The haze defects on p-type (111) silicon wafers were investigated by means of chemical etching, Fouriertransform infra-red microscopy (FTIR), spreading resistance measurement. secondary ion mass spectroscopy(SLMS), tr...The haze defects on p-type (111) silicon wafers were investigated by means of chemical etching, Fouriertransform infra-red microscopy (FTIR), spreading resistance measurement. secondary ion mass spectroscopy(SLMS), transmission electron microscopy (TEM) equipped with an energy-dispersive X-ray spectrometer(EDX). The haze defects are the precipitates of silicide of metal impurities (Fe, Ni) on the wafer surface.The formation of haze defects can efficiently be inhibited by utilizing the technology of fast neutronirradiation combined with the internal gettering (IG), and then, the formation and removement mechanismof the haze defects have been discussed in this paper.展开更多
The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and med...The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry.展开更多
Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob...Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob,which was utilized as external carbon source in the anaerobic anoxic oxic(AAO)-biofilter for the treatment of low carbon-to-nitrogen ratio domestic sewage,and the nitrogen removal was remarkably improved from 63.2%to 96.5%.Furthermore,the effluent chemical oxygen demand maintained at 35 mg/L or even lower,and the total nitrogenwas reduced to less than 2mg/L.Metagenomic analysis demonstrated that the microbial communities responsible for potential denitrification and organic matter degradation in both AAO and the biofilter reactors were mainly composed of Proteobacteria and Bacteroides,respectively.The solid carbon source addition resulted in relatively high abundance of functional enzymes responsible for NO_(3)^(−)-N to NO_(2)^(−)-N con-version in both AAO and the biofilter reactors,thus enabled stable reaction.The carbon source addition during glycolysis primarily led to the increase of genes associated with the metabolic conversion of fructose 1.6P2 to glycerol-3P The reactor maintained high abun-dance of genes related to the tricarboxylic acid cycle,and then guaranteed efficient carbon metabolism.The results indicate that the composite carbon source is feasible for denitri-fication enhancement of AAO-biofilter,which contribute to the theoretical foundation for practical nitrogen removal application.展开更多
Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and hea...Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and health challenges posed by pollution,there is a growing interest in treating waters contaminated with EIPs.This paper explores biochar characteristics and modification methods,encompassing physical,chemical,and biological approaches for adsorbing EIPs.It offers a comprehensive review of research advancements in employing biochar for EIPs remediation in water,outlines the adsorption mechanisms of EIPs by biochar,and presents an environmental and economic analysis.It can be concluded that using biochar for the adsorption of EIPs in wastewater exhibits promising potential.Nonetheless,it is noteworthy that certain EIPs like Au(III),Rh(III),Ir(III),Ru(III),Os(III),Sc(III),and Y(III),have not been extensively investigated regarding their adsorption onto biochar.This comprehensive review will catalyze further inquiry into the biochar-based adsorption of EIPs,addressing current research deficiencies and advancing the practical implementation of biochar as a potent substrate for EIP removal from wastewater streams.展开更多
Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully...Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully synthesized via the sol–gel method and tested for their catalytic performance for simultaneous degradation of benzene and toluene.The CuMn_(2)O_(4)sample exhibited the best catalytic performance,the conversion of benzene reached 100%at 350℃,and toluene conversion reached 100%at 250℃.XRD,N_(2)adsorption-desorption,HRTEM-EDS,ED-XRF,Raman spectroscopy,H_(2)-TPR,NH_(3)-TPD,O_(2)-TPD and XPS were used to characterize the physical and chemical properties of MMn_(2)O_(4)catalysts.The excellent redox properties,high concentration of surface Mn4+,and adsorption of oxygen species over the CuMn_(2)O_(4)sample facilitated the simultaneous and efficient removal of benzene and toluene.Additionally,in situ DRIFTS illustrated the intermediate species and reaction mechanism for the synergetic catalytic oxidation of benzene and toluene.Notably,as an effective catalytic material,spinel oxide exhibited excellent synergistic degradation performance for benzene and toluene,providing some insight for the development of efficient multicomponent VOC catalysts.展开更多
The rapidly growing demand for lithium iron phosphate(LiFePO_(4))as the cathode material of lithium-ion batteries(LIBs)has aggravated the scarcity of phosphorus(P)reserves on Earth.This study introduces an environment...The rapidly growing demand for lithium iron phosphate(LiFePO_(4))as the cathode material of lithium-ion batteries(LIBs)has aggravated the scarcity of phosphorus(P)reserves on Earth.This study introduces an environmentally friendly and economical method of P recovery from municipal wastewater,providing the P source for LiFePO_(4) cathodes.The novel approach utilizes the sludge of Fe-coagulant-based chemical P removal(CPR)in wastewater treatment.After a sintering treatment with acid washing,the CPR sludge,enriched with P and Fe,transforms into purified P-Fe oxides(Fe2.1P1.0O5.6).These oxides can substitute up to 35%of the FePO_(4) reagent as precursor,producing a carbon-coated LiFePO_(4)(LiFePO_(4)/C)cathode with a specific discharge capacity of 114.9 mA·h·g^(-1)at current density of 17 mA·g^(-1)),and cycle stability of 99.2%after 100 cycles.The enhanced cycle performance of the as-prepared LiFePO_(4)/C cathode may be attributed to the incorporations of impurities(such as Ca^(2+)and Na^(+))from sludge,with improved stability of crystal structure.Unlike conventional P-fertilizers,this P recovery technology converts 100%of P in CPR sludge into the production of value-added LiFePO_(4)/C cathodes.The recovered P from municipal wastewater can meet up to 35%of the P demand in the Chinese LIBs industry,offering a cost-effective solution for addressing the pressing challenges of P scarcity.展开更多
Wigner-Ville distribution(WVD)is widely used in the field of signal processing due to its excellent time-frequency(TF)concentration.However,WVD is severely limited by the cross-term when working with multicomponent si...Wigner-Ville distribution(WVD)is widely used in the field of signal processing due to its excellent time-frequency(TF)concentration.However,WVD is severely limited by the cross-term when working with multicomponent signals.In this paper,we analyze the property differences between auto-term and cross-term in the one-dimensional sequence and the two-dimensional plane and approximate entropy and Rényi entropy are employed to describe them,respectively.Based on this information,we propose a new method to achieve adaptive cross-term removal by combining seeded region growing.Compared to other methods,the new method can achieve cross-term removal without decreasing the TF concentration of the auto-term.Simulation and experimental data processing results show that the method is adaptive and is not constrained by the type or distribution of signals.And it performs well in low signal-to-noise ratio environments.展开更多
An abrasive water jet(AWJ)is commonly used to develop deep geothermal resources,such as drilling in hot dry rock(HDR).The influence of rock mineral properties,such as mineral types,mineral contents,and grain size,on t...An abrasive water jet(AWJ)is commonly used to develop deep geothermal resources,such as drilling in hot dry rock(HDR).The influence of rock mineral properties,such as mineral types,mineral contents,and grain size,on the formation of perforation by AWJ is unclear yet.In this study,we investigate AWJ impacts on three types of granite samples with different mineral fractions using a polarizing microscope and scanning electron microscope(SEM).The results show that when the grain size is doubled,the perforation depth increases by 16.22%under the same type of structure and properties.In general,fractures are more likely to be created at the position of rough surfaces caused by abrasive impact,and the form of fractures is determined by the mineral type.In addition,microstructure analysis shows that transgranular fractures typically pass through large feldspar particles and quartz removal occurs along mineral boundaries.The longitudinal extension of perforation depends mainly on the strong kinetic energy of the jet,while the lateral extension is controlled by the backflow.The results contribute to a better understanding of the process involved in the breaking of hard rock by abrasive jets during deep geothermal drilling.展开更多
Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened.The surface of the bio-Fe/Mn oxides produced by the oxidation...Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened.The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II)and Mn(II)by Pseudomonas taiwanensis(marked as P4)and Pseudomonas plecoglossicida(marked as G1)contains rich reactive oxygen functional groups,which play critical roles in the removal efficiency and immobilization of heavymetal(loid)s in co-contamination system.The isolated strains P4 and G1 can growwell in the following environments:pH 5-9,NaCl 0-4%,and temperature 20-30℃.The removal efficiencies of Fe,Pb,As,Zn,Cd,Cu,and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system(the initial concentrations of heavy metal(loid)were 1 mg/L),approximately reaching 96%,92%,85%,67%,70%,54%and 15%,respectively.The exchangeable and carbonate bound As,Cd,Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil,thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s.This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.展开更多
The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusio...The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusion height and random position distribution of abrasive grains on the abrasive wheel surface.This study investigated the distribution of undeformed chip thickness and grinding force considering the non-uniform characteristics of abrasive wheel in the grinding of K4002 nickel-based superalloy.First,a novel grinding force model was established through a kinematic-geometric analysis and a grain-workpiece contact analysis.Then,a series of grinding experiments were conducted for verifying the model.The results indicate that the distribution of undeformed chip thickness is highly consistent with the Gaussian distribution formula.The increase in the grinding depth mainly leads to an increase in the average value of Gaussian distribution.On the contrary,the increase in the workpiece infeed speed or the decrease in the grinding speed mainly increases the standard deviation of Gaussian distribution.The average and maximum errors of the grinding force model are 4.9%and 14.6%respectively,indicating that the model is of high predication accuracy.展开更多
Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated wi...Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.展开更多
As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and s...As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and strong adaptability to workpiece shapes.In this study,the effects of jet pressure,nozzle diameter and impinging angle on the distribution of pressure,velocity and wall shear stress in the polishing flow field were systematically analyzed by computational fluid dynamics(CFD)simulation.Based on the Box-Behnken experimental design,a response surface regression model was constructed to investigate the influence mech-anism of process parameters on material removal rate(MRR)and surface roughness(Ra)of fused silica.And experimental results showed that increasing jet pressure and nozzle diameter significantly improved MRR,consistent with shear stress distribution revealed by CFD simulations.However,increasing jet pressure and impinging angle caused higher Ra values,which was unfavorable for surface quality improvement.Genetic algorithm(GA)was used for multi-objective optimization to establish Pareto solutions,achieving concurrent optimization of polishing efficiency and surface quality.A parameter combination of 2 MPa jet pressure,0.3 mm nozzle diameter,and 30°impinging angle achieved MRR of 169.05μm^(3)/s and Ra of 0.50 nm.Exper-imental verification showed prediction errors of 4.4%(MRR)and 3.8%(Ra),confirming the model’s reliabil-ity.This parameter optimization system provides theoretical basis and technical support for ultra-precision polishing of complex curved optical components.展开更多
This study aims to enhance the photocatalytic performance of 2D/2D heterojunctions for NO removal from marine vessel effluents.SnS_(2)/g-C_(3)N_(4) composites were successfully constructed via a facile solvothermal me...This study aims to enhance the photocatalytic performance of 2D/2D heterojunctions for NO removal from marine vessel effluents.SnS_(2)/g-C_(3)N_(4) composites were successfully constructed via a facile solvothermal method,demonstrating a significant improvement in photocatalytic NO removal under visible light irradiation.For high-flux simulated flue gas,the composite with 10%SnS_(2)(denoted as SNCN-10)showed exceptional NO removal efficiency,reaching up to 66.8%,along with excellent reusability over five consecutive cycles.Detailed band structure and density of states(DOS)calculations confirmed the formation of a characteristic heterojunction.Spin-trapping ESR spectroscopy identified·O_(2)^(-)−as the key reactive species driving NO oxidation.Additionally,in situ DRIFT spectroscopy revealed that SNCN-10 facilitated the conversion of NO to nitrate through intermediate species,including bridging nitrite and cis-nitrite(N_(2)O_(2)^(2-)).Kinetic studies further indicated that NO oxidation followed the Langmuir-Hinshelwood(L-H)mechanism.Based on density functional theory(DFT)calculations of free energy changes,a comprehensive reaction pathway for NO oxidation was proposed.These findings provide valuable insights for the development of efficient photocatalytic strategies for NO removal.展开更多
Copper is a strategic metal that plays an important role in many industries.In copper metallurgy,electrolytic refining is essential to obtain high-purity copper.However,during the electrolytic refining process,impurit...Copper is a strategic metal that plays an important role in many industries.In copper metallurgy,electrolytic refining is essential to obtain high-purity copper.However,during the electrolytic refining process,impurities such as arsenic are introduced into the electrolyte,which significantly affect the subsequent production and quality of copper products.This paper first discusses the sources,forms,and transformation pathways of arsenic in copper electrolyte during the electrolytic process,then reviews various arsenic removal technologies in detail,including electrowinning,adsorption,solvent extraction,ion exchange,membrane filtration,and precipitation.Particular emphasis is placed on electrowinning,which is the most widely used and mature among these arsenic removal techniques.The paper evaluates these methods based on arsenic removal efficiency,cost effectiveness,technical maturity,environmental friendliness,and operation simplicity.In addition,the paper explores future trends in copper electrolyte purification,focusing on waste reduction at source,resource utilization,intelligent digitalization,and innovations in materials and processes.This review aims to provide researchers and practitioners with a comprehensive and in-depth reference on arsenic removal methods in copper electrolytes.展开更多
BACKGROUND Gastric bezoars are indigestible masses that can lead to gastrointestinal ob-struction and ulceration.Standard treatments include endoscopic mechanical lithotripsy with a polypectomy snare and Coca-Cola dis...BACKGROUND Gastric bezoars are indigestible masses that can lead to gastrointestinal ob-struction and ulceration.Standard treatments include endoscopic mechanical lithotripsy with a polypectomy snare and Coca-Cola dissolution therapy or a combination of both approaches.However,giant bezoars frequently require multiple treatment sessions and extended hospital stays.Additionally,snare-based mechanical fragmentation may be limited by factors such as bezoar size,shape,density,slipperiness,and restricted working space.In cases where refra-ctory giant bezoars are unresponsive to traditional methods,surgical intervention is often necessary.CASE SUMMARY A 57-year-old male with a history of type 2 diabetes presented with severe epigastric pain and vomiting.Endoscopy revealed two large phytobezoars and a gastric ulcer.Initial attempts at mechanical fragmentation with a polypectomy snare and Coca-Cola ingestion for dissolution were unsuccessful due to the large size and complex structure of the bezoars.An innovative approach using snare-tip electrocautery was then employed.It successfully penetrated the slippery,hard surface of the bezoars and fragmented them into smaller pieces.The patient was subsequently treated with Coca-Cola ingestion,enzyme supplements,and proton pump inhibitors.He was discharged without complications following the endoscopic sessions.CONCLUSION Snare-tip electrocautery is a safe,cost-effective,and minimally invasive alter-native for managing large,refractory gastric bezoars.This is a valuable option in resource-limited settings.展开更多
Anaerobic ammonia oxidation(Anammox)is an economical and sustainablewastewater nitrogen removal technology,and its application in the mainstream process is the inevitable trend of the development of Anammox.However,ho...Anaerobic ammonia oxidation(Anammox)is an economical and sustainablewastewater nitrogen removal technology,and its application in the mainstream process is the inevitable trend of the development of Anammox.However,how to effectively enriching Anammox bacteria from the activated sludge remains challenging and restricts its extensive applications.In this study,the rapid and efficient enrichment of Anammox bacteriawas achieved by raising the reflux ratio and nitrogen loading rate(NLR)using conventional activated sludge as the inoculant.In the screening phase(days 1–90),the reflux ratio was increased to discharge partial floc sludge,resulting in the relative abundance of Candidatus Brocadiaceae increased from0.04%to 22.54%,which effectively reduced thematrix and spatial competition between other microorganisms and Anammox bacteria.On day 90,the stoichiometric ratio of the Anammox process closely approached the theoretical value of 1:1.32:0.26,indicating that the Anammox reaction was the primary nitrogen removal process in the system.In the enrichment phase(days 91–238),the NLR increased from 0.43 to 1.20 kgN/(m^(3)·d)and removal efficiency was 71.89%,resulting in the relative abundance of Candidatus Brocadiaceae increased to 61.27%on day 180.The reactor operated steadily from days 444 to 498,maintaining the nitrogen removal rate(NRR)of 3.00 kgN/(m^(3)·d)and achieving successful sludge granulation with the particle size of 392.4μm.In short,this study provided a simple and efficient approach for enriching Anammox bacteria from the activated sludge,supporting to start an Anammox process efficiently.展开更多
Metal-organic frameworks(MOFs) provide great prospective in the photodegradation of pollutants. Nevertheless, the poor separation and recovery hamper their pilot-or industrial-scare applications because of their micro...Metal-organic frameworks(MOFs) provide great prospective in the photodegradation of pollutants. Nevertheless, the poor separation and recovery hamper their pilot-or industrial-scare applications because of their microcrystalline features. Herein, this challenge can be tackled by integrating Cu-MOFs into an alginate substrate to offer environmentally friendly, sustainable, facile separation, and high-performance MOF-based hydrogel photocatalysis platforms. The CuⅡ-MOF 1 and CuⅠ-MOF 2 were initially synthesized through a direct diffusion and single-crystal to single-crystal(SCSC) transformation method, respectively,and after the immobilization into alginate, more effective pollutant decontamination was achieved via the synergistic effect of the adsorption feature of hydrogel and in situ photodegradation of Cu-MOFs.Specifically, Cu-MOF-alginate composites present an improved and nearly completed Cr(Ⅵ) elimination at a short time of 15–25 min. Additionally, the congo red(CR) decolorization can be effectively enhanced in the presence of Cr(Ⅵ), and 1-alginate showed superior simultaneous decontamination efficiency of CR and Cr(Ⅵ) with 99% and 78%, respectively. Furthermore, Cu-MOF-alginate composites can maintain a high pollutant removal after over 10 continuous cycles(95% for Cr(Ⅵ) after 14 runs, and 90% for CR after 10runs). Moreover, the Cr(Ⅵ)/CR degradation mechanism for Cu-MOF-alginate composite was investigated.展开更多
Removing copper from nickel electrolysis anode solution has been a major keypoint in the nickel metallurgy industry.In this study,we proposed a novel process flow to promote removing copper from nickel electrolysis an...Removing copper from nickel electrolysis anode solution has been a major keypoint in the nickel metallurgy industry.In this study,we proposed a novel process flow to promote removing copper from nickel electrolysis anode solution.A simulated nickel anode solution was designed,and static and dynamic adsorption experiments were conducted to determine the best of solution pH,adsorption time and temperature,resin dosage and particle size,and stirring speed.The optimal conditions were explored for copper removal from nickel electrolysis anode solution.Based on the optimal experimental conditions and the relevant experimental data,a novel process for copper removal from nickel electrolysis anodes was designed and verified.This novel process of copper removal from nickel electrolysis anodes was confirmed with nickel anolyte solution with nickel 50−60 g/L and copper 0.5 g/L.After finishing the novel process of copper removal,the nickel in the purified nickel anolyte became undetectable and copper concentration was 3 mg/L,the novel process of resin adsorption to remove copper from nickel anode solution through static and dynamic adsorptions has an efficacious copper removal.It is a beneficial supplement to traditional methods.展开更多
The minireview titled“Modern endoscopist’s toolbox:Innovations in foreign body removal”by Shahid and published in the World Journal of Gastrointestinal Endoscopy provided a clear and comprehensive overview of endos...The minireview titled“Modern endoscopist’s toolbox:Innovations in foreign body removal”by Shahid and published in the World Journal of Gastrointestinal Endoscopy provided a clear and comprehensive overview of endoscopic management of gastrointestinal foreign bodies.It will serve as a valuable resource for endoscopists involved in the diagnosis and treatment of such cases.Several key and controversial aspects of patient management were highlighted in a meaningful way,including the importance of thorough medical history-taking,appropriate use of radiological imaging,and the selection of suitable endoscopic extraction techniques.An individualized,multidisciplinary approach is essential for diagnosis and treatment.While current guidelines offer significant support,they cannot replace the judgment of an experienced endoscopist working with a well-trained team.展开更多
The nanocrystalline samples Nd_(1-x)M_(x)FeO_(3)(x=0.0 and 0.1;M:Co^(2+)and Ni^(2+))were prepared using the citrate combustion method.The X-ray diffraction(XRD)pattern confirmed that the nanoparticles were synthesized...The nanocrystalline samples Nd_(1-x)M_(x)FeO_(3)(x=0.0 and 0.1;M:Co^(2+)and Ni^(2+))were prepared using the citrate combustion method.The X-ray diffraction(XRD)pattern confirmed that the nanoparticles were synthesized in an orthorhombic structure.The particle size of Nd_(1-x)M_(x)FeO_(3) is in the range of 29-59 nm.The selected area electron diffraction(SAED)indicates the samples were prepared in a polycrystalline nature.The samples Nd_(1-x)M_(x)FeO_(3)(x=0.0 and 0.1;M:Co^(2+)and Ni^(2+))have anti ferromagnetic behavior.The Fe^(3+)spins are aligned antiparallel,forming the antiferromagnetic(AFM)properties,which are affected by many factors such as the bond angle between the Fe^(3+)(Fe^(3+)-O_(2)--Fe^(3+))and the Dzyaloshinskii-Moriya(D-M)interaction.The doping of Co^(2+)and Ni^(2+)ions in NdFeO_(3) enhances the magnetic properties of the NdFeO_(3).The saturation magnetization(Ms)of Nd_(0.90)Co_(0.10)FeO_(3) increases 1.8times more than that of NdFeO_(3).The exchange bias field(HEX)of the Co-doped sample is two times greater than that of NdFeO_(3).The magnetic anisotropy constant(K)of the 10%Co-doped sample increases by 11 factors compared to that of NdFeO_(3).The Tauc plot illustrates that the samples have a direct optical transition.The divalent cation substitution(Co^(2+)and Ni^(2+))decreases the optical band gap of NdFeO_(3),leading to the recommendation of using the samples Nd_(0.90)Co_(0.10)FeO_(3) and Nd_(0.90)Ni_(0.10)FeO_(3) in photocatalysis of dye degradation from water.The removal efficiencies of Cr6+at pH=6 are 88.06%,85.54%,and 85.52%for the samples NdFeO_(3),Nd_(0.90)Co_(0.10)FeO_(3),and Nd_(0.90)Ni_(0.10)FeO_(3),respectively.The Freundlich isotherm mode is the best-fit model for NdFeO_(3) to adsorb Cr6+ions from aqueous solutions.展开更多
文摘The haze defects on p-type (111) silicon wafers were investigated by means of chemical etching, Fouriertransform infra-red microscopy (FTIR), spreading resistance measurement. secondary ion mass spectroscopy(SLMS), transmission electron microscopy (TEM) equipped with an energy-dispersive X-ray spectrometer(EDX). The haze defects are the precipitates of silicide of metal impurities (Fe, Ni) on the wafer surface.The formation of haze defects can efficiently be inhibited by utilizing the technology of fast neutronirradiation combined with the internal gettering (IG), and then, the formation and removement mechanismof the haze defects have been discussed in this paper.
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415 and 52205475)the Science Center for Gas Turbine Project(No.P2023-B-IV-003-001)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Huaqiao University Engineering Research Center of Brittle Materials Machining(MOE,2023IME-001)。
文摘The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry.
基金supported by the Special Funds for Chengde national innovation demonstration area construction of science and technology special project sustainable development agenda(No.202104F001)the National Basic Research Program of China(No.2019YFC0408602).
文摘Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob,which was utilized as external carbon source in the anaerobic anoxic oxic(AAO)-biofilter for the treatment of low carbon-to-nitrogen ratio domestic sewage,and the nitrogen removal was remarkably improved from 63.2%to 96.5%.Furthermore,the effluent chemical oxygen demand maintained at 35 mg/L or even lower,and the total nitrogenwas reduced to less than 2mg/L.Metagenomic analysis demonstrated that the microbial communities responsible for potential denitrification and organic matter degradation in both AAO and the biofilter reactors were mainly composed of Proteobacteria and Bacteroides,respectively.The solid carbon source addition resulted in relatively high abundance of functional enzymes responsible for NO_(3)^(−)-N to NO_(2)^(−)-N con-version in both AAO and the biofilter reactors,thus enabled stable reaction.The carbon source addition during glycolysis primarily led to the increase of genes associated with the metabolic conversion of fructose 1.6P2 to glycerol-3P The reactor maintained high abun-dance of genes related to the tricarboxylic acid cycle,and then guaranteed efficient carbon metabolism.The results indicate that the composite carbon source is feasible for denitri-fication enhancement of AAO-biofilter,which contribute to the theoretical foundation for practical nitrogen removal application.
基金support from the earmarked fund for XJARS(No.XJARS-06)the Bingtuan Science and Technology Program(Nos.2021DB019,2022CB001-01)+1 种基金the National Natural Science Foundation of China(No.42275014)the Guangdong Foundation for Program of Science and Technology Research,China(No.2023B1212060044)。
文摘Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and health challenges posed by pollution,there is a growing interest in treating waters contaminated with EIPs.This paper explores biochar characteristics and modification methods,encompassing physical,chemical,and biological approaches for adsorbing EIPs.It offers a comprehensive review of research advancements in employing biochar for EIPs remediation in water,outlines the adsorption mechanisms of EIPs by biochar,and presents an environmental and economic analysis.It can be concluded that using biochar for the adsorption of EIPs in wastewater exhibits promising potential.Nonetheless,it is noteworthy that certain EIPs like Au(III),Rh(III),Ir(III),Ru(III),Os(III),Sc(III),and Y(III),have not been extensively investigated regarding their adsorption onto biochar.This comprehensive review will catalyze further inquiry into the biochar-based adsorption of EIPs,addressing current research deficiencies and advancing the practical implementation of biochar as a potent substrate for EIP removal from wastewater streams.
基金supported by the National Natural Science Foundation of China(Nos.22206146,22006079,and U21A20524)the Fundamental Research Funds for the Central Universities,the Youth Innovation Promotion Association of Chinese Academy of Sciences,the Fundamental Research Program of Shanxi Province(No.202103021223280)+1 种基金the Special Fund for Science and Technology Innovation Teams of Shanxi Province(No.202204051002026)the Natural Science Foundation of Shandong Province(No.ZR2021QB133).
文摘Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully synthesized via the sol–gel method and tested for their catalytic performance for simultaneous degradation of benzene and toluene.The CuMn_(2)O_(4)sample exhibited the best catalytic performance,the conversion of benzene reached 100%at 350℃,and toluene conversion reached 100%at 250℃.XRD,N_(2)adsorption-desorption,HRTEM-EDS,ED-XRF,Raman spectroscopy,H_(2)-TPR,NH_(3)-TPD,O_(2)-TPD and XPS were used to characterize the physical and chemical properties of MMn_(2)O_(4)catalysts.The excellent redox properties,high concentration of surface Mn4+,and adsorption of oxygen species over the CuMn_(2)O_(4)sample facilitated the simultaneous and efficient removal of benzene and toluene.Additionally,in situ DRIFTS illustrated the intermediate species and reaction mechanism for the synergetic catalytic oxidation of benzene and toluene.Notably,as an effective catalytic material,spinel oxide exhibited excellent synergistic degradation performance for benzene and toluene,providing some insight for the development of efficient multicomponent VOC catalysts.
基金supported by the National Natural Science Foundation of China(52100093,52270128,and 52261135627)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011734 and 2021B1515120068)+2 种基金the Municipal Science and Technology Innovation Council of the Shen-zhen Government(KCXFZ20211020163556020 and SGDX20230116092359002)the Research Grants Council(17210219)the Innovation and Technology Fund(ITS/242/20FP)of the Hong Kong SAR Government。
文摘The rapidly growing demand for lithium iron phosphate(LiFePO_(4))as the cathode material of lithium-ion batteries(LIBs)has aggravated the scarcity of phosphorus(P)reserves on Earth.This study introduces an environmentally friendly and economical method of P recovery from municipal wastewater,providing the P source for LiFePO_(4) cathodes.The novel approach utilizes the sludge of Fe-coagulant-based chemical P removal(CPR)in wastewater treatment.After a sintering treatment with acid washing,the CPR sludge,enriched with P and Fe,transforms into purified P-Fe oxides(Fe2.1P1.0O5.6).These oxides can substitute up to 35%of the FePO_(4) reagent as precursor,producing a carbon-coated LiFePO_(4)(LiFePO_(4)/C)cathode with a specific discharge capacity of 114.9 mA·h·g^(-1)at current density of 17 mA·g^(-1)),and cycle stability of 99.2%after 100 cycles.The enhanced cycle performance of the as-prepared LiFePO_(4)/C cathode may be attributed to the incorporations of impurities(such as Ca^(2+)and Na^(+))from sludge,with improved stability of crystal structure.Unlike conventional P-fertilizers,this P recovery technology converts 100%of P in CPR sludge into the production of value-added LiFePO_(4)/C cathodes.The recovered P from municipal wastewater can meet up to 35%of the P demand in the Chinese LIBs industry,offering a cost-effective solution for addressing the pressing challenges of P scarcity.
基金Supported by the National Natural Science Foundation of China(62201171).
文摘Wigner-Ville distribution(WVD)is widely used in the field of signal processing due to its excellent time-frequency(TF)concentration.However,WVD is severely limited by the cross-term when working with multicomponent signals.In this paper,we analyze the property differences between auto-term and cross-term in the one-dimensional sequence and the two-dimensional plane and approximate entropy and Rényi entropy are employed to describe them,respectively.Based on this information,we propose a new method to achieve adaptive cross-term removal by combining seeded region growing.Compared to other methods,the new method can achieve cross-term removal without decreasing the TF concentration of the auto-term.Simulation and experimental data processing results show that the method is adaptive and is not constrained by the type or distribution of signals.And it performs well in low signal-to-noise ratio environments.
基金supported by the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20233326)the Chongqing Science Fund for Distinguished Young Scholars(Grant No.CSTB2022NSCQJQX0028)the National Natural Science Foundation of China(Grant Nos.U23A20597,52274112).
文摘An abrasive water jet(AWJ)is commonly used to develop deep geothermal resources,such as drilling in hot dry rock(HDR).The influence of rock mineral properties,such as mineral types,mineral contents,and grain size,on the formation of perforation by AWJ is unclear yet.In this study,we investigate AWJ impacts on three types of granite samples with different mineral fractions using a polarizing microscope and scanning electron microscope(SEM).The results show that when the grain size is doubled,the perforation depth increases by 16.22%under the same type of structure and properties.In general,fractures are more likely to be created at the position of rough surfaces caused by abrasive impact,and the form of fractures is determined by the mineral type.In addition,microstructure analysis shows that transgranular fractures typically pass through large feldspar particles and quartz removal occurs along mineral boundaries.The longitudinal extension of perforation depends mainly on the strong kinetic energy of the jet,while the lateral extension is controlled by the backflow.The results contribute to a better understanding of the process involved in the breaking of hard rock by abrasive jets during deep geothermal drilling.
基金supported d by the National Key Research and Development Program of China(No.2018YFC1802905).
文摘Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened.The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II)and Mn(II)by Pseudomonas taiwanensis(marked as P4)and Pseudomonas plecoglossicida(marked as G1)contains rich reactive oxygen functional groups,which play critical roles in the removal efficiency and immobilization of heavymetal(loid)s in co-contamination system.The isolated strains P4 and G1 can growwell in the following environments:pH 5-9,NaCl 0-4%,and temperature 20-30℃.The removal efficiencies of Fe,Pb,As,Zn,Cd,Cu,and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system(the initial concentrations of heavy metal(loid)were 1 mg/L),approximately reaching 96%,92%,85%,67%,70%,54%and 15%,respectively.The exchangeable and carbonate bound As,Cd,Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil,thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s.This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415 and 52205475)the Science Center for Gas Turbine Project(Nos.P2022-AB-Ⅳ-002-001 and P2023-B-Ⅳ-003-001)+3 种基金the Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology(No.JSKL2223K01)the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Superior Postdoctoral Project of Jiangsu Province(No.2022ZB215)the Henan Science and Technology Public Relations Project(No.212102210445).
文摘The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusion height and random position distribution of abrasive grains on the abrasive wheel surface.This study investigated the distribution of undeformed chip thickness and grinding force considering the non-uniform characteristics of abrasive wheel in the grinding of K4002 nickel-based superalloy.First,a novel grinding force model was established through a kinematic-geometric analysis and a grain-workpiece contact analysis.Then,a series of grinding experiments were conducted for verifying the model.The results indicate that the distribution of undeformed chip thickness is highly consistent with the Gaussian distribution formula.The increase in the grinding depth mainly leads to an increase in the average value of Gaussian distribution.On the contrary,the increase in the workpiece infeed speed or the decrease in the grinding speed mainly increases the standard deviation of Gaussian distribution.The average and maximum errors of the grinding force model are 4.9%and 14.6%respectively,indicating that the model is of high predication accuracy.
基金supported by the National Natural Science Foundation of China(22278066,21776039)the National Key R&D Program of China(2023YFB4103001)The Fundamental Research Funds for the Central Universities(DUT2021TB03).
文摘Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.
文摘As a non-contact ultra-precision machining method,abrasive water jet polishing(AWJP)has signi-ficant application in optical elements processing due to its stable tool influence function(TIF),no subsurface damage and strong adaptability to workpiece shapes.In this study,the effects of jet pressure,nozzle diameter and impinging angle on the distribution of pressure,velocity and wall shear stress in the polishing flow field were systematically analyzed by computational fluid dynamics(CFD)simulation.Based on the Box-Behnken experimental design,a response surface regression model was constructed to investigate the influence mech-anism of process parameters on material removal rate(MRR)and surface roughness(Ra)of fused silica.And experimental results showed that increasing jet pressure and nozzle diameter significantly improved MRR,consistent with shear stress distribution revealed by CFD simulations.However,increasing jet pressure and impinging angle caused higher Ra values,which was unfavorable for surface quality improvement.Genetic algorithm(GA)was used for multi-objective optimization to establish Pareto solutions,achieving concurrent optimization of polishing efficiency and surface quality.A parameter combination of 2 MPa jet pressure,0.3 mm nozzle diameter,and 30°impinging angle achieved MRR of 169.05μm^(3)/s and Ra of 0.50 nm.Exper-imental verification showed prediction errors of 4.4%(MRR)and 3.8%(Ra),confirming the model’s reliabil-ity.This parameter optimization system provides theoretical basis and technical support for ultra-precision polishing of complex curved optical components.
基金The project was supported by Natural Science Foundation of Shandong Province(ZR2021MB104)National Natural Science Foundation of China(22078174).
文摘This study aims to enhance the photocatalytic performance of 2D/2D heterojunctions for NO removal from marine vessel effluents.SnS_(2)/g-C_(3)N_(4) composites were successfully constructed via a facile solvothermal method,demonstrating a significant improvement in photocatalytic NO removal under visible light irradiation.For high-flux simulated flue gas,the composite with 10%SnS_(2)(denoted as SNCN-10)showed exceptional NO removal efficiency,reaching up to 66.8%,along with excellent reusability over five consecutive cycles.Detailed band structure and density of states(DOS)calculations confirmed the formation of a characteristic heterojunction.Spin-trapping ESR spectroscopy identified·O_(2)^(-)−as the key reactive species driving NO oxidation.Additionally,in situ DRIFT spectroscopy revealed that SNCN-10 facilitated the conversion of NO to nitrate through intermediate species,including bridging nitrite and cis-nitrite(N_(2)O_(2)^(2-)).Kinetic studies further indicated that NO oxidation followed the Langmuir-Hinshelwood(L-H)mechanism.Based on density functional theory(DFT)calculations of free energy changes,a comprehensive reaction pathway for NO oxidation was proposed.These findings provide valuable insights for the development of efficient photocatalytic strategies for NO removal.
基金Project(52174385)supported by the National Natural Science Foundation of ChinaProjects(2023YFC3904003,2023YFC3904004,2023YFC390400501)supported by the National Key R&D Program of China。
文摘Copper is a strategic metal that plays an important role in many industries.In copper metallurgy,electrolytic refining is essential to obtain high-purity copper.However,during the electrolytic refining process,impurities such as arsenic are introduced into the electrolyte,which significantly affect the subsequent production and quality of copper products.This paper first discusses the sources,forms,and transformation pathways of arsenic in copper electrolyte during the electrolytic process,then reviews various arsenic removal technologies in detail,including electrowinning,adsorption,solvent extraction,ion exchange,membrane filtration,and precipitation.Particular emphasis is placed on electrowinning,which is the most widely used and mature among these arsenic removal techniques.The paper evaluates these methods based on arsenic removal efficiency,cost effectiveness,technical maturity,environmental friendliness,and operation simplicity.In addition,the paper explores future trends in copper electrolyte purification,focusing on waste reduction at source,resource utilization,intelligent digitalization,and innovations in materials and processes.This review aims to provide researchers and practitioners with a comprehensive and in-depth reference on arsenic removal methods in copper electrolytes.
文摘BACKGROUND Gastric bezoars are indigestible masses that can lead to gastrointestinal ob-struction and ulceration.Standard treatments include endoscopic mechanical lithotripsy with a polypectomy snare and Coca-Cola dissolution therapy or a combination of both approaches.However,giant bezoars frequently require multiple treatment sessions and extended hospital stays.Additionally,snare-based mechanical fragmentation may be limited by factors such as bezoar size,shape,density,slipperiness,and restricted working space.In cases where refra-ctory giant bezoars are unresponsive to traditional methods,surgical intervention is often necessary.CASE SUMMARY A 57-year-old male with a history of type 2 diabetes presented with severe epigastric pain and vomiting.Endoscopy revealed two large phytobezoars and a gastric ulcer.Initial attempts at mechanical fragmentation with a polypectomy snare and Coca-Cola ingestion for dissolution were unsuccessful due to the large size and complex structure of the bezoars.An innovative approach using snare-tip electrocautery was then employed.It successfully penetrated the slippery,hard surface of the bezoars and fragmented them into smaller pieces.The patient was subsequently treated with Coca-Cola ingestion,enzyme supplements,and proton pump inhibitors.He was discharged without complications following the endoscopic sessions.CONCLUSION Snare-tip electrocautery is a safe,cost-effective,and minimally invasive alter-native for managing large,refractory gastric bezoars.This is a valuable option in resource-limited settings.
基金supported by the National Natural Science Foundation of China(No.52070149)Shaanxi Innovative Research Team for Key Science and Technology(No.2023-CXTD-36)+1 种基金Shaanxi Province Key Program for International S&T Cooperation Projects(No.2024GH-ZDXM-04)the Bureau of Science and Technology of Xi’an City of China(No.23SFSF0011).
文摘Anaerobic ammonia oxidation(Anammox)is an economical and sustainablewastewater nitrogen removal technology,and its application in the mainstream process is the inevitable trend of the development of Anammox.However,how to effectively enriching Anammox bacteria from the activated sludge remains challenging and restricts its extensive applications.In this study,the rapid and efficient enrichment of Anammox bacteriawas achieved by raising the reflux ratio and nitrogen loading rate(NLR)using conventional activated sludge as the inoculant.In the screening phase(days 1–90),the reflux ratio was increased to discharge partial floc sludge,resulting in the relative abundance of Candidatus Brocadiaceae increased from0.04%to 22.54%,which effectively reduced thematrix and spatial competition between other microorganisms and Anammox bacteria.On day 90,the stoichiometric ratio of the Anammox process closely approached the theoretical value of 1:1.32:0.26,indicating that the Anammox reaction was the primary nitrogen removal process in the system.In the enrichment phase(days 91–238),the NLR increased from 0.43 to 1.20 kgN/(m^(3)·d)and removal efficiency was 71.89%,resulting in the relative abundance of Candidatus Brocadiaceae increased to 61.27%on day 180.The reactor operated steadily from days 444 to 498,maintaining the nitrogen removal rate(NRR)of 3.00 kgN/(m^(3)·d)and achieving successful sludge granulation with the particle size of 392.4μm.In short,this study provided a simple and efficient approach for enriching Anammox bacteria from the activated sludge,supporting to start an Anammox process efficiently.
基金supported by the National Natural Science Foundation of China(Nos.22077099,22171223 and 22307102)the Innovation Capability Support Program of Shaanxi(Nos.2023-CX-TD-75 and 2022KJXX-32)+5 种基金the Technology Innovation Leading Program of Shaanxi(Nos.2023KXJ-209 and 2024QCYKXJ-142)the Natural Science Basic Research Program of Shaanxi(Nos.2023-JC-YB-141 and 2022JQ-151)the Key Research and Development Program of Shaanxi(No.2024GH-ZDXM-22)Young Talent Fund of Association for Science and Technology in Shaanxi,China(No.SWYY202206)the Shaanxi Fundamental Science Research Project for Chemistry&Biology(Nos.22JHZ010 and 22JHQ080)the Yan’an City Science and Technology Project(No.2022SLZDCY-002).
文摘Metal-organic frameworks(MOFs) provide great prospective in the photodegradation of pollutants. Nevertheless, the poor separation and recovery hamper their pilot-or industrial-scare applications because of their microcrystalline features. Herein, this challenge can be tackled by integrating Cu-MOFs into an alginate substrate to offer environmentally friendly, sustainable, facile separation, and high-performance MOF-based hydrogel photocatalysis platforms. The CuⅡ-MOF 1 and CuⅠ-MOF 2 were initially synthesized through a direct diffusion and single-crystal to single-crystal(SCSC) transformation method, respectively,and after the immobilization into alginate, more effective pollutant decontamination was achieved via the synergistic effect of the adsorption feature of hydrogel and in situ photodegradation of Cu-MOFs.Specifically, Cu-MOF-alginate composites present an improved and nearly completed Cr(Ⅵ) elimination at a short time of 15–25 min. Additionally, the congo red(CR) decolorization can be effectively enhanced in the presence of Cr(Ⅵ), and 1-alginate showed superior simultaneous decontamination efficiency of CR and Cr(Ⅵ) with 99% and 78%, respectively. Furthermore, Cu-MOF-alginate composites can maintain a high pollutant removal after over 10 continuous cycles(95% for Cr(Ⅵ) after 14 runs, and 90% for CR after 10runs). Moreover, the Cr(Ⅵ)/CR degradation mechanism for Cu-MOF-alginate composite was investigated.
基金Project(2019yff0216502)supported by the National Key Research&Development Plan of Ministry of Science and Technology of ChinaProject(2021SK1020-4)supported by the Major Science and Technological Innovation Project of Hunan Province,China。
文摘Removing copper from nickel electrolysis anode solution has been a major keypoint in the nickel metallurgy industry.In this study,we proposed a novel process flow to promote removing copper from nickel electrolysis anode solution.A simulated nickel anode solution was designed,and static and dynamic adsorption experiments were conducted to determine the best of solution pH,adsorption time and temperature,resin dosage and particle size,and stirring speed.The optimal conditions were explored for copper removal from nickel electrolysis anode solution.Based on the optimal experimental conditions and the relevant experimental data,a novel process for copper removal from nickel electrolysis anodes was designed and verified.This novel process of copper removal from nickel electrolysis anodes was confirmed with nickel anolyte solution with nickel 50−60 g/L and copper 0.5 g/L.After finishing the novel process of copper removal,the nickel in the purified nickel anolyte became undetectable and copper concentration was 3 mg/L,the novel process of resin adsorption to remove copper from nickel anode solution through static and dynamic adsorptions has an efficacious copper removal.It is a beneficial supplement to traditional methods.
基金Supported by Ministry of Science,Technological Development and Innovations,Republic of Serbia,No.451-03-66/2024-03/200110.
文摘The minireview titled“Modern endoscopist’s toolbox:Innovations in foreign body removal”by Shahid and published in the World Journal of Gastrointestinal Endoscopy provided a clear and comprehensive overview of endoscopic management of gastrointestinal foreign bodies.It will serve as a valuable resource for endoscopists involved in the diagnosis and treatment of such cases.Several key and controversial aspects of patient management were highlighted in a meaningful way,including the importance of thorough medical history-taking,appropriate use of radiological imaging,and the selection of suitable endoscopic extraction techniques.An individualized,multidisciplinary approach is essential for diagnosis and treatment.While current guidelines offer significant support,they cannot replace the judgment of an experienced endoscopist working with a well-trained team.
文摘The nanocrystalline samples Nd_(1-x)M_(x)FeO_(3)(x=0.0 and 0.1;M:Co^(2+)and Ni^(2+))were prepared using the citrate combustion method.The X-ray diffraction(XRD)pattern confirmed that the nanoparticles were synthesized in an orthorhombic structure.The particle size of Nd_(1-x)M_(x)FeO_(3) is in the range of 29-59 nm.The selected area electron diffraction(SAED)indicates the samples were prepared in a polycrystalline nature.The samples Nd_(1-x)M_(x)FeO_(3)(x=0.0 and 0.1;M:Co^(2+)and Ni^(2+))have anti ferromagnetic behavior.The Fe^(3+)spins are aligned antiparallel,forming the antiferromagnetic(AFM)properties,which are affected by many factors such as the bond angle between the Fe^(3+)(Fe^(3+)-O_(2)--Fe^(3+))and the Dzyaloshinskii-Moriya(D-M)interaction.The doping of Co^(2+)and Ni^(2+)ions in NdFeO_(3) enhances the magnetic properties of the NdFeO_(3).The saturation magnetization(Ms)of Nd_(0.90)Co_(0.10)FeO_(3) increases 1.8times more than that of NdFeO_(3).The exchange bias field(HEX)of the Co-doped sample is two times greater than that of NdFeO_(3).The magnetic anisotropy constant(K)of the 10%Co-doped sample increases by 11 factors compared to that of NdFeO_(3).The Tauc plot illustrates that the samples have a direct optical transition.The divalent cation substitution(Co^(2+)and Ni^(2+))decreases the optical band gap of NdFeO_(3),leading to the recommendation of using the samples Nd_(0.90)Co_(0.10)FeO_(3) and Nd_(0.90)Ni_(0.10)FeO_(3) in photocatalysis of dye degradation from water.The removal efficiencies of Cr6+at pH=6 are 88.06%,85.54%,and 85.52%for the samples NdFeO_(3),Nd_(0.90)Co_(0.10)FeO_(3),and Nd_(0.90)Ni_(0.10)FeO_(3),respectively.The Freundlich isotherm mode is the best-fit model for NdFeO_(3) to adsorb Cr6+ions from aqueous solutions.