期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
VLCA: vision-language aligning model with cross-modal attention for bilingual remote sensing image captioning 被引量:3
1
作者 WEI Tingting YUAN Weilin +2 位作者 LUO Junren ZHANG Wanpeng LU Lina 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期9-18,共10页
In the field of satellite imagery, remote sensing image captioning(RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a visi... In the field of satellite imagery, remote sensing image captioning(RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a vision-language aligning paradigm for RSIC to jointly represent vision and language. First, a new RSIC dataset DIOR-Captions is built for augmenting object detection in optical remote(DIOR) sensing images dataset with manually annotated Chinese and English contents. Second, a Vision-Language aligning model with Cross-modal Attention(VLCA) is presented to generate accurate and abundant bilingual descriptions for remote sensing images. Third, a crossmodal learning network is introduced to address the problem of visual-lingual alignment. Notably, VLCA is also applied to end-toend Chinese captions generation by using the pre-training language model of Chinese. The experiments are carried out with various baselines to validate VLCA on the proposed dataset. The results demonstrate that the proposed algorithm is more descriptive and informative than existing algorithms in producing captions. 展开更多
关键词 remote sensing image captioning(RSIC) vision-language representation remote sensing image caption dataset attention mechanism
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部