning mechanism induce the peer effects and the imbalanced development.This research introduces energy-related peer effects at the provincial level to reflect the preferences of governments and reveal the underlying mechanisms involved.It also provides suggestions to policy makers:①Select developed provinces as the frontrunner to promote the renewable energy development in neighboring areas.②Regional renewable energy development policies need to be considered.③Central government should consider adding“green growth indicators”into evaluation system to avoid the asymmetrical incentives policies between economic growth and environmental protection.展开更多
Natural resources,green energy,and sustainable development are closely linked with concepts that carry mutual goals to endorse social equity,economic prosperity,and ecological stability while curtailing the harmful in...Natural resources,green energy,and sustainable development are closely linked with concepts that carry mutual goals to endorse social equity,economic prosperity,and ecological stability while curtailing the harmful influence on the globe.However,the recognition of the Sustainable Development Goals(SDG-7,SDG-13)is closely entangled with digital economy.In this pursuit,this study scrutinizes the effect of dig-italization,renewable energy,and natural resources on the ecological footprint in China from 1990Q1-2022Q4.The empirical analyses are carried out by employing the Quantile-on-Quantile regression,and cross-quantile and partial cross-quantile correlation approaches to inspect the tail dependence of model parameters.The empirical outcomes highlight how China’s environmental quality is influenced by exoge-nous variables,including digitalization index,renewable energy consumption,and natural resources.Digitalization has adverse impact on the ecological footprint in lower quantiles,while insignificant in higher quantiles.Moreover,a strong adverse association exists between ecological footprint and renew-able energy,which syndicate all the quantiles of renewable energy with linking over lower to middle quantiles and weak in higher quantiles of ecological footprint.Besides,the estimated analysis discloses nuanced dependencies across various quantiles.Similarly,it can be found that the strong negative effect of natural resources on ecological footprint in initial quantiles,moderate in middle quantiles,and less positive effect in higher quantiles.By explaining these dynamics,the current study offers valuable intu-itions designed at controlling China toward its dual-carbon target and encouraging the development of a sustainable digital and green economy and thereby,continuing towards achieving SDG-7,and SDG-13 objectives.展开更多
Global climate change has created substantial difficulties in the areas of sustainability,development,and environmental conservation due to the widespread dependence on fossil fuels for energy production.Nevertheless,...Global climate change has created substantial difficulties in the areas of sustainability,development,and environmental conservation due to the widespread dependence on fossil fuels for energy production.Nevertheless,the promotion of renewable energy programs has the potential to significantly expedite endeavors aimed at tackling climate change.Thus,it is essential to conduct a thorough analysis that considers the financial aspects to fully understand the main hurdles that are preventing the advancement of renewable energy initiatives.Italy is a leading country in the worldwide deployment of renewable energy.The objective of this research is to assess the impact of financial growth,economic progress,and energy expenses on Italy’s adoption of renewable energy sources.By employing the Auto-Regressive Distributed Lag(ARDL)technique,we analyzed annual data spanning from1990 to 2022.Findings revealed that a 1%increase in financial and economic development would boost renewable energy consumption in the long run by 0.29%and 0.48%,respectively.Instead,a 1%increase in energy prices might reduce consumption of renewable energy by 0.05%in the long run.This study’s primary significance lies in furnishing actionable strategies for Italy to augment green finance for renewable energy,fostering sustained social and economic progress.Moreover,the analytical insights gleaned from this research offer valuable insights for energy-importing nations worldwide.展开更多
As the world’s fourth most populous country,Indonesia presents challenges and opportunities for sustainable energy progress,offering a critical context to investigate green human development(GHD).This study uniquely ...As the world’s fourth most populous country,Indonesia presents challenges and opportunities for sustainable energy progress,offering a critical context to investigate green human development(GHD).This study uniquely contributes to the literature by employing the planetary pressures-adjusted human development index(PHDI)as an indicator of GHD,which integrates environmental impacts into human development.Using static and dynamic econometric methods,including the quantile regression and autoregressive distributed lag model,it explores the impacts of renewable and nonrenewable energy consumption on GHD.The findings demonstrate that renewable energy currently has a detrimental impact on GHD due to its limited adoption and high costs.Conversely,nonrenewable energy positively influences GHD,as it is the primary energy source in the country and is becoming more efficient at reducing emissions.However,the study finds that greater use of renewable energy reduces its adverse effects,suggesting that as renewable energy technologies become more cost-effective and widely implemented,their initial adverse effects could be mitigated,leading to improved long-term GHD outcomes.These findings carry important implications for Indonesia,where the govern‐ment is striving to expand renewable energy capacity while promoting equitable development across its archi‐pelagic regions.They underscore the critical role of energy policy in balancing economic,social,and environmental goals,contributing meaningfully to the country’s sustainable development agenda.展开更多
The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high effic...The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high efficiency,and they can be controlled by a low power source.Nevertheless,the most popular ionic polymers are derived from fossil-based resources.Hence,it is now deemed crucial to produce these actuators using sustainable materials.In this review,the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewablematerials.The reviewencompasses recent advancements inmaterial formulation and performance enhancement,alongside a comparative analysis with conventional actuator systems.It was found that renewable polymeric actuators based on ionic gels and conductive polymers are easier to prepare compared to ionic polymermetal composites.In addition,the proportion of actuator manufacturing utilizing renewable materials rose to 90%,particularly for ion gel actuators,which was related to the possibility of using renewable polymers as ionic or conductive substances.Moreover,the possible improvements in biopolymeric actuators will experience an annual rise of at least 10%over the next decade,correlating with the growth of their market,which aligns with the worldwide goal of reducing global warming.Additionally,compared to fossil-derived polymers,the decomposition rate of renewable materials reaches 100%,while biodegradable fossil-based substances can exceed 60%within several weeks.Ultimately,this review aims to elucidate the potential of ionic polymeric materials as a viable and sustainable solution for future actuator technologies.展开更多
The rapid development of renewable energy in Brazil depends not only on its abundant natural resource endowments but also on its systematic,forward-looking,and continuously evolving regulatory framework.Brazil has est...The rapid development of renewable energy in Brazil depends not only on its abundant natural resource endowments but also on its systematic,forward-looking,and continuously evolving regulatory framework.Brazil has established a multi-tiered regulatory framework with the National Council for Energy Policy(CNPE)providing strategic guidance,the Ministry of Mines and Energy(MME)serving as the primary policy implementation body,and the National Electric Energy Agency(ANEEL)and the National Agency of Petroleum,Natural Gas and Biofuels(ANP)sharing regulatory oversight responsibilities.展开更多
The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context ...The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context of large-scale distributed renewable energy integration into the power grid,conventional island power grid line layouts can no longer meet actual demands.It is necessary to combine the operational characteristics of island power systems and historical load data to perform load forecasting,thereby generating power grid line layout paths.This article focuses on large-scale distributed renewable energy integration,summarizing optimization strategies for island power grid line layouts,and providing a solid guarantee for the safe and stable operation of island power systems.展开更多
The continuously increasing renewable energy sources(RES)and demand response(DR)are becoming crucial sources of system flexibility.Consequently,decision-dependent uncertainties(DDUs),inter-changeably referred to as en...The continuously increasing renewable energy sources(RES)and demand response(DR)are becoming crucial sources of system flexibility.Consequently,decision-dependent uncertainties(DDUs),inter-changeably referred to as endogenous uncertainties,impose new characteristics on power system dis-patch.The DDUs faced by system operators originate from uncertain dispatchable resources such as RES units or DR,while reserve providers encounter DDUs from the uncertain reserve deployment.Thus,a systematic framework was established in this study to address robust dispatch problems with DDUs.The main contributions are drawn as follows.①The robust characterization of DDUs was unfolded with a dependency decomposition structure.②A generic DDU coping mechanism was manifested as the bilateral matching between uncertainty and flexibility.③The influence of DDU incorporation on the convexity/non-convexity of robust dispatch problems was analyzed.④Generic solution algorithms adaptive for DDUs were proposed.Under this framework,the inherent distinctions and correlations between DDUs and decision-independent uncertainties(DIUs)were revealed,laying a fundamental theoretical foundation for the economic and reliable operation of RES-dominated power systems.Illustrative applications in the source and demand sides are provided to show the significance of considering DDUs and demonstrate the proposed theoretical results.展开更多
The circular economy(CE)presents a promising approach to integrating industry with sustainability and circularity,which helps minimize ecological harm and preserve natural resources for future generations.This study f...The circular economy(CE)presents a promising approach to integrating industry with sustainability and circularity,which helps minimize ecological harm and preserve natural resources for future generations.This study focused on the roles of nuclear energy,renewables,and climate policies in advancing a CE.It examined the intentions of OECD countries regarding CE practices and the various factors influencing these intentions from 2000 to 2019.This study utilized second-generation panel data tools,such as slope homogeneity and stationarity tests,to assess cross-sectional dependence and heterogeneity in the panel dataset.The study employed the moment quantile regression(MM-QR)method to obtain regression estimates and analyze the conditional distribution across all quantiles.The findings indicated that the role of nuclear energy in promoting CE was negative across all quantiles.In contrast,renewable energy positively supports achieving CE in OECD countries.Climate policies assisted OECD countries in progressing toward CE in both the nuclear energy and renewable energy models.We conducted a robust check using a non-parametric panel Granger causality test,which confirmed the expected results for all other factors.The collaborative efforts for waste minimization ensure that nuclear energy systems are resilient,economically feasible,and environmentally sustainable.展开更多
A hybrid energy system is built for the power demand of a community in Xinjiang of China,and pumped storage and lithium batteries are used as energy storage devices.The feasibility of different configurations is evalu...A hybrid energy system is built for the power demand of a community in Xinjiang of China,and pumped storage and lithium batteries are used as energy storage devices.The feasibility of different configurations is evaluated through technoeconomic analysis.Technical-economic parameters are set in the HOMER Pro software to obtain optimal configuration and techno-economic evaluation and sensitivity analysis.The study also explores the impact of different types of PV tracking systems and module costs on system performance.The results show that the lowest levelized cost of energy(LCOE)(0.135$/kWh)can be achieved with pumped hydro,which is more economical than lithium batteries.PV tracking systems can improve solar efficiency.Compared with diesel systems,renewable energy has economic advantages and environmental benefits.In most regions of Xinjiang,solar energy is more competitive than wind power.In areas with abundant wind resources,the integration of wind and solar energy can reduce costs.展开更多
基金supported by the Science and Technology Project of the State Grid Corporation of China,Grant number 5700-202223189A-1-1-ZN.
文摘Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.
文摘Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints.This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization(MNEHHO)algorithm to address the allocation of HRES components.The proposed approach integrates key technical parameters,including charge-discharge efficiency,storage device configurations,and renewable energy fraction.We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability.The MNEHHO algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities.The model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving significant reductions in costs and emissions compared to conventional methods.The enhanced search mechanisms of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions.Experimental results demonstrate concrete improvements in solution quality(up to 46% improvement in objective value)and computational efficiency(average coefficient of variance of 24%-27%)across diverse institutional settings.This confirms the robustness and scalability of our method under various operational scenarios,providing a reliable framework for solving renewable energy allocation problems.
基金supported by the Guangdong Province Science and Technology Plan Project 2023B1212120008Shenzhen Science and Technology Program JCYJ20220818101204010+1 种基金RGC Theme-based Research Scheme AoE/M-402/20Hong Kong Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Materials Engineering Research Center.
文摘Bionic interfaces exhibit multiscale features with various functions that reduce energy consumption and produce renewable resources to support life,triggering them an emerging area of technological revolution in many disciplines.To improve the design and fabrication flexibility,additive manufacturing(AM)technology has been attempted to achieve multiscale structures and reconstruct biological functions at interfaces.Emerging AM of bionic interfaces has led to substantial advancements in renewable energy applications in recent years,but some challenges remain to be overcome.This review first presents a basic understanding of bionic mechanisms and typical manufacturing techniques especially AM.Subsequently,it emphasizes the latest progress of the bionic interfaces and AM on various renewable energy applications,such as those for wetting-controlled surfaces,energy harvesting,water treatment,batteries,and catalysts.Finally,it discusses some challenges and provides insights on how bionic interfaces and AM provide innovative solutions for next-generation renewable energy applications.
文摘Nowadays,the development of effective bioplastics aims to combine traditional plastics’functionality with environmentally friendly properties.The most effective and durable modern bioplastics are made from the edible part of crops.This forces bioplastics to competewith food production because the crops that produce bioplastics can also be used for human nutrition.That is why the article’s main focus is on creating bioplastics using renewable,non-food raw materials(cellulose,lignin,etc.).Eco-friendly composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)with reed and hemp waste as a filler.The physic-chemical features of the structure and surface,as well as the technological characteristics of reed and hemp waste as the organic fillers for renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid),were studied.Theeffect of the fractional composition analysis,morphology,and nature of reed and hempwaste on the quality of the design of eco-friendly biodegradable composites and their ability to disperse in the matrix of renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch and poly(lactic acid)was carried out.The influence of different content and morphology of reed and hemp waste on the composite characteristics was investigated.It is shown that the most optimal direction for obtaining strong eco-friendly biodegradable composites based on a renewable bioplastic blend of polybutylene adipate-co-terephthalate,corn starch,and poly(lactic acid)is associated with the use of waste reed stalks,with its optimal content at the level of 50 wt.%.
基金financed by the Ministry of Science and Technology(MOST)Bangladesh under Special Research grant for the FY 2023-24(SRG 232410)Further,the authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabi for funding this research work through the project number“NBU-FFR-2025-3623-05”。
文摘In this research work,the localized generation from renewable resources and the distribution of energy to agricultural loads,which is a local microgrid concept,have been considered,and its feasibility has been assessed.Two dispatch algorithms,named Cycle Charging and Load Following,are implemented to find the optimal solution(i.e.,net cost,operation cost,carbon emission.energy cost,component sizing,etc.)of the hybrid system.The microgrid is also modeled in the DIgSILENT Power Factory platform,and the respective power system responses are then evaluated.The development of dispatch algorithms specifically tailored for agricultural applications has enabled to dynamically manage energy flows,responding to fluctuating demands and resource availability in real-time.Through careful consideration of factors such as seasonal variations and irrigation requirements,these algorithms have enhanced the resilience and adaptability of the microgrid to dynamic operational conditions.However,it is revealed that both approaches have produced the same techno-economic results showing no significant difference.This illustrates the fact that the considered microgrid can be implemented with either strategy without significant fluctuation in performance.The study has shown that the harmful gas emission has also been limited to only 17,928 kg/year of CO_(2),and 77.7 kg/year of Sulfur Dioxide.For the proposed microgrid and load profile of 165.29 kWh/day,the net present cost is USD 718,279,and the cost of energy is USD 0.0463 with a renewable fraction of 97.6%.The optimal sizes for PV,Bio,Grid,Electrolyzer,and Converter are 1494,500,999,999,500,and 495 kW,respectively.For a hydrogen tank(HTank),the optimal size is found to be 350 kg.This research work provides critical insights into the techno-economic feasibility and environmental impact of integrating biomass-PV-hydrogen storage-Grid hybrid renewable microgrids into agricultural settings.
基金funded by the National Natural Science Foundation of China(No.42130809)the Science and Technology Project of China Petroleum and Chemical Corporation Limited(No.KLJP23009)。
文摘Accurate and effective assessment of hydrothermal resources is crucial in the geothermal industry,given that the global installed capacity for direct use(173303 MW)significantly exceeds that for geothermal power(16260 MW).Despite the widespread application of various geothermal resource assessment methods,including the volumetric method,Monte Carlo method,analogy,statistical analysis,and numerical methods,there are still limitations faced in terms of data precision and model uncertainty assessment,fracture heterogeneity,boundary conditions,renewable energy attributes,integration of geothermal compensation mechanisms under the“extraction-injection”balance,diversification of economic evaluation metrics,and the establishment of standardized assessment criteria.This review outlines the various methods suitable for different stages of the hydrothermal resource assessment process,and proposes future technical approaches for sustainable development,including improving the accuracy of assessments and establishing standards for geothermal resource evaluation methods,in order to enhance the efficiency of geothermal resource utilization.
基金funded by Humanities and Social Sciences of Ministry of Education Planning Fund of China(21YJA790009)National Natural Science Foundation of China(72140001).
文摘The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.
基金funded by the Russian Science Foundation,grant number 23-64-10007.
文摘The article presents the results of a study on the possibility of synthesizing biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)[P(3HB-co-4HB)]from renewable waste fish oil(WFO)by the Cupriavidus necator B-10646 bacterium.For the first time,waste oil generated during the processing of Sprattus balticus in the pro-duction of sprats was used as the main carbon substrate for the synthesis of P(3HB-co-4HB),andε-caprolactone was used as a precursor instead of the more expensiveγ-butyrolactone.Samples of P(3HB-co-4HB)with a 4HB monomer content from 7.4 to 11.6 mol.%were synthesized,and values of the bacterial biomass yield and the total yield of the copolymer were comparable with the control(where butyric acid was used as carbon source).The following properties of the samples were studied:molecular weight,temperature characteristics,thermal behavior,isothermal crystallization of melts,and the formation of spherulites.The renewable fatty substrate of complex composition was used to synthesize samples of technologically advanced low-crystallinity P(3HB-co-4HB)with significant proportions of 4HB,without impairing the physicochemical properties of the polymer.The biotech-nological process involving the use of renewable WFO andε-caprolactone can be employed to reduce the costs of producing a promising“green”bioplastic and make it more affordable.
基金funded by the following grants,including the Key Research and Development Programof Shaanxi Province(Nos.2023-LL-QY-42,2024NC-ZDCYL-02-05)the Xi’an University of Architecture and Technology Research Initiation Grant Program(No.1960323102)+1 种基金the Xi’an University of Architecture and Technology Special Program for Cultivation of Frontier Interdisciplinary Fields(No.X20230079)the Open Fund for the Key Laboratory of Soil and Plant Nutrition of Ningxia(No.ZHS202401).
文摘With the rapid development of industry,the environmental problems caused by heavy metal arsenic and antimony are becoming increasingly serious.Therefore,it is urgent to solve the problem of arsenic and antimony pollution in the water environment.Renewable carbon-based materials,as a kind of adsorbent widely used in wastewater treatment,have been the focus of scholars’research for many years.In this review,the preparation methods,characteristics,and applications of renewable carbon-based materials(biochar,activated carbon,carbon nanotubes,and graphene)for the removal of arsenic and antimony are described in detail.Based on adsorption kinetics,isothermal adsorption,temperature,pH,and coexisting ions,we discuss the process of adsorption of arsenic and antimony by renewable carbon-based materials,explore the mechanism of adsorption of anions in water by renewable carbon-basedmaterials,and comparatively analyze the differences in adsorption performance of arsenic and antimony by different renewable carbon-based materials.Compared with biochar,activated carbon,carbon nanotube,and graphene renewable materials loaded with iron-manganese oxides have better removal effects on arsenic and antimony wastewater.Extensive research data shows that biochar,as a renewable material,is recommended,followed by activated carbon.Both are recommended because of their excellent adsorption properties and low production costs.Finally,the prospects and challenges of the application of renewable carbon-based materials in wastewater treatment are discussed,and the directions and development trends of future research are pointed out,which provide references and insights for further promoting the application of renewable carbon-based materials in wastewater treatment.
基金support from the National Natural Science Foundation of China[Grant No.71874121,No.71671121 and No.71431005]the support from the National Key R&D Programme of China[Grant No.2018YFC0704400]+1 种基金the support from Major Projects of the National Social Science Fund of China[Grant No.17ZDA065]the support from the General Project of the Humanities and Social Science Fund of the Chinese Ministry of Education[Grant No.21YJA630023].
文摘With the proposed carbon-neutrality targets,intermittent renewable energy will become increasingly significant for the power sector in the future.It is vital to study its development paths,particularly for wind power and photovoltaics,while considering constraints on diffusion potential.Using learning curves,dynamic programming,and Bass models,this study analyzes technological diffusion trends to determine the most cost-effective development route for intermittent renewable energy power generation in China by 2060.This study simplifies reality by examining the individual diffusion processes of wind and photovoltaic power,focusing on the self-diffusion characteristics of the two technologies.The study assumes that self-diffusion is the primary driver of future development and describe the influence of multiple factors.The study finds that supportive policies are key drivers of development in the early stages of intermittent renewable energy deployment,especially for photovoltaics.The current diffusion scale of photovoltaics has a greater positive impact on its future development than that of wind power due to lower costs.In the long term,the phased goal for 2030 is projected to be met ahead of schedule,and the majority of future intermittent renewable energy output is expected to come from photovoltaics.The rapid development phases of photovoltaic and wind power conclude at similar times,but the maximum diffusion potential of photovoltaics is higher than that of wind power.Investment constraints and technological levels affect the initial and middle phases of the development path,but their effects are limited.The capacity of the power grid remains the key constraint in the entire research field.
基金supported by the National Natural Science Foundation of China[Grant No.71834003,72204111]the Major Program of National Social Science Foundation of China[Grant No.21&ZD110,22ZDA113].
文摘The Chinese government promises to reach the carbon emission peak by 2030 and achieve the carbon neutrality by 2060.Renewable energy development is important for achieving this target.Local governments’behaviors and attitudes might be influenced by neighbors.Therefore,this study uses simultaneous autoregressive models(SAR)to examine the peer effects on renewable energy development across China’s provinces and explain the imbalanced renewable energy developments across regions in China.The results exemplified:①The peer effects exist in China and the endogenous interaction is the main cause.②The interaction between geographically adjacent provinces have greatest peer effects.③Both competition mechanism and learning mechanism induce the peer effects and the imbalanced development.This research introduces energy-related peer effects at the provincial level to reflect the preferences of governments and reveal the underlying mechanisms involved.It also provides suggestions to policy makers:①Select developed provinces as the frontrunner to promote the renewable energy development in neighboring areas.②Regional renewable energy development policies need to be considered.③Central government should consider adding“green growth indicators”into evaluation system to avoid the asymmetrical incentives policies between economic growth and environmental protection.
文摘Natural resources,green energy,and sustainable development are closely linked with concepts that carry mutual goals to endorse social equity,economic prosperity,and ecological stability while curtailing the harmful influence on the globe.However,the recognition of the Sustainable Development Goals(SDG-7,SDG-13)is closely entangled with digital economy.In this pursuit,this study scrutinizes the effect of dig-italization,renewable energy,and natural resources on the ecological footprint in China from 1990Q1-2022Q4.The empirical analyses are carried out by employing the Quantile-on-Quantile regression,and cross-quantile and partial cross-quantile correlation approaches to inspect the tail dependence of model parameters.The empirical outcomes highlight how China’s environmental quality is influenced by exoge-nous variables,including digitalization index,renewable energy consumption,and natural resources.Digitalization has adverse impact on the ecological footprint in lower quantiles,while insignificant in higher quantiles.Moreover,a strong adverse association exists between ecological footprint and renew-able energy,which syndicate all the quantiles of renewable energy with linking over lower to middle quantiles and weak in higher quantiles of ecological footprint.Besides,the estimated analysis discloses nuanced dependencies across various quantiles.Similarly,it can be found that the strong negative effect of natural resources on ecological footprint in initial quantiles,moderate in middle quantiles,and less positive effect in higher quantiles.By explaining these dynamics,the current study offers valuable intu-itions designed at controlling China toward its dual-carbon target and encouraging the development of a sustainable digital and green economy and thereby,continuing towards achieving SDG-7,and SDG-13 objectives.
文摘Global climate change has created substantial difficulties in the areas of sustainability,development,and environmental conservation due to the widespread dependence on fossil fuels for energy production.Nevertheless,the promotion of renewable energy programs has the potential to significantly expedite endeavors aimed at tackling climate change.Thus,it is essential to conduct a thorough analysis that considers the financial aspects to fully understand the main hurdles that are preventing the advancement of renewable energy initiatives.Italy is a leading country in the worldwide deployment of renewable energy.The objective of this research is to assess the impact of financial growth,economic progress,and energy expenses on Italy’s adoption of renewable energy sources.By employing the Auto-Regressive Distributed Lag(ARDL)technique,we analyzed annual data spanning from1990 to 2022.Findings revealed that a 1%increase in financial and economic development would boost renewable energy consumption in the long run by 0.29%and 0.48%,respectively.Instead,a 1%increase in energy prices might reduce consumption of renewable energy by 0.05%in the long run.This study’s primary significance lies in furnishing actionable strategies for Italy to augment green finance for renewable energy,fostering sustained social and economic progress.Moreover,the analytical insights gleaned from this research offer valuable insights for energy-importing nations worldwide.
文摘As the world’s fourth most populous country,Indonesia presents challenges and opportunities for sustainable energy progress,offering a critical context to investigate green human development(GHD).This study uniquely contributes to the literature by employing the planetary pressures-adjusted human development index(PHDI)as an indicator of GHD,which integrates environmental impacts into human development.Using static and dynamic econometric methods,including the quantile regression and autoregressive distributed lag model,it explores the impacts of renewable and nonrenewable energy consumption on GHD.The findings demonstrate that renewable energy currently has a detrimental impact on GHD due to its limited adoption and high costs.Conversely,nonrenewable energy positively influences GHD,as it is the primary energy source in the country and is becoming more efficient at reducing emissions.However,the study finds that greater use of renewable energy reduces its adverse effects,suggesting that as renewable energy technologies become more cost-effective and widely implemented,their initial adverse effects could be mitigated,leading to improved long-term GHD outcomes.These findings carry important implications for Indonesia,where the govern‐ment is striving to expand renewable energy capacity while promoting equitable development across its archi‐pelagic regions.They underscore the critical role of energy policy in balancing economic,social,and environmental goals,contributing meaningfully to the country’s sustainable development agenda.
基金funded by the Russian Science Foundation(RSF),grantNo.24-23-00558,https://rscf.ru/en/project/24-23-00558/(accessed on 04 February 2025).
文摘The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high efficiency,and they can be controlled by a low power source.Nevertheless,the most popular ionic polymers are derived from fossil-based resources.Hence,it is now deemed crucial to produce these actuators using sustainable materials.In this review,the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewablematerials.The reviewencompasses recent advancements inmaterial formulation and performance enhancement,alongside a comparative analysis with conventional actuator systems.It was found that renewable polymeric actuators based on ionic gels and conductive polymers are easier to prepare compared to ionic polymermetal composites.In addition,the proportion of actuator manufacturing utilizing renewable materials rose to 90%,particularly for ion gel actuators,which was related to the possibility of using renewable polymers as ionic or conductive substances.Moreover,the possible improvements in biopolymeric actuators will experience an annual rise of at least 10%over the next decade,correlating with the growth of their market,which aligns with the worldwide goal of reducing global warming.Additionally,compared to fossil-derived polymers,the decomposition rate of renewable materials reaches 100%,while biodegradable fossil-based substances can exceed 60%within several weeks.Ultimately,this review aims to elucidate the potential of ionic polymeric materials as a viable and sustainable solution for future actuator technologies.
文摘The rapid development of renewable energy in Brazil depends not only on its abundant natural resource endowments but also on its systematic,forward-looking,and continuously evolving regulatory framework.Brazil has established a multi-tiered regulatory framework with the National Council for Energy Policy(CNPE)providing strategic guidance,the Ministry of Mines and Energy(MME)serving as the primary policy implementation body,and the National Electric Energy Agency(ANEEL)and the National Agency of Petroleum,Natural Gas and Biofuels(ANP)sharing regulatory oversight responsibilities.
文摘The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context of large-scale distributed renewable energy integration into the power grid,conventional island power grid line layouts can no longer meet actual demands.It is necessary to combine the operational characteristics of island power systems and historical load data to perform load forecasting,thereby generating power grid line layout paths.This article focuses on large-scale distributed renewable energy integration,summarizing optimization strategies for island power grid line layouts,and providing a solid guarantee for the safe and stable operation of island power systems.
基金supported by the Joint Research Fund in Smart Grid(U1966601)under cooperative agreement between the National Natural Science Foundation of China(NSFC)and State Grid Corporation of China.
文摘The continuously increasing renewable energy sources(RES)and demand response(DR)are becoming crucial sources of system flexibility.Consequently,decision-dependent uncertainties(DDUs),inter-changeably referred to as endogenous uncertainties,impose new characteristics on power system dis-patch.The DDUs faced by system operators originate from uncertain dispatchable resources such as RES units or DR,while reserve providers encounter DDUs from the uncertain reserve deployment.Thus,a systematic framework was established in this study to address robust dispatch problems with DDUs.The main contributions are drawn as follows.①The robust characterization of DDUs was unfolded with a dependency decomposition structure.②A generic DDU coping mechanism was manifested as the bilateral matching between uncertainty and flexibility.③The influence of DDU incorporation on the convexity/non-convexity of robust dispatch problems was analyzed.④Generic solution algorithms adaptive for DDUs were proposed.Under this framework,the inherent distinctions and correlations between DDUs and decision-independent uncertainties(DIUs)were revealed,laying a fundamental theoretical foundation for the economic and reliable operation of RES-dominated power systems.Illustrative applications in the source and demand sides are provided to show the significance of considering DDUs and demonstrate the proposed theoretical results.
文摘The circular economy(CE)presents a promising approach to integrating industry with sustainability and circularity,which helps minimize ecological harm and preserve natural resources for future generations.This study focused on the roles of nuclear energy,renewables,and climate policies in advancing a CE.It examined the intentions of OECD countries regarding CE practices and the various factors influencing these intentions from 2000 to 2019.This study utilized second-generation panel data tools,such as slope homogeneity and stationarity tests,to assess cross-sectional dependence and heterogeneity in the panel dataset.The study employed the moment quantile regression(MM-QR)method to obtain regression estimates and analyze the conditional distribution across all quantiles.The findings indicated that the role of nuclear energy in promoting CE was negative across all quantiles.In contrast,renewable energy positively supports achieving CE in OECD countries.Climate policies assisted OECD countries in progressing toward CE in both the nuclear energy and renewable energy models.We conducted a robust check using a non-parametric panel Granger causality test,which confirmed the expected results for all other factors.The collaborative efforts for waste minimization ensure that nuclear energy systems are resilient,economically feasible,and environmentally sustainable.
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Research on photoelectric thermal conversion mechanism and optimization design of photovoltaic building envelope structure”(2022D01C87)。
文摘A hybrid energy system is built for the power demand of a community in Xinjiang of China,and pumped storage and lithium batteries are used as energy storage devices.The feasibility of different configurations is evaluated through technoeconomic analysis.Technical-economic parameters are set in the HOMER Pro software to obtain optimal configuration and techno-economic evaluation and sensitivity analysis.The study also explores the impact of different types of PV tracking systems and module costs on system performance.The results show that the lowest levelized cost of energy(LCOE)(0.135$/kWh)can be achieved with pumped hydro,which is more economical than lithium batteries.PV tracking systems can improve solar efficiency.Compared with diesel systems,renewable energy has economic advantages and environmental benefits.In most regions of Xinjiang,solar energy is more competitive than wind power.In areas with abundant wind resources,the integration of wind and solar energy can reduce costs.