期刊文献+
共找到11,684篇文章
< 1 2 250 >
每页显示 20 50 100
GLMCNet: A Global-Local Multiscale Context Network for High-Resolution Remote Sensing Image Semantic Segmentation
1
作者 Yanting Zhang Qiyue Liu +4 位作者 Chuanzhao Tian Xuewen Li Na Yang Feng Zhang Hongyue Zhang 《Computers, Materials & Continua》 2026年第1期2086-2110,共25页
High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes an... High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet. 展开更多
关键词 Multiscale context attention mechanism remote sensing images semantic segmentation
在线阅读 下载PDF
Multi-Constraint Generative Adversarial Network-Driven Optimization Method for Super-Resolution Reconstruction of Remote Sensing Images
2
作者 Binghong Zhang Jialing Zhou +3 位作者 Xinye Zhou Jia Zhao Jinchun Zhu Guangpeng Fan 《Computers, Materials & Continua》 2026年第1期779-796,共18页
Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods ex... Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures. 展开更多
关键词 Charbonnier loss function deep learning generative adversarial network perceptual loss remote sensing image super-resolution
在线阅读 下载PDF
Enhanced single-neuronal dynamical system in self-feedback Hopfield network for encrypting urban remote sensing image
3
作者 ZHANG Jingquan 《Global Geology》 2025年第4期240-250,共11页
The large-scale acquisition and widespread application of remote sensing image data have led to increasingly severe challenges in information security and privacy protection during transmission and storage.Urban remot... The large-scale acquisition and widespread application of remote sensing image data have led to increasingly severe challenges in information security and privacy protection during transmission and storage.Urban remote sensing image,characterized by complex content and well-defined structures,are particularly vulnerable to malicious attacks and information leakage.To address this issue,the author proposes an encryption method based on the enhanced single-neuron dynamical system(ESNDS).ESNDS generates highquality pseudo-random sequences with complex dynamics and intense sensitivity to initial conditions,which drive a structure of multi-stage cipher comprising permutation,ring-wise diffusion,and mask perturbation.Using representative GF-2 Panchromatic and Multispectral Scanner(PMS)urban scenes,the author conducts systematic evaluations in terms of inter-pixel correlation,information entropy,histogram uniformity,and number of pixel change rate(NPCR)/unified average changing intensity(UACI).The results demonstrate that the proposed scheme effectively resists statistical analysis,differential attacks,and known-plaintext attacks while maintaining competitive computational efficiency for high-resolution urban image.In addition,the cipher is lightweight and hardware-friendly,integrates readily with on-board and ground processing,and thus offers tangible engineering utility for real-time,large-volume remote-sensing data protection. 展开更多
关键词 remote sensing image image encryption Hopfield neural network SELF-FEEDBACK
在线阅读 下载PDF
Land Cover Classification for Remote Sensing Images Based on MCM-Net
4
作者 Peilong SHI Shuxin YIN 《Agricultural Biotechnology》 2025年第5期38-41,共4页
A novel CNN-Mamba hybrid architecture was proposed to address intra-class variance and inter-class similarity in remote sensing imagery.The framework integrates:(1)parallel CNN and visual state space(VSS)encoders,(2)m... A novel CNN-Mamba hybrid architecture was proposed to address intra-class variance and inter-class similarity in remote sensing imagery.The framework integrates:(1)parallel CNN and visual state space(VSS)encoders,(2)multi-scale cross-attention feature fusion,and(3)a boundary-constrained decoder.This design overcomes CNN s limited receptive fields and ViT s quadratic complexity while efficiently capturing both local features and global dependencies.Evaluations on LoveDA and ISPRS Vaihingen datasets demonstrate superior segmentation accuracy and boundary preservation compared to existing approaches,with the dual-branch structure maintaining computational efficiency throughout the process. 展开更多
关键词 Semantic segmentation remote sensing images CNN Mamba
在线阅读 下载PDF
Multi-Dimensional Weight Regulation Network for Remote Sensing Image Dehazing
5
作者 Donghui Zhao Bo Mo 《Journal of Beijing Institute of Technology》 2025年第1期71-90,共20页
This paper introduces a lightweight remote sensing image dehazing network called multidimensional weight regulation network(MDWR-Net), which addresses the high computational cost of existing methods. Previous works, o... This paper introduces a lightweight remote sensing image dehazing network called multidimensional weight regulation network(MDWR-Net), which addresses the high computational cost of existing methods. Previous works, often based on the encoder-decoder structure and utilizing multiple upsampling and downsampling layers, are computationally expensive. To improve efficiency, the paper proposes two modules: the efficient spatial resolution recovery module(ESRR) for upsampling and the efficient depth information augmentation module(EDIA) for downsampling.These modules not only reduce model complexity but also enhance performance. Additionally, the partial feature weight learning module(PFWL) is introduced to reduce the computational burden by applying weight learning across partial dimensions, rather than using full-channel convolution.To overcome the limitations of convolutional neural networks(CNN)-based networks, the haze distribution index transformer(HDIT) is integrated into the decoder. We also propose the physicalbased non-adjacent feature fusion module(PNFF), which leverages the atmospheric scattering model to improve generalization of our MDWR-Net. The MDWR-Net achieves superior dehazing performance with a computational cost of just 2.98×10^(9) multiply-accumulate operations(MACs),which is less than one-tenth of previous methods. Experimental results validate its effectiveness in balancing performance and computational efficiency. 展开更多
关键词 image dehazing remote sensing image network lightweight
在线阅读 下载PDF
A Survey of Remote Sensing Image Segmentation Based on Deep Learning
6
作者 Shibo SUN Yunzuo ZHANG 《Mechanical Engineering Science》 2025年第2期1-10,共10页
Remote sensing image segmentation has a wide range of applications in land cover classification,urban building recognition,crop monitoring,and other fields.In recent years,with the booming development of deep learning... Remote sensing image segmentation has a wide range of applications in land cover classification,urban building recognition,crop monitoring,and other fields.In recent years,with the booming development of deep learning,remote sensing image segmentation models based on deep learning have gradually emerged and produced a large number of scientific research achievements.This article is based on deep learning and reviews the latest achievements in remote sensing image segmentation,exploring future development directions.Firstly,the basic concepts,characteristics,classification,tasks,and commonly used datasets of remote sensingimages are presented.Secondly,the segmentation models based on deep learning were classified and summarized,and the principles,characteristics,and applications of various models were presented.Then,the key technologies involved in deep learning remote sensing image segmentation were introduced.Finally,the future development direction and applicationprospects of remote sensing image segmentation were discussed.This article reviews the latest research achievements in remote sensing image segmentationfrom the perspective of deep learning,which can provide reference and inspiration for the research of remote sensing image segmentation. 展开更多
关键词 remote sensing image segmentation Deep learning Split tasks Model classification Key technology
在线阅读 下载PDF
Improved YOLOv8s Detection Algorithm for Remote Sensing Images
7
作者 Lunming Qin Wenquan Mei +2 位作者 Haoyang Cui Houqin Bian Xi Wang 《Journal of Beijing Institute of Technology》 2025年第3期278-289,共12页
In response to challenges posed by complex backgrounds,diverse target angles,and numerous small targets in remote sensing images,alongside the issue of high resource consumption hindering model deployment,we propose a... In response to challenges posed by complex backgrounds,diverse target angles,and numerous small targets in remote sensing images,alongside the issue of high resource consumption hindering model deployment,we propose an enhanced,lightweight you only look once version 8 small(YOLOv8s)detection algorithm.Regarding network improvements,we first replace tradi-tional horizontal boxes with rotated boxes for target detection,effectively addressing difficulties in feature extraction caused by varying target angles.Second,we design a module integrating convolu-tional neural networks(CNN)and Transformer components to replace specific C2f modules in the backbone network,thereby expanding the model’s receptive field and enhancing feature extraction in complex backgrounds.Finally,we introduce a feature calibration structure to mitigate potential feature mismatches during feature fusion.For model compression,we employ a lightweight channel pruning technique based on localized mean average precision(LMAP)to eliminate redundancies in the enhanced model.Although this approach results in some loss of detection accuracy,it effec-tively reduces the number of parameters,computational load,and model size.Additionally,we employ channel-level knowledge distillation to recover accuracy in the pruned model,further enhancing detection performance.Experimental results indicate that the enhanced algorithm achieves a 6.1%increase in mAP50 compared to YOLOv8s,while simultaneously reducing parame-ters,computational load,and model size by 57.7%,28.8%,and 52.3%,respectively. 展开更多
关键词 YOLOv8s remote sensing image target detection model pruning knowledge distillation
在线阅读 下载PDF
Remote Sensing Image Information Granulation Transformer for Semantic Segmentation
8
作者 Haoyang Tang Kai Zeng 《Computers, Materials & Continua》 2025年第7期1485-1506,共22页
Semantic segmentation provides important technical support for Land cover/land use(LCLU)research.By calculating the cosine similarity between feature vectors,transformer-based models can effectively capture the global... Semantic segmentation provides important technical support for Land cover/land use(LCLU)research.By calculating the cosine similarity between feature vectors,transformer-based models can effectively capture the global information of high-resolution remote sensing images.However,the diversity of detailed and edge features within the same class of ground objects in high-resolution remote sensing images leads to a dispersed embedding distribution.The dispersed feature distribution enlarges feature vector angles and reduces cosine similarity,weakening the attention mechanism’s ability to identify the same class of ground objects.To address this challenge,remote sensing image information granulation transformer for semantic segmentation is proposed.The model employs adaptive granulation to extract common semantic features among objects of the same class,constructing an information granule to replace the detailed feature representation of these objects.Then,the Laplacian operator of the information granule is applied to extract the edge features of the object as represented by the information granule.In the experiments,the proposed model was validated on the Beijing Land-Use(BLU),Gaofen Image Dataset(GID),and Potsdam Dataset(PD).In particular,the model achieves 88.81%for mOA,82.64%for mF1,and 71.50%for mIoU metrics on the GID dataset.Experimental results show that the model effectively handles high-resolution remote sensing images.Our code is available at https://github.com/sjmp525/RSIGT(accessed on 16 April 2025). 展开更多
关键词 Land-cover/land-use high-resolution remote sensing images TRANSFORMER adaptive granulation
在线阅读 下载PDF
Remote sensing image semantic segmentation algorithm based on improved DeepLabv3+
9
作者 SONG Xirui GE Hongwei LI Ting 《Journal of Measurement Science and Instrumentation》 2025年第2期205-215,共11页
The convolutional neural network(CNN)method based on DeepLabv3+has some problems in the semantic segmentation task of high-resolution remote sensing images,such as fixed receiving field size of feature extraction,lack... The convolutional neural network(CNN)method based on DeepLabv3+has some problems in the semantic segmentation task of high-resolution remote sensing images,such as fixed receiving field size of feature extraction,lack of semantic information,high decoder magnification,and insufficient detail retention ability.A hierarchical feature fusion network(HFFNet)was proposed.Firstly,a combination of transformer and CNN architectures was employed for feature extraction from images of varying resolutions.The extracted features were processed independently.Subsequently,the features from the transformer and CNN were fused under the guidance of features from different sources.This fusion process assisted in restoring information more comprehensively during the decoding stage.Furthermore,a spatial channel attention module was designed in the final stage of decoding to refine features and reduce the semantic gap between shallow CNN features and deep decoder features.The experimental results showed that HFFNet had superior performance on UAVid,LoveDA,Potsdam,and Vaihingen datasets,and its cross-linking index was better than DeepLabv3+and other competing methods,showing strong generalization ability. 展开更多
关键词 semantic segmentation high-resolution remote sensing image deep learning transformer model attention mechanism feature fusion ENCODER DECODER
在线阅读 下载PDF
Security analysis and secured access design for networks of image remote sensing
10
作者 Juan Zhao Haibo Dai +3 位作者 Xiaolong Xu Hao Yan Zheng Zhang Chunguo Li 《Digital Communications and Networks》 2025年第1期136-144,共9页
The secured access is studied in this paper for the network of the image remote sensing.Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sens... The secured access is studied in this paper for the network of the image remote sensing.Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sensor to the central collection point.In order to enhance the sensing quality for the remote uploading,the passive reflection surface technique is employed.If one eavesdropper that exists nearby this sensor is keeping on accessing the same networks,he may receive the same image from this sensor.Our goal in this paper is to improve the SNR of legitimate collection unit while cut down the SNR of the eavesdropper as much as possible by adaptively adjust the uploading power from this sensor to enhance the security of the remote sensing images.In order to achieve this goal,the secured energy efficiency performance is theoretically analyzed with respect to the number of the passive reflection elements by calculating the instantaneous performance over the channel fading coefficients.Based on this theoretical result,the secured access is formulated as a mathematical optimization problem by adjusting the sensor uploading power as the unknown variables with the objective of the energy efficiency maximization while satisfying any required maximum data rate of the eavesdropper sensor.Finally,the analytical expression is theoretically derived for the optimum uploading power.Numerical simulations verify the design approach. 展开更多
关键词 image remote sensing Secured access Energy efficiency sensor transmit power Secured access design
在线阅读 下载PDF
Coupling the Power of YOLOv9 with Transformer for Small Object Detection in Remote-Sensing Images
11
作者 Mohammad Barr 《Computer Modeling in Engineering & Sciences》 2025年第4期593-616,共24页
Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presen... Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presence of closely packed objects in these images hinder accurate detection.Additionally,the motion blur effect further complicates the identification of such objects.To address these issues,we propose enhanced YOLOv9 with a transformer head(YOLOv9-TH).The model introduces an additional prediction head for detecting objects of varying sizes and swaps the original prediction heads for transformer heads to leverage self-attention mechanisms.We further improve YOLOv9-TH using several strategies,including data augmentation,multi-scale testing,multi-model integration,and the introduction of an additional classifier.The cross-stage partial(CSP)method and the ghost convolution hierarchical graph(GCHG)are combined to improve detection accuracy by better utilizing feature maps,widening the receptive field,and precisely extracting multi-scale objects.Additionally,we incorporate the E-SimAM attention mechanism to address low-resolution feature loss.Extensive experiments on the VisDrone2021 and DIOR datasets demonstrate the effectiveness of YOLOv9-TH,showing good improvement in mAP compared to the best existing methods.The YOLOv9-TH-e achieved 54.2% of mAP50 on the VisDrone2021 dataset and 92.3% of mAP on the DIOR dataset.The results confirmthemodel’s robustness and suitability for real-world applications,particularly for small object detection in remote sensing images. 展开更多
关键词 remote sensing images YOLOv9-TH multi-scale object detection transformer heads VisDrone2021 dataset
在线阅读 下载PDF
FPCNet-based change detection for remote sensing images
12
作者 LI Jiying WANG Qi SHI Hongping 《Journal of Measurement Science and Instrumentation》 2025年第3期371-383,共13页
The objective of this study is to address semantic misalignment and insufficient accuracy in edge detail and discrimination detection,which are common issues in deep learning-based change detection methods relying on ... The objective of this study is to address semantic misalignment and insufficient accuracy in edge detail and discrimination detection,which are common issues in deep learning-based change detection methods relying on encoding and decoding frameworks.In response to this,we propose a model called FlowDual-PixelClsObjectMec(FPCNet),which innovatively incorporates dual flow alignment technology in the decoding stage to rectify semantic discrepancies through streamlined feature correction fusion.Furthermore,the model employs an object-level similarity measurement coupled with pixel-level classification in the PixelClsObjectMec(PCOM)module during the final discrimination stage,significantly enhancing edge detail detection and overall accuracy.Experimental evaluations on the change detection dataset(CDD)and building CDD demonstrate superior performance,with F1 scores of 95.1%and 92.8%,respectively.Our findings indicate that the FPCNet outperforms the existing algorithms in stability,robustness,and other key metrics. 展开更多
关键词 remote sensing image change detection semantic misalignment dual flow alignment deep supervised discrimination
在线阅读 下载PDF
Wetland Vegetation Species Classification Using Optical and SAR Remote Sensing Images: A Case Study of Chongming Island, Shanghai, China
13
作者 DENG Yaozi SHI Runhe +3 位作者 ZHANG Chao WANG Xiaoyang LIU Chaoshun GAO Wei 《Chinese Geographical Science》 2025年第3期510-527,共18页
Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing tech... Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover. 展开更多
关键词 optical images Synthetic Aperture Radar(SAR) multi-source remote sensing vegetation classification tidal flat wetland Chongming Island Shanghai China
在线阅读 下载PDF
Forest Resources Management Information System for Forest Farms Based on Remote Sensing Images and Web GIS 被引量:2
14
作者 魏海林 黄璜 《Agricultural Science & Technology》 CAS 2015年第4期832-835,共4页
This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest reso... This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest resources field survey da-ta, ETM+ remote sensing data and basic geographical information data as research material through the extraction of forest resource data in the forest farm, require-ment analysis on the system function and the estabIishment of required software and hardware environment, with the alm to realize the management, query, editing, analysis, statistics and other functions of forest resources information to manage the forest resources. 展开更多
关键词 WEBGIS remote sensing image WEBGIS Forest resource Management infor-matlon system
在线阅读 下载PDF
Mapping the bathymetry of shallow coastal water using singleframe fine-resolution optical remote sensing imagery 被引量:7
15
作者 LI Jiran ZHANG Huaguo +2 位作者 HOU Pengfei FU Bin ZHENG Gang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第1期60-66,共7页
This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water dep... This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water depth, wavelength and wave radian frequency in shallow water was deduced based on shallow-water wave theory. Considering the complex wave distribution in the optical remote sensing imagery, Fast Fourier Transform (FFT) and spatial profile measurements were applied for measuring the wavelengths. Then, the wave radian frequency was calculated by analyzing the long-distance fluctuation in the wavelength, which solved a key problem in obtaining the wave radian frequency in a single-frame image. A case study was conducted for Sanya Bay of Hainan Island, China. Single-flame fine-resolution optical remote sensing imagery from QuickBird satellite was used to invert the bathymetry without external input parameters. The result of the digital elevation model (DEM) was evaluated against a sea chart with a scale of 1:25 000. The root-mean-square error of the inverted bathymetry was 1.07 m, and the relative error was 16.2%. Therefore, the proposed method has the advantages including no requirement for true depths and environmental parameters, and is feasible for mapping the bathymetry of shallow coastal water. 展开更多
关键词 BATHYMETRY optical remote sensing image NEARSHORE QUICKBIRD
在线阅读 下载PDF
Multi-spectral remote sensing image enhancement method based on PCA and IHS transformations 被引量:9
16
作者 Shan-long LU Le-jun ZOU +2 位作者 Xiao-hua SHEN Wen-yuan WU Wei ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第6期453-460,共8页
This paper introduces a new enhancement method for multi-spectral satellite remote sensing imagery,based on principal component analysis(PCA) and intensity-hue-saturation(IHS) transformations.The PCA and the IHS trans... This paper introduces a new enhancement method for multi-spectral satellite remote sensing imagery,based on principal component analysis(PCA) and intensity-hue-saturation(IHS) transformations.The PCA and the IHS transformations are used to separate the spatial information of the multi-spectral image into the first principal component and the intensity component,respectively.The enhanced image is obtained by replacing the intensity component of the IHS transformation with the first principal component of the PCA transformation,and undertaking the inverse IHS transformation.The objective of the proposed method is to make greater use of the spatial and spectral information contained in the original multi-spectral image.On the basis of the visual and statistical analysis results of the experimental study,we can conclude that the proposed method is an ideal new way for multi-spectral image quality enhancement with little color distortion.It has potential advantages in image mapping optimization,object recognition,and weak information sharpening. 展开更多
关键词 remote sensing Principal component analysis(PCA) Intensity-hue-saturation(IHS) transformation image enhancement Spatial information Spectral information
原文传递
Ship detection and classification from optical remote sensing images: A survey 被引量:15
17
作者 Bo LI Xiaoyang XIE +1 位作者 Xingxing WEI Wenting TANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第3期145-163,共19页
Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing f... Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing filed. This article collects the methods of ship detection and classification for practically testing in optical remote sensing images, and provides their corresponding feature extraction strategies and statistical data. Basic feature extraction strategies and algorithms are analyzed associated with their performance and application in ship detection and classification.Furthermore, publicly available datasets that can be applied as the benchmarks to verify the effectiveness and the objectiveness of ship detection and classification methods are summarized in this paper. Based on the analysis, the remaining problems and future development trends are provided for ship detection and classification methods based on optical remote sensing images. 展开更多
关键词 Optical remote sensing Satellite image Sea target detection Ship classification Ship detection
原文传递
Multi-source Remote Sensing Image Registration Based on Contourlet Transform and Multiple Feature Fusion 被引量:6
18
作者 Huan Liu Gen-Fu Xiao +1 位作者 Yun-Lan Tan Chun-Juan Ouyang 《International Journal of Automation and computing》 EI CSCD 2019年第5期575-588,共14页
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi... Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration. 展开更多
关键词 Feature fusion multi-scale circle Gaussian combined invariant MOMENT multi-direction GRAY level CO-OCCURRENCE matrix MULTI-SOURCE remote sensing image registration CONTOURLET transform
原文传递
Rapid identification of landslide,collapse and crack based on low-altitude remote sensing image of UAV 被引量:13
19
作者 LIAN Xu-gang LI Zou-jun +4 位作者 YUAN Hong-yan LIU Ji-bo ZHANG Yan-jun LIU Xiao-yu WU Yan-ru 《Journal of Mountain Science》 SCIE CSCD 2020年第12期2915-2928,共14页
Landslides,collapses and cracks are the main types of geological hazards,which threaten the safety of human life and property at all times.In emergency surveying and mapping,it is timeconsuming and laborious to use th... Landslides,collapses and cracks are the main types of geological hazards,which threaten the safety of human life and property at all times.In emergency surveying and mapping,it is timeconsuming and laborious to use the method of field artificial investigation and recognition and using satellite image to identify ground hazards,there are some problems,such as time lag,low resolution,and difficult to select the map on demand.In this paper,a10 cm per pixel resolution photogrammetry of a geological hazard-prone area of Taohuagou,Shanxi Province,China is carried out by DJ 4 UAV.The digital orthophoto model(DOM),digital surface model(DSM) and three-dimensional point cloud model(3 DPCM) are generated in this region.The method of visual interpretation of cracks based on DOM(as main)-3 DPCM(as auxiliary) and landslide and collapse based on 3 DPCM(as main)-DOM and DSM(as auxiliary) are proposed.Based on the low altitude remote sensing image of UAV,the shape characteristics,geological characteristics and distribution of the identified hazards are analyzed.The results show that using UAV low altitude remote sensing image,the method of combination of main and auxiliary data can quickly and accurately identify landslide,collapse and crack,the accuracy of crack identification is 93%,and the accuracy of landslide and collapse identification is 100%.It mainly occurs in silty clay and mudstone geology and is greatly affected by slope foot excavation.This study can play a great role in the recognition of sudden hazards by low altitude remote sensing images of UAV. 展开更多
关键词 UAV Low altitude remote sensing image Geological hazards Identification method
原文传递
Remote Sensing Monitoring of Tobacco Field Based on Phenological Characteristics and Time Series Image―A Case Study of Chengjiang County, Yunnan Province, China 被引量:9
20
作者 PENG Guangxiong DENG Lei +2 位作者 CUI Weihong MING Tao SHEN Wei 《Chinese Geographical Science》 SCIE CSCD 2009年第2期186-193,共8页
Using three-phase remote sensing images of China-Brazil Earth Resources Satellite 02B (CBERS02B) and Landsat-5 TM, tobacco field was extracted by the analysis of time series image based on the different phenological c... Using three-phase remote sensing images of China-Brazil Earth Resources Satellite 02B (CBERS02B) and Landsat-5 TM, tobacco field was extracted by the analysis of time series image based on the different phenological characteristics between tobacco and other crops. The spectral characteristics of tobacco and corn in luxuriant growth stage are very similar, which makes them difficult to be distinguished using a single-phase remote sensing image. Field film after tobacco seedlings transplanting can be used as significant sign to identify tobacco. Remote sensing interpre- tation map based on the fusion image of TM and CBERS02B's High-Resolution (HR) camera image was used as stan- dard reference material to evaluate the classification accuracy of Spectral Angle Mapper (SAM) and Maximum Like- lihood Classifier (MLC) for time series image based on full samples test method. SAM has higher classification accu- racy and stability than MLC in dealing with time series image. The accuracy and Kappa of tobacco coverage extracted by SAM are 83.4% and 0.692 respectively, which can achieve the accuracy required by tobacco coverage measurement in a large area. 展开更多
关键词 TOBACCO phenological characteristics time series image remote sensing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部