期刊文献+
共找到609篇文章
< 1 2 31 >
每页显示 20 50 100
地基CO_(2)浓度反演的数据质量控制及快速反演算法
1
作者 李树 杨乐怡 +5 位作者 储小雪 叶松 施海亮 甘永莹 王新强 王方原 《光谱学与光谱分析》 北大核心 2025年第11期3226-3234,共9页
准确监测大气CO_(2)浓度对气候变化应对至关重要。地基遥感技术可提供高时空分辨率数据,但监测精度受多种因素影响。通过SCIATRAN辐射传输模型模拟不同观测条件下的辐射传输过程,分析先验廓线、光谱分辨率、太阳天顶角(SZA)、相对方位角... 准确监测大气CO_(2)浓度对气候变化应对至关重要。地基遥感技术可提供高时空分辨率数据,但监测精度受多种因素影响。通过SCIATRAN辐射传输模型模拟不同观测条件下的辐射传输过程,分析先验廓线、光谱分辨率、太阳天顶角(SZA)、相对方位角(RAA)、温度、气溶胶光学厚度、边界层湿度对CO_(2)浓度反演的影响,给出地基CO_(2)反演数据质量控制的标准:(1)在观测过程中,根据当日预测的CO_(2)浓度水平采用不同的角度偏移控制标准为高浓度日允许SZA≤1.5°、RAA≤28°;低浓度日将角度偏移限制在SZA≤1°和RAA≤27°范围;(2)在反演过程中,利用实时的温度和压强廓线数据,例如使用欧洲中期天气预测中心发布的ERA5再分析数据集,包括动态更新的温度与压强;(3)采用城市型气溶胶,剔除光学厚度大于0.3、湿度大于80%的数据。结合遗传算法(GA)与Levenb erg-Marquardt(L-M)算法优势提出了一种基于全局-局部协同优化的反演算法(GLSO),并使用GLSO反演方法对EM27/SUN观测数据进行反演,结果表明:相比于L-M方法,GLSO迭代次数减少40%,CO_(2)柱总量偏差从0.85%降至0.80%,XCO_(2)反演结果与TCCON数据的偏差为0.13%,优于L-M算法0.27%的偏差;与GOSAT官方的CO_(2)浓度产品偏差小于1%。 展开更多
关键词 地基遥感 SCIATRAN 敏感性分析 Co_(2)反演
在线阅读 下载PDF
A study of the validation of atmospheric CO_2 from satellite hyper spectral remote sensing 被引量:1
2
作者 ZHANG Miao ZHANG Xing-Ying +1 位作者 LIU Rui-Xia HU Lie-Qun 《Advances in Climate Change Research》 SCIE 2014年第3期131-135,共5页
Three total column dry-air mole fractions of CO_2(XCO_2) products from satellite retrievals, namely SCIAMACHY, NIES-GOSAT, and ACOS-GOSAT, in the Northern Hemisphere were validated by ground data from the Total Carbon... Three total column dry-air mole fractions of CO_2(XCO_2) products from satellite retrievals, namely SCIAMACHY, NIES-GOSAT, and ACOS-GOSAT, in the Northern Hemisphere were validated by ground data from the Total Carbon Column Observing Network(TCCON). The results showed that the satellite data have the same seasonal fluctuations as in the TCCON data, with maximum in April or May and minimum in August or September. The three products all underestimate the XCO2. The ACOS-GOSAT and the NIES-GOSAT products are roughly equivalent, and their mean standard deviations are 2.26 × 10^(-6)and 2.27 × 10^(-6)respectively. The accuracy of the SCIMACHY product is slightly lower, with a mean standard deviation of 2.91 × 10^(-6). 展开更多
关键词 Co2 SATELLITE remote sensing VALIDATIoN
在线阅读 下载PDF
Beaver pond identification from multi-temporal and multi-sourced remote sensing data
3
作者 Wen Zhang Baoxin Hu +1 位作者 Glen Brown Shawn Meyer 《Geo-Spatial Information Science》 CSCD 2024年第4期953-967,共15页
The maintenance and restoration of wetland habitat is a priority conservation action for most waterfowl and other wetland-dependent species in North America.Despite much progress in targeting habitat management in sta... The maintenance and restoration of wetland habitat is a priority conservation action for most waterfowl and other wetland-dependent species in North America.Despite much progress in targeting habitat management in staging and wintering areas,methods to identify and target high-quality breeding habitats that result in the greatest potential for wildlife are still required.This is particularly true for species that breed in remote,inaccessible areas such as the American black duck,an intensively managed game bird in Eastern North America.Although evidence suggests that black ducks prefer productive,nutrient-rich waterbodies,such as beaver ponds,information about the distribution and quality of these habitats across the vast boreal forest is lacking with accurate identification remaining a challenge.Continuing advancements in remote sensing technologies that provide spatially extensive and temporally repeated information are particularly useful in meeting this information gap.In this study,we used multi-source remotely sensed information and a fuzzy analytical hierarchy process to map the spatial distribution of beaver ponds in Ontario.The use of multi-source data,including a Digital Elevation Model,a Sentinel-2 Multi-Spectral Image,and RadarSat 2 Polarimetric data,enabled us to identify individual beaver ponds on the landscape.Our model correctly identified an average of 83.0%of the known beaver dams and 72.5%of the known beaver ponds based on validation with an independent dataset.This study demonstrates that remote sensing is an effective approach for identifying beaver-modified wetland features and can be applied to map these and other wetland habitat features of interest across large spatial extents.Furthermore,the systematic acquisition strategy of the remote sensors employed is well suited for monitoring changes in wetland conditions that affect the availability of habitats important to waterfowl and other wildlife. 展开更多
关键词 remote sensing American black duck wetland beaver pond Sentinel-2 RADARSAT Fuzzy Analytical Hierarchy Process
原文传递
Optical remote sensing image characteristics of large amplitude convex mode-2 internal solitary waves:an experimental study
4
作者 Zhixin Li Meng Zhang +1 位作者 Keda Liang Jing Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第6期16-23,共8页
A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing s... A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing simulation platform.The corresponding wave parameters of large-amplitude convex mode-2 ISWs under smooth surfaces are investigated along with the optical remote sensing characteristic parameters.The mode-2 ISWs in the experimentally obtained optical remote sensing image are produced by their overall modulation effect on the water surface,and the extreme points of the gray value of the profile curve of bright-dark stripes appear at the same location as the real optical remote sensing image.The present data extend to a larger range than previous studies,and for the characteristics of large amplitude convex mode-2 ISWs,the experimental results show a second-order dependence of wavelength on amplitude.There is a close relationship between optical remote sensing characteristic parameters and wave parameters of mode-2 ISWs,in which there is a positive linear relationship between the bright-dark spacing and wavelength and a nonlinear relationship with the amplitude,especially when the amplitude is very large,there is a significant increase in bright-dark spacing. 展开更多
关键词 mode-2 internal solitary waves optical remote sensing characteristic parameter wave characteristic
在线阅读 下载PDF
Assessment of the State of Forests Based on Joint Statistical Processing of Sentinel-2B Remote Sensing Data and the Data from Network of Ground-Based ICP-Forests Sample Plots
5
作者 Alexander S. Alekseev Dmitry M. Chernikhovskii 《Open Journal of Ecology》 2022年第8期513-528,共16页
The research was carried out on the territory of the Karelian Isthmus of the Leningrad Region using Sentinel-2B images and data from a network of ground sample plots. The ground sample plots are located in the studied... The research was carried out on the territory of the Karelian Isthmus of the Leningrad Region using Sentinel-2B images and data from a network of ground sample plots. The ground sample plots are located in the studied territory mainly in a regular manner, laid and surveyed according to the ICP-Forests methodology with some additions. The total area of the sample plots is a small part of the entire study area. One of the objectives of the study was to determine the possibility of using the k-NN (nearest neighbor method) to assess the state of forests throughout the whole studied territory by joint statistical processing of data from ground sample plots and Sentinel-2B imagery. The data of the ground-based sample plots were divided into 2 equal parts, one for the application of the k-NN method, the second for checking the results of the method application. The systematic error in determining the mean damage class of the tree stands on sample plots by the k-NN method turned out to be zero, the random error is equal to one point. These results offer a possibility to determine the state of the forest in the entire study area. The second objective of the study was to examine the possibility of using the short-wave vegetation index (SWVI) to assess the state of forests. As a result, a close statistically reliable dependence of the average score of the state of plantations and the value of the SWVI index was established, which makes it possible to use the established relationship to determine the state of forests throughout the studied territory. The joint use and statistical processing of remotely sensed data and ground-based test areas by the two studied methods make it possible to assess the state of forests throughout the large studied area within the image. The results obtained can be used to monitor the state of forests in large areas and design appropriate forestry protective measures. 展开更多
关键词 remote sensing Sentinel-2B Imagery ICP-Forest Sample Plot Tree Stand Damage Class k-NN (Nearest Neighbor Method) Vegetation Index SWVI Nonlinear Regression Systematic Error Random Error
在线阅读 下载PDF
基于蒲公英优化随机森林模型的沙漠土壤Fe_(2)O_(3)含量高光谱遥感反演
6
作者 胡昕 买买提·沙吾提 +3 位作者 张峰 崔锦涛 艾尼玩·艾买尔 阿斯娅·曼力克 《中国沙漠》 北大核心 2025年第2期191-204,共14页
沙漠土壤光谱与氧化铁(Fe_(2)O_(3))含量之间的关系尚不明确,且缺乏有效监测方法。以新疆古尔班通古特沙漠为研究区,采集沙漠样本,获取其Fe_(2)O_(3)含量和光谱数据。通过对原始光谱进行分数阶微分(FOD)和连续小波变换(CWT),利用相关性... 沙漠土壤光谱与氧化铁(Fe_(2)O_(3))含量之间的关系尚不明确,且缺乏有效监测方法。以新疆古尔班通古特沙漠为研究区,采集沙漠样本,获取其Fe_(2)O_(3)含量和光谱数据。通过对原始光谱进行分数阶微分(FOD)和连续小波变换(CWT),利用相关性分析确定了沙漠土壤Fe_(2)O_(3)含量的最优光谱变换形式,并采用遗传算法(GA)进行敏感波段的提取。建立了蒲公英优化随机森林(DO-RF)模型估算沙漠土壤Fe_(2)O_(3)含量。结果表明:(1)随着Fe_(2)O_(3)含量的增加,沙漠土壤的反射率逐渐降低,即沙漠土壤Fe_(2)O_(3)含量和土壤光谱反射率负相关;(2)FOD和CWT均可以提高沙漠土壤反射率及其Fe_(2)O_(3)含量反演的相关性水平。其中,基于1.2阶次的FOD和1尺度下CWT的相关性最高,相关系数分别达0.840和0.839;(3)GA能够有效剔除共线性较强的冗余波段,在1.2阶次的FOD下,从512个光谱波段中优选出31个特征波段,压缩了93.945%,在1尺度的CWT下,从119个光谱波段中优选出13个特征波段,压缩了89.076%;(4)基于CWT处理的DO-RF模型精度和稳定性最佳,模型验证决定系数(R^(2))达0.908,均方根误差(RMSE)为0.340,相对分析误差(RPD)为3.390,比未优化的RF、PLSR和SVM,R^(2)分别提高了2.7%、22.6%、4%,RMSE分别降低了6.6%、27.8%、8.7%,RPD分别提高了54.9%、152.2%、68.6%。 展开更多
关键词 沙漠土壤 Fe_(2)o_(3)含量 高光谱遥感 蒲公英优化 随机森林
原文传递
环境参数对CO_(2)敏感波段光谱辐射强度的影响
7
作者 杨焌 张彪 +2 位作者 许传龙 李宇希 汪迁文 《红外与激光工程》 北大核心 2025年第7期364-373,共10页
大气CO_(2)浓度不断上升加剧温室效应,卫星作为主流的监测方式,却因环境参数难以准确获取从而影响辐射强度探测。针对CO_(2)反演需求,采用逐线法(LBL)和米散射(MIE)对大气不同成分的光谱特性进行计算,同时选取适用于CO_(2)反演的理想波... 大气CO_(2)浓度不断上升加剧温室效应,卫星作为主流的监测方式,却因环境参数难以准确获取从而影响辐射强度探测。针对CO_(2)反演需求,采用逐线法(LBL)和米散射(MIE)对大气不同成分的光谱特性进行计算,同时选取适用于CO_(2)反演的理想波段。随后,基于离散坐标法(DISORT)构建适用于CO_(2)辐射传输的正向模型,通过与GOSAT-2实测数据对比验证模型精度。在此基础上,利用该模型定量分析了地表类型、太阳天顶角、气溶胶类型、气溶胶光学厚度对CO_(2)敏感波段光谱辐射强度的影响规律。结果表明,强度随着不同地表类型反照率的增大而增强。太阳天顶角越小,光程越短,强度越大。城市型气溶胶由于含有较多吸光成分,强度衰减最为显著,而海洋型、乡村型和沙漠型的平均相对辐射变化率则稳定在-15%以内。城市型气溶胶光学厚度的增加会导致强度明显减小,而海洋型由于其强散射性质,强度略有增强。海洋型和乡村型的平均相对辐射变化率都保持在±5%以内。上述结果为CO_(2)反演算法开发、敏感参数选取及反演误差评估提供了理论依据。 展开更多
关键词 大气遥感 敏感性分析 DISoRT 正向模型 Co_(2)
原文传递
水体pCO_(2)遥感估算研究进展——从开阔大洋到内陆水体
8
作者 刘士伟 宋开山 +4 位作者 熊春兰 刘阁 陶慧 尚盈辛 温志丹 《遥感技术与应用》 北大核心 2025年第4期875-885,共11页
自工业革命以来,自然和人为因素导致温室气体排放增加,引起全球变暖等一系列环境问题。全球海洋已被证实是大气二氧化碳(CO_(2))的主要汇,能吸收大约25%的人为排放CO_(2);而内陆水体作为大气CO_(2)的源,排放的温室气体相当于全球化石燃... 自工业革命以来,自然和人为因素导致温室气体排放增加,引起全球变暖等一系列环境问题。全球海洋已被证实是大气二氧化碳(CO_(2))的主要汇,能吸收大约25%的人为排放CO_(2);而内陆水体作为大气CO_(2)的源,排放的温室气体相当于全球化石燃料释放CO_(2)的近20%。表层水体CO_(2)分压(pCO_(2))的准确估算是研究各类水体碳通量与源汇格局的前提。从90年代开始,研究者们已经积累了大量的实测pCO_(2)值,这为深入理解水体pCO_(2)的影响机制和估算模型的建立提供了坚实的数据基础。遥感具有大尺度、长期观测的能力,通过遥感反演的相关环境变量进而推测pCO_(2)是目前遥感量化水体pCO_(2)的主流方法。本研究首先明确了影响水体pCO_(2)的环境变量及相关理化过程,这是参数化pCO_(2)的理论基础;进而总结了不同类型水体中pCO_(2)的遥感反演算法,该算法目前在开阔大洋中的研究已经趋于成熟,在近岸水体也发展了一系列经验或半解析模型,但遥感估算内陆水体pCO_(2)的相关研究较少,这与内陆水体复杂的光学特性及pCO_(2)的时空多变性有关。考虑到内陆水域在全球碳循环中的重要性,研究者们应更多关注内陆水体pCO_(2)的遥感估算研究。 展开更多
关键词 pCo_(2) 碳排放 碳通量 遥感估算 水环境
原文传递
卫星短波红外遥感CO_(2)的物理反演研究
9
作者 李聪 邓小波 +1 位作者 刘海磊 袁杰 《成都信息工程大学学报》 2025年第4期478-483,共6页
CO_(2)是温室效应的主要成因,掌握CO_(2)的浓度及变化可为实现碳中和与碳达峰的双碳目标提供支持。短波近红外通道对近地层CO_(2)浓度变化敏感,通过模拟大气辐射传输的整个物理过程,构建正演模型,并基于最优化方法和牛顿迭代法对GOSAT... CO_(2)是温室效应的主要成因,掌握CO_(2)的浓度及变化可为实现碳中和与碳达峰的双碳目标提供支持。短波近红外通道对近地层CO_(2)浓度变化敏感,通过模拟大气辐射传输的整个物理过程,构建正演模型,并基于最优化方法和牛顿迭代法对GOSAT卫星获取的短波红外辐亮度数据进行处理和分析,实现了对全球范围内CO_(2)浓度的高精度反演。将算法反演的CO_(2)柱平均干空气混合比(XCO_(2))与GOSAT卫星二级产品和碳柱浓度观测网络TC-CON站点XCO_(2)数据进行对比验证。结果表明,算法反演精度为-0.397%,与卫星产品的平均绝对误差为1.32 ppm,相对误差为0.235%;与TCCON站点数据对比平均绝对误差为1.67 ppm,相对误差为-0.397%,优于1%的应用要求。 展开更多
关键词 卫星遥感 短波红外 Co_(2) 物理反演
在线阅读 下载PDF
TROPOMI NO_(2)间接估算化石能源CO_(2)日排放量
10
作者 陆凌霄 秦凯 +2 位作者 科恩杰森 李晓璐 周春艳 《遥感学报》 北大核心 2025年第4期990-1001,共12页
为实现“双碳”目标,利用卫星遥感技术估算化石能源消费二氧化碳(CO_(2))排放量至关重要。然而,由于CO_(2)在大气中的存活寿命长,且现有CO_(2)卫星传感器的空间覆盖度有限,直接采用卫星观测反演的CO_(2)柱浓度数据估算其排放量难度较大... 为实现“双碳”目标,利用卫星遥感技术估算化石能源消费二氧化碳(CO_(2))排放量至关重要。然而,由于CO_(2)在大气中的存活寿命长,且现有CO_(2)卫星传感器的空间覆盖度有限,直接采用卫星观测反演的CO_(2)柱浓度数据估算其排放量难度较大。鉴于化石能源消费同时排放CO_(2)和氮氧化物(NO_(x)),NO_(x)存活寿命短且利用卫星遥感估算其排放量具有较好的可行性。本文选择28个东部城市和1个西部能源金三角地区为研究对象,开展了基于TROPOMI NO_(2)柱浓度间接估算化石能源CO_(2)日排放量研究。首先,本文使用2019年的TROPOMI NO_(2)对流层柱浓度数据产品和质量守恒模型估算得到NO_(x)日排放量及不确定度。其次,分析多尺度排放清单模型构建的排放清单数据库(MEIC)中CO_(2)与NO_(x)的排放量关系。最后估算获得化石能源消费的CO_(2)日排放量。结果表明:估算结果与MEIC清单中的CO_(2)排放空间分布一致,但其更高的空间分辨率和时间频次能够揭示由于统计资料缺失的新兴及小型的排放源。东部城市以北京为例,在市中心周围的城郊地区遥感估算结果高于MEIC清单约104%,这表明随着东部城市的快速扩张,出现较多的新兴排放源。能源金三角以榆林为例,在该地区的电厂、钢铁厂以及煤矿区,存在部分排放源的排放量在MEIC清单中仅占整体排放量的10%,而在估算结果中该比例为37%,表明一些未纳入排放清单的小型电厂和工业源能够被卫星遥感捕捉到。研究结果可为中国化石能源碳排放核算提供技术支持。 展开更多
关键词 遥感 化石能源 氮氧化物 二氧化碳 TRoPoMI 排放清单 间接估算 质量守恒 新兴排放源
原文传递
基于随机森林和OCO-2遥感数据分析2023年中国连续时空x_(CO_(2))变化特征
11
作者 吴锡言 李维军 +1 位作者 卡那特 彭玉杰 《生态环境学报》 北大核心 2025年第9期1341-1350,共10页
为准确把握协同减污降碳和区域碳达峰的战略布局,基于随机森林(RF)模型和轨道碳观测卫星-2(OCO-2)遥感数据,构建2023年中国陆地月尺度时空连续性大气二氧化碳柱平均摩尔分数(x_(CO_(2))),空间分辨率为0.1°×0.1°的数据集... 为准确把握协同减污降碳和区域碳达峰的战略布局,基于随机森林(RF)模型和轨道碳观测卫星-2(OCO-2)遥感数据,构建2023年中国陆地月尺度时空连续性大气二氧化碳柱平均摩尔分数(x_(CO_(2))),空间分辨率为0.1°×0.1°的数据集。使用香河站点的x_(CO_(2))数据验证OCO-2观测数据,结果表明两者相关性高,决定系数(R^(2))为0.902,均方误差(σMSE)为1.45×10^(−6)。选取以自然环境、人为活动、气象条件等影响因素为辅助变量,结合遥感数据训练模型,真实值与预测值之间的R2超过0.82,σMSE小于0.48×10^(−6),绝对误差(E)小于0.02×10^(−6),结果表明模型预测的数据具有极高的可信度。还分析了中国大气CO_(2)浓度的时空变化分布特征,在时间上,大气CO_(2)浓度4月达到峰值,8月则降至最低,呈现出明显的季节性变化;在空间上,x_(CO_(2))总体呈现“西低东高,北低南高”的空间分布格局,纬度越高,季节性变化越大,不同温度带也表现出x_(CO_(2))分布的差异性。该研究对准确估算中国区域大气的x_(CO_(2)),以及理解陆地生态系统碳循环的过程至关重要,为城市碳排放工作的精细化监测提供参考,还为区域层面推进“碳达峰、碳中和”战略的实施提供了有力的地理空间信息支撑。 展开更多
关键词 x_(Co_(2)) 随机森林 时空变化 oCo-2 卫星遥感
在线阅读 下载PDF
Identification of Commercial Forest Tree Species Using Sentinel 2 and Planet Scope Imageries in the Usutu Forest, Eswatini
12
作者 Thokozani Maxwell Ginindza 《Journal of Geographic Information System》 2025年第1期1-22,共22页
Making the distinction between different plantation tree species is crucial for creating reliable and trustworthy information, which is critical in forestry administration and upkeep. Over the years, forest delineatio... Making the distinction between different plantation tree species is crucial for creating reliable and trustworthy information, which is critical in forestry administration and upkeep. Over the years, forest delineation and mapping have been done using the conventional techniques, such as the utilization of ground truth facts together with orthophotos. These techniques have been proven to be very precise, but they are expensive, cumbersome, and challenging to employ in remote regions. To resolve this shortfall, this research investigates the potential of data from the commercial, PlanetScope CubeSat and the freely available, Sentinel 2 data from Copernicus to discriminate commercial forest tree species in the Usutu Forest, Eswatini. Two approaches for image classification, Random Forest (RF) and the Support Vector Machine (SVM) were investigated at different levels of the forest database classification which is the genus (family of tree species) and species levels. The result of the study indicates that, the Sentinel 2 images had the highest species classification accuracy compared to the PlanetScope image. Both classification methods achieved a 94% maximum OA and 0.90 kappa value at the genus level with the Sentinel 2 imagery. At the species level, the Sentinel 2 imagery again showed highly acceptable results with the SVM method, with an OA of 82%. The PlanetScope images performed badly with less than 64% OA for both RF and SVM at the genus level and poorer at the species level with a low OA figure, 47% and 53% for the SVM and RF respectively. Our results suggest that the freely available Sentinel 2 data together with the SVM method has a high potential for identifying differences between commercial tree species than the PlanetScope. The study uncovered that both classification methods are highly capable of classifying species under the gum genus group (esmi, egxu, and egxn) using both imageries. However, it was difficult to separate species types under the pine genus group, particularly discriminating the hybrid species such as pech and pell since pech is a hybrid species for pell. 展开更多
关键词 Sentinel-2 PlanetScope Random Forest Support Vector Machine SUGARCANE GENUS Species remote sensing
在线阅读 下载PDF
融合多源遥感数据的中国人为CO_(2)排放时空特征分析
13
作者 许珊 周希雅 郭子筱 《遥感技术与应用》 北大核心 2025年第4期1036-1051,共16页
掌握详细、准确的人为CO_(2)排放清单,加强对CO_(2)排放的有效管控,对于实现“双碳”目标意义重大。在有效评估EDGAR、ODIAC全球人为CO_(2)排放清单在中国地区可靠性的基础上,结合多源遥感数据,构建了基于随机森林的高精度、高分辨率中... 掌握详细、准确的人为CO_(2)排放清单,加强对CO_(2)排放的有效管控,对于实现“双碳”目标意义重大。在有效评估EDGAR、ODIAC全球人为CO_(2)排放清单在中国地区可靠性的基础上,结合多源遥感数据,构建了基于随机森林的高精度、高分辨率中国区域人为CO_(2)排放估算模型,实现了1 km×1 km分辨率2005~2020年人为CO_(2)排放的时空估算,并结合空间自相关分析探索了研究区人为CO_(2)排放的集聚模式,开展了中国地区整体以及集聚重点区域人为CO_(2)排放时空变化特征分析。结果表明:中国地区人为CO_(2)排放估算模型能有效融合全球清单与遥感数据优势,为精细尺度人为CO_(2)排放时空估算提供有效支持;2005~2013年全国人为CO_(2)排放量急剧上升,从55.3亿t增长至107.3亿t;2013~2020年CO_(2)排放增长率回落,变化趋向平缓;中国整体人为碳排放呈现“东高西低、沿海高内陆低”区域性特征,且在长江三角洲地区、京津冀地区、西部地区重点集聚;不同地区的人为碳排放特征与其工业化进程、经济发展水平、城县规模等有着密切联系。 展开更多
关键词 人为Co_(2)排放 多源遥感 双碳 时空特征分析
原文传递
Extracting ship and heading from Sentinel-2 images using convolutional neural networks with point and vector learning
14
作者 Xiunan LI Peng CHEN +4 位作者 Jingsong YANG Wentao AN Dan LUO Gang ZHENG Aiying LU 《Journal of Oceanology and Limnology》 2025年第1期16-28,共13页
Obtaining accurate ship positions and headings in remote sensing images plays a crucial role in various applications.However,current deep learning-based methods primarily focus on ship position detection,while the det... Obtaining accurate ship positions and headings in remote sensing images plays a crucial role in various applications.However,current deep learning-based methods primarily focus on ship position detection,while the detection of ship wakes relies on traditional non-deep learning approaches,which often underperform in complex marine environments.We proposed a novel,simple,and efficient method called Point-Vector Net.The proposed method leverages convolutional neural networks(CNN)for feature extraction and subsequently integrates multi-scale features to generate high-resolution feature maps.In the final stage,ship positions and headings are represented using a combination of points and vectors.Comparative experiments with results from automatic identification system(AIS)reports demonstrate that our method achieved impressive performance in two-class ship target detection,with an average precision of 96.4%,recall rate of 94.3%,and an F 1 score of 95.2%.Notably,the average heading error was 3.3°.The proposed model achieved a practical inference speed(FPS>30),and the average processing time for inferring a large-scale Sentinel-2 remote sensing image was 11.4 s. 展开更多
关键词 deep learning ship detection HEADING remote sensing Sentinel-2
在线阅读 下载PDF
Sea ice classification in the Arctic transition zone using Haiyang-2B microwave scatterometer and radiometer data
15
作者 Shiyu Wu Tingting Liu +3 位作者 Mohammed Shokr Ruibo Lei Fan Yang Yachao Li 《Acta Oceanologica Sinica》 2025年第3期84-101,共18页
Loss of multiyear ice(MYI)is of great importance for Arctic climate and marine systems and can be monitored using active and passive microwave satellite data.In this paper,we describe an upgraded classification algori... Loss of multiyear ice(MYI)is of great importance for Arctic climate and marine systems and can be monitored using active and passive microwave satellite data.In this paper,we describe an upgraded classification algorithm using the data from the scatterometer and radiometer sensors onboard the Chinese Haiyang-2B(HY-2B)satellite to identify MYI and first-year ice(FYI).The proposed method was established based on K-means and fuzzy clustering(K-means+FC)and was used to focus on the transition zone where the ice condition is complex due to the highly commixing of MYI and FYI,leading to the high challenge for accurate classification of sea ice.The K-means algorithm was applied to preliminarily classify MYI using the combination of scatterometer and radiometer data,followed by applying fuzzy clustering to reclassify MYI in the transition zone.The HY-2B K-means+FC results were compared with the ice type products[including the Ocean and Sea Ice Satellite Application Facility(OSI SAF)sea ice type product and the Equal-Area Scalable Earth-Grid sea ice age dataset],and showed agreement in the time series of MYI extent.Intercomparisons in the transition zone indicated that the HY-2B K-means+FC results can identify more old ice than the OSI SAF product,but with an underestimation in identifying second-year ice.Comparisons between K-means and Kmeans+FC results were performed using regional ice charts and Sentinel-1 synthetic aperture radar(SAR)data.By adding fuzzy clustering,the MYI is more consistent with the ice charts,with the overall accuracy(OA)increasing by 0.9%–6.5%.Comparing against SAR images,it is suggested that more scattered MYI floes can be identified by fuzzy clustering,and the OA is increased by about 3%in middle freezing season and 7%–20%in early and late freezing season. 展开更多
关键词 sea ice classification Arctic multiyear ice Haiyang-2B transition zone microwave remote sensing fuzzy clustering
在线阅读 下载PDF
Coupling Spectral Indices and Machine Learning to Compare GF-6 and Sentinel-2A Data in Forest Health Monitoring
16
作者 CHEN Jiahui XU Hanqiu TANG Fei 《Chinese Geographical Science》 2025年第3期581-599,共19页
The red-edge bands and their derived vegetation indices play a crucial role in monitoring vegetation health.The Gaofen-6(GF-6)and Sentinel-2A satellites are equipped with two and three red-edge bands,respectively,thus... The red-edge bands and their derived vegetation indices play a crucial role in monitoring vegetation health.The Gaofen-6(GF-6)and Sentinel-2A satellites are equipped with two and three red-edge bands,respectively,thus making them invaluable for monit-oring forest health.To compare the performance of these two satellites’red-edge bands in monitoring forest health,this study selected forests in Liuyang City,Hunan Province and Tonggu County,Jiangxi Province and Hanzhong City,Shaanxi Province in China as study areas and used three commonly used red-edge indices and the Random Forest(RF)algorithm for the comparison.The three selected red-edge indices were the Normalized Difference Red-Edge Index 1(NDRE1),the Missouri emergency resource information system Ter-restrial Chlorophyll Index(MTCI),and the Inverted Red-Edge Chlorophyll Index(IRECI).Through training of sample regions,this study determined the spectral differences among three forest health levels and established classification criteria for these levels.The res-ults showed that GF-6 imagery provided higher accuracy in distinguishing forest health levels than Sentinel-2A,with an average accur-acy of 90.22%versus 76.55%.This difference is attributed to variations in the wavelengths used to construct the red-edge indices between GF-6 and Sentinel-2A.In the RF algorithm,this study employed three distinct band combinations for classification:all bands including red-edge bands,excluding red-edge bands,and only red-edge bands.The results indicated that GF-6 outperformed Sentinel-2A when using the first and second band combinations,yet slightly underperforming with the third.This outcome was closely associ-ated with the importance of each band’s contribution to classification accuracy reveled by the Gini importance score,their sensitivity in detecting forest health conditions,and the total number of bands employed in the classification process.Overall,the NDRE1 derived from GF-6 achieved the highest average accuracy(90.22%).This study provides a scientific basis for selecting appropriate remote sens-ing data and techniques for forest health monitoring,which is of significant importance for the future ecological protection of forests. 展开更多
关键词 remote sensing Gaofen-6(GF-6) Sentinel-2A red-edge index Random Forest(RF) forest health
在线阅读 下载PDF
基于多源卫星数据的五彩湾煤矿区CO_(2)浓度时空变化特征研究
17
作者 匡薇 刘超 陈建明 《新疆地质》 2025年第2期383-389,共7页
煤矿、煤电工业区的CO_(2)监测一直存在较多不确定性。利用2015—2023年OCO-2卫星观测的XCO_(2)数据、LandSat-8、GF2等多源卫星数据,基于普通克里金插值、数据平滑等方法,分析了五彩湾煤矿区CO_(2)浓度时空分布和变化特征。结果表明:... 煤矿、煤电工业区的CO_(2)监测一直存在较多不确定性。利用2015—2023年OCO-2卫星观测的XCO_(2)数据、LandSat-8、GF2等多源卫星数据,基于普通克里金插值、数据平滑等方法,分析了五彩湾煤矿区CO_(2)浓度时空分布和变化特征。结果表明:①利用普通克里金插值和数据平滑方法产生的格网数据,与原数据存在强相关性,处理结果精度较高;②2015—2023年区内XCO_(2)由399.29×10^(-6)增长至421.04×10^(-6),平均年增速为2.72×10^(-6),略高于过去10年全球XCO_(2)平均增速水平(2.46×10^(-6));2017—2020年增量较大,与区内煤电企业的增加和扩张相关;③年内表现出明显季节变化特征,冬季采暖期值最高,春季次之,秋季最低;④空间分布上,研究区XCO_(2)年平均高值区主要分布在西部及中部煤电企业集中区。 展开更多
关键词 XCo_(2) 遥感 煤矿区 煤电 碳中和
在线阅读 下载PDF
基于多源卫星的大气CO_(2)浓度不确定性和融合研究
18
作者 田文杰 张丽丽 +3 位作者 余涛 张文豪 臧文乾 王春梅 《大气与环境光学学报》 2025年第5期622-636,共15页
CO_(2)作为重要的温室气体,其浓度的变化对全球气候有着重要的影响。卫星遥感监测因具有连续、稳定、大尺度等特点,是大气CO_(2)浓度分布信息的重要来源。但由于卫星载荷设置及大气中云和气溶胶等因素的影响,目前单一碳卫星很难获取全... CO_(2)作为重要的温室气体,其浓度的变化对全球气候有着重要的影响。卫星遥感监测因具有连续、稳定、大尺度等特点,是大气CO_(2)浓度分布信息的重要来源。但由于卫星载荷设置及大气中云和气溶胶等因素的影响,目前单一碳卫星很难获取全球连续的高时空分辨的CO_(2)浓度分布信息,因此,为更好地确定多源卫星CO_(2)融合方法,需要对不同卫星产品进行不确定性分析。本文基于2019―2021年地基TCCON(Total Carbon Column Observing Network)数据,对GOSAT(Greenhouse Gases Observing Satellite)、OCO-2(Orbiting Carbon Observatory-2)和GOSAT2三颗卫星的CO_(2)精度进行不确定性分析,并基于分析结果,使用结合单位权思想的误差反距离权重法以及克里金插值法建立了全球多源CO_(2)融合模型,进一步分析了其时空分布规律。分析结果表明OCO-2的不确定性最低,均方根误差ERMS为1.10×10^(-6),GOSAT居其次,ERMS为1.88×10^(-6),GOSAT2不确定性最高,ERMS为3.02×10^(-6)。所建立的融合模型具有良好的精度,平均绝对误差均值为0.91×10^(-6),平均绝对误差百分比为0.22%。在空间分布上,研究发现北半球CO_(2)浓度高于南半球,在部分地区出现高值区;而在季节变化方面,春冬季CO_(2)浓度高于夏秋季,其中春季CO_(2)浓度最高。 展开更多
关键词 大气二氧化碳 多源卫星遥感 不确定分析 融合模拟 时空分布特征
在线阅读 下载PDF
基于时序Sentinel-2影像物候特征的江汉平原耕地“非粮化”监测 被引量:3
19
作者 陶建斌 赵睿一 +1 位作者 王松 张洪艳 《武汉大学学报(信息科学版)》 北大核心 2025年第5期907-916,共10页
利用遥感技术对耕地“非粮化”现象进行监测对于维护国家粮食安全、助力乡村振兴具有重要的现实意义。利用时间序列Sentinel-2遥感影像,在分析不同种植类型物候特征的基础上,选择若干个关键物候期来概括各生长阶段的物候特征,得到同种... 利用遥感技术对耕地“非粮化”现象进行监测对于维护国家粮食安全、助力乡村振兴具有重要的现实意义。利用时间序列Sentinel-2遥感影像,在分析不同种植类型物候特征的基础上,选择若干个关键物候期来概括各生长阶段的物候特征,得到同种种植类型的相似性物候特征及不同种植类型的差异性物候特征。基于由简及繁、分层分类的思路,构建耕地“非粮化”提取模型。在此基础上提取江汉平原潜在“非粮化”(含“非食物化”)区域,包括蔬菜、苗木或撂荒、坑塘养殖等。提取结果总体精度达到92.69%,Kappa系数为0.89。实验结果表明,基于物候特征挖掘和分层分类的方法可以进行区域尺度的“非粮化”监测。该方法在一定程度上可为耕地“非粮化”监测提供有效的技术手段,为进行农田利用方式监测、制定农业政策提供基础数据和科学依据。 展开更多
关键词 Sentinel-2遥感影像 物候特征 非粮化 江汉平原
原文传递
基于OCO-2卫星数据的中国CO_(2)浓度时空变化特征 被引量:3
20
作者 杨梅焕 邓彦昊 +2 位作者 王涛 姚明昊 赵滢滢 《遥感信息》 CSCD 北大核心 2024年第2期52-60,共9页
大气CO_(2)浓度增加引起的全球变暖问题是国内外学者关注的热点议题,但对CO_(2)的监测一直存在较多的不确定性。利用2015—2022年OCO-2卫星观测的CO_(2)柱浓度混合比数据(XCO_(2)),基于克里金插值和标准差椭圆等方法,分析了中国CO_(2)... 大气CO_(2)浓度增加引起的全球变暖问题是国内外学者关注的热点议题,但对CO_(2)的监测一直存在较多的不确定性。利用2015—2022年OCO-2卫星观测的CO_(2)柱浓度混合比数据(XCO_(2)),基于克里金插值和标准差椭圆等方法,分析了中国CO_(2)浓度时空分布与变化特征,有以下3个结论。1)基于OCO-2卫星数据的XCO_(2)数据集精度较高,与地面监测站(瓦里关站、鹿林站)观测结果的均方根误差仅为1.75 ppm和1.58 ppm,相关系数分别为0.91和0.96。2)年际上,2015—2022年中国年均XCO_(2)由399.52 ppm增至417.64 ppm,年均增速为2.56 ppm/a,高于过去10年全球CO_(2)浓度平均增速(2.06 ppm/a),但在2019年之后XCO_(2)增速呈下降趋势。季节上,XCO_(2)具有明显的季节变化特征,春季XCO_(2)最高,夏季最低。3)空间分布上,XCO_(2)表现出东部高,西部、东北地区低的空间分布特征。XCO_(2)浓度高值区域集中在京津冀和长三角等城市群。中国东北、西南地区XCO_(2)增速较快,高于华东、华南等经济发达地区。 展开更多
关键词 遥感数据反演 oCo-2 XCo_(2) 时空分析
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部