Three total column dry-air mole fractions of CO_2(XCO_2) products from satellite retrievals, namely SCIAMACHY, NIES-GOSAT, and ACOS-GOSAT, in the Northern Hemisphere were validated by ground data from the Total Carbon...Three total column dry-air mole fractions of CO_2(XCO_2) products from satellite retrievals, namely SCIAMACHY, NIES-GOSAT, and ACOS-GOSAT, in the Northern Hemisphere were validated by ground data from the Total Carbon Column Observing Network(TCCON). The results showed that the satellite data have the same seasonal fluctuations as in the TCCON data, with maximum in April or May and minimum in August or September. The three products all underestimate the XCO2. The ACOS-GOSAT and the NIES-GOSAT products are roughly equivalent, and their mean standard deviations are 2.26 × 10^(-6)and 2.27 × 10^(-6)respectively. The accuracy of the SCIMACHY product is slightly lower, with a mean standard deviation of 2.91 × 10^(-6).展开更多
A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing s...A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing simulation platform.The corresponding wave parameters of large-amplitude convex mode-2 ISWs under smooth surfaces are investigated along with the optical remote sensing characteristic parameters.The mode-2 ISWs in the experimentally obtained optical remote sensing image are produced by their overall modulation effect on the water surface,and the extreme points of the gray value of the profile curve of bright-dark stripes appear at the same location as the real optical remote sensing image.The present data extend to a larger range than previous studies,and for the characteristics of large amplitude convex mode-2 ISWs,the experimental results show a second-order dependence of wavelength on amplitude.There is a close relationship between optical remote sensing characteristic parameters and wave parameters of mode-2 ISWs,in which there is a positive linear relationship between the bright-dark spacing and wavelength and a nonlinear relationship with the amplitude,especially when the amplitude is very large,there is a significant increase in bright-dark spacing.展开更多
The research was carried out on the territory of the Karelian Isthmus of the Leningrad Region using Sentinel-2B images and data from a network of ground sample plots. The ground sample plots are located in the studied...The research was carried out on the territory of the Karelian Isthmus of the Leningrad Region using Sentinel-2B images and data from a network of ground sample plots. The ground sample plots are located in the studied territory mainly in a regular manner, laid and surveyed according to the ICP-Forests methodology with some additions. The total area of the sample plots is a small part of the entire study area. One of the objectives of the study was to determine the possibility of using the k-NN (nearest neighbor method) to assess the state of forests throughout the whole studied territory by joint statistical processing of data from ground sample plots and Sentinel-2B imagery. The data of the ground-based sample plots were divided into 2 equal parts, one for the application of the k-NN method, the second for checking the results of the method application. The systematic error in determining the mean damage class of the tree stands on sample plots by the k-NN method turned out to be zero, the random error is equal to one point. These results offer a possibility to determine the state of the forest in the entire study area. The second objective of the study was to examine the possibility of using the short-wave vegetation index (SWVI) to assess the state of forests. As a result, a close statistically reliable dependence of the average score of the state of plantations and the value of the SWVI index was established, which makes it possible to use the established relationship to determine the state of forests throughout the studied territory. The joint use and statistical processing of remotely sensed data and ground-based test areas by the two studied methods make it possible to assess the state of forests throughout the large studied area within the image. The results obtained can be used to monitor the state of forests in large areas and design appropriate forestry protective measures.展开更多
The objective of this study was to retrieve daily composite soil moisture by jointly using brightness temperature observations from multiple operating satellites for near real-time application with better coverage and...The objective of this study was to retrieve daily composite soil moisture by jointly using brightness temperature observations from multiple operating satellites for near real-time application with better coverage and higher accuracy.Our approach was to first apply the single-channel brightness radiometric algorithm to estimate soil moisture from the respective brightness temperature observations of the SMAP,SMOS,AMSR2,FY3B,and FY3C satellites on the same day and then produce a daily composite dataset by averaging the individual satellite-retrieved soil moisture.We further evaluated our product,the official soil moisture products of the five satellites,and the ensemble mean (i.e.,arithmetic mean) of the five official satellite soil moisture products against ground observations from two networks in Central Tibet and Anhui Province,China.The results show that our product outperforms the individual released products of the five satellites and their ensemble means in the two validation areas.The root mean square error (RMSE ) values of our product were 0.06 and 0.09 m3/m3 in Central Tibet and Anhui Province,respectively.Relative to the ensemble mean of the five satellite products,our product improves the accuracy by 9.1% and 57.7% in Central Tibet and Anhui Province,respectively.This demonstrates that jointly using brightness temperature observations from multiple satellites to retrieve soil moisture not only improves the spatial coverage of daily observations but also produces better daily composite products.展开更多
The humidity sensing properties of La^3+ and K^+ co-doped Ti0.9Sn0.1O2 thin films were investigated. The humidity sensitive thin films were prepared by sol-gel method on alumina substrates. The sensing behaviors of ...The humidity sensing properties of La^3+ and K^+ co-doped Ti0.9Sn0.1O2 thin films were investigated. The humidity sensitive thin films were prepared by sol-gel method on alumina substrates. The sensing behaviors of thin films were inspected at different sintering temperatures by constructing a humidity-impedance measuring system. It was found that the addition of rare earth ion La^3+ and alkali ion K^+ was beneficial for improving the humidity sensitive properties of the samples and La0.003K0.5Ti0.9Sn0.1O2 sintered at 500 ℃ for 4 h showed the best humidity sensing properties. The impedance of this thin film decreased from 109 to 104 Ω with excellent linearity in the humidity range of 11%-95%. Narrow hysteresis loop, prominent stability and high sensitivity were obtained. The effects of dopant con-tent and doping mechanism on humidity sensitivity were also discussed in terms of segregation of rare earth ions at grain boundaries and granularity of crystalline and influence of K^+ on the decrease in the intrinsic resistance of the materials, and increase in the number of wa-ter adsorption sites.展开更多
Based on the in situ optical measurements in the Bohai Sea of China, which belongs to a typical case-2 water area, we studied the characteristics of DCM (deep chlorophyll maximum) such as its spatial distribution, ver...Based on the in situ optical measurements in the Bohai Sea of China, which belongs to a typical case-2 water area, we studied the characteristics of DCM (deep chlorophyll maximum) such as its spatial distribution, vertical profile, etc. We found that when the depth of the chlorophyll maximum is comparatively small, even in turbid coastal water regions, there is always a good correlation between the concentrations of chlorophyll maximum and the satellite-received signals in blue-green spectral bands; the correlation is even better than that between the surface chlorophyll concentrations and the satellite-received signals. The strong correlation existing even in turbid coastal water regions indicates that an ocean color model to retrieve the concentration of DCM can be constructed for coastal waters if a comprehensive knowledge of the vertical distribution of chlorophyll concentration in the Bohai Sea of China is available.展开更多
We demonstrate here that global-scale determination of a key ionospheric parameter,the peak height of the F_(2)region(h_(m)F_(2)),can be obtained by making a simple ratio measurement of the atomic oxygen 130.4 and 135...We demonstrate here that global-scale determination of a key ionospheric parameter,the peak height of the F_(2)region(h_(m)F_(2)),can be obtained by making a simple ratio measurement of the atomic oxygen 130.4 and 135.6 nm emissions in the far-ultraviolet nightglow with a nadir-viewing system such as a pair of photometers suitable for flight on a CubeSat.We further demonstrate that measurements from an altitude that is within the typical range of nighttime h_(m)F_(2)250−450 km can provide the ratios that are needed for retrieval of the h_(m)F_(2).Our study is conducted mostly through numerical simulations by using radiative transfer models of the two emissions coupled with empirical models of the atmosphere and ionosphere.Modeling results show that the relationship between the h_(m)F_(2)and the intensity ratio is sensitive to the altitude from which the emissions are observed,primarily because of the distinctly different degrees of resonant scattering of the two emissions in the atmosphere.A roughly quadratic relationship can be established for observations from an orbit of~400 km,which enables h_(m)F_(2)retrieval.Parametric analysis indicates that the relationship can be affected by the ambient atmospheric conditions through resonant scattering and O2 absorption.For typical nighttime conditions with h_(m)F_(2)250−450 km,retrieval of the h_(m)F_(2)from synthetic observations shows that the typical errors are only a few kilometers(up to~20 km),depending on the accuracy of the ambient conditions predicted by the empirical models.Our findings pave the way for use of the 130.4/135.6 nm intensity ratios for global-scale monitoring of the nighttime ionosphere at mid to low latitudes.展开更多
Hyperspectral remote sensing offers an effective approach for frequent, synoptic water quality measurements over a large spatial extent. However, the optical complexity of case 2 water makes the water quality monitori...Hyperspectral remote sensing offers an effective approach for frequent, synoptic water quality measurements over a large spatial extent. However, the optical complexity of case 2 water makes the water quality monitoring by remote sensing in estuarine water a challenge. The prime objective of this study was to develop algorithms for hyperspectral remote sensing of water quality based on in situ spectral measurement of water reflectance. In this study, water reflectance spectra R(λ) were acquired by a pair of Ocean Optic 2000 spectroradiometers during the summers from 2008 to 2011 at Patuxent River, a tributary of Chesapeake Bay, USA. Simultaneously, concentrations of chlorophyll a and total suspended solids (TSS), as well as absorption of colored dissolved organic matter (CDOM) were measured. Empirical models that based on spectral features of water reflectance generally showed good correlations with water quality parameters. The retrieval model that using spectral bands at red/NIR showed a high correlation with chlorophyll a concentration (R2 = 0.81). The ratio of green to blue spectral bands is the best predictor for TSS (R2 = 0.75), and CDOM absorption is best correlated with spectral features at blue and NIR regions (R2 = 0.85). These empirical models were further applied to the ASIA Eagle hyperspectral aerial imagery to demonstrate the feasibility of hyperspectral remote sensing of water quality in the optical complex estuarine waters.展开更多
The effects of Li~+ co-doping concentration on the structure, upconversion luminescence and temperature sensing behavior of Er^(3+):La_2O_3 phosphors were investigated. X-ray diffraction and scanning electron mic...The effects of Li~+ co-doping concentration on the structure, upconversion luminescence and temperature sensing behavior of Er^(3+):La_2O_3 phosphors were investigated. X-ray diffraction and scanning electron microscopy observations reveal that Li~+ ion co-doping can change the lattice parameter of La_2O_3 host and increase the particle size of the samples. The optical investigation shows that co-doping of Li~+ ions can enhance the upconversion emission of Er^(3+) ions in La_2O_3 matrix effectively. Most importantly, the temperature sensing sensitivity of the samples is found to be dependent on Li~+ co-doping concentration,when the emission intensity ratio of the(~2H_(11/2)→~4 I_(15/2)) and(~4 S_(3/2)→~4 I_(15/2)) transitions of Er^(3+) is chosen as the thermometric index. Both of the optimum upconversion luminescence and temperature sensing sensitivity are obtained for 7 mol% Li~+ co-doped sample. When the Li~+ concentration is beyond 7 mol%,both the quenching in upconversion intensity and the degradation of temperature sensitivity are observed, which may be due to the serious distortion in local crystal field around Er^(3+) ions caused by the excess Li~+ ions.展开更多
Ag-and Pt-doped WO3-0.33 H2O nanorods with high response and selectivity to NH3 were synthesized from a tungsten-containing mine ral of scheelite concentrate by a simple combined process,namely by a high pressure leac...Ag-and Pt-doped WO3-0.33 H2O nanorods with high response and selectivity to NH3 were synthesized from a tungsten-containing mine ral of scheelite concentrate by a simple combined process,namely by a high pressure leaching method to obtain tungstate ions-containing leaching solution and followed by a hydrothermal method to prepare corresponding nanorods.The microstructure and NH3 sensing perfo rmance of the final products were investigated systematically.The microstructure characte rization showed that the as-prepared WO3-0.33 H2 O nanorods had a hexagonal crystal structure,and Ag and Pt nanoparticles were uniformly distributed in the WO3-0.33 H2O nano rods.Gas sensing measurements indicated that Ag and Pt nanopa rticles not only could obviously enhance NH3 sensing properties in terms of response,selectivity as well as response/recovery time,but also could reduce the optimal operating temperature at which the highest response was achieved.The highest responses of 22.4 and 47.6 for Agand Pt-doped WO3-0.33 H2O nanorods to 1000 ppm NH3 were obtained at 225 and 175℃,respectively,which were about four and eight folds higher than that of pure one at 250℃.The superior NH3 sensing properties are mainly ascribed to the catalytic activities of noble metals and the different work functions between noble metals and WO3-0.33 H2 O.展开更多
This paper is to discuss the sensing characteristics of SnO_2 semiconductor components in which Pr_6O_(11) is added.When experimenting under 11 gases of CH_3COCH_3,C_2H_5OH.C_6H_5CH_3,H_2,NH_3,CO, CO_2 CH_4,C_4H_10,n...This paper is to discuss the sensing characteristics of SnO_2 semiconductor components in which Pr_6O_(11) is added.When experimenting under 11 gases of CH_3COCH_3,C_2H_5OH.C_6H_5CH_3,H_2,NH_3,CO, CO_2 CH_4,C_4H_10,n—C_6H_(14)and n—C_7H_(16),we find that the components have selectivity to CH_3COCH_3, C_2H_5OH and that the ideal amount of Pr_6O_(11) in the components is about I.Owt%.The experiments also show that with the increase of the amount of Pr_6O_(11),the ideal working temperature,the response and restoration time decrease.展开更多
Porous α-Fe2O3 was synthesized by a simple hydrothermal treatment of FeC13 aqueous solution followed by a calcination process. In the synthesis of porous α-Fe2O3, no templates or pore-directing agents were used. The...Porous α-Fe2O3 was synthesized by a simple hydrothermal treatment of FeC13 aqueous solution followed by a calcination process. In the synthesis of porous α-Fe2O3, no templates or pore-directing agents were used. The as-prepared porous α-Fe2O3 was further employed as a support for loading Pt nanoparticles. The gas sensing performance of the obtained porous α-Fe2O3-supported Pt to VOCs was investigated. The sensor presented a high response and fast response-recovery characteristic to several VOCs including acetone, ether, methanol, ethanol, butanol and hexanol. Meanwhile, it exhibited a much higher response than the pure α-Fe2O3 at the operating temperature of 260 ℃. The enhanced sensing properties may be related to the unique porous structure of the α-Fe2O3 support and the promoting effect of active Pt nanoparticles for the sensing reactions.展开更多
The maintenance and restoration of wetland habitat is a priority conservation action for most waterfowl and other wetland-dependent species in North America.Despite much progress in targeting habitat management in sta...The maintenance and restoration of wetland habitat is a priority conservation action for most waterfowl and other wetland-dependent species in North America.Despite much progress in targeting habitat management in staging and wintering areas,methods to identify and target high-quality breeding habitats that result in the greatest potential for wildlife are still required.This is particularly true for species that breed in remote,inaccessible areas such as the American black duck,an intensively managed game bird in Eastern North America.Although evidence suggests that black ducks prefer productive,nutrient-rich waterbodies,such as beaver ponds,information about the distribution and quality of these habitats across the vast boreal forest is lacking with accurate identification remaining a challenge.Continuing advancements in remote sensing technologies that provide spatially extensive and temporally repeated information are particularly useful in meeting this information gap.In this study,we used multi-source remotely sensed information and a fuzzy analytical hierarchy process to map the spatial distribution of beaver ponds in Ontario.The use of multi-source data,including a Digital Elevation Model,a Sentinel-2 Multi-Spectral Image,and RadarSat 2 Polarimetric data,enabled us to identify individual beaver ponds on the landscape.Our model correctly identified an average of 83.0%of the known beaver dams and 72.5%of the known beaver ponds based on validation with an independent dataset.This study demonstrates that remote sensing is an effective approach for identifying beaver-modified wetland features and can be applied to map these and other wetland habitat features of interest across large spatial extents.Furthermore,the systematic acquisition strategy of the remote sensors employed is well suited for monitoring changes in wetland conditions that affect the availability of habitats important to waterfowl and other wildlife.展开更多
This paper focuses on prediction of change in agricultural lands by using ART2 algorithm. The existing method used ENVI and ARCGIS software to predict the changes in land, which showed less accuracy due to human error...This paper focuses on prediction of change in agricultural lands by using ART2 algorithm. The existing method used ENVI and ARCGIS software to predict the changes in land, which showed less accuracy due to human errors. To overcome this user friendly GUI based ART2 algorithm has been developed in java to obtain more accuracy in prediction of changes in land. The input is satellite temporal images of the years 1990 and 2014. By using the ART2 algorithm, the input images of the years 1990 and 2014 are classified, where the features are identified to form cluster. The clustered image is given as input and pixel to pixel comparison method in ART2 is implemented in java, for detecting the changes in agricultural lands. The comparison results of ENVI and ARCGIS and GUI based ART2 with in situ data show that the prediction of changes in agricultural land is more accurate in the case of GUI based ART2 implementation.展开更多
Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rel...Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity.This direction is more significant where traditional geochemical data are not ideal,which is the case for evaluating unconventional resources,such as tailing storage facilities(TSFs),because they are not static due to sedimentation,compaction and changes associated with hydrospheric and lithospheric processes(e.g.,erosion,saltation and mobility of chemical constituents).In this paper,we generate big secondary geochemical data derived from Sentinel-2 satellite-remote sensing data to showcase the benefits of big geochemical data using TSFs from the Witwatersrand Basin(South Africa).Using spatially fused remote sensing and legacy geochemical data on the Dump 20 TSF,we trained a machine learning model to predict in-situ gold grades.Subsequently,we deployed the model to the Lindum TSF,which is 3 km away,over a period of a few years(2015-2019).We were able to visualize and analyze the temporal variation in the spatial distributions of the gold grade of the Lindum TSF.Additionally,we were able to infer extraction sequencing(to the resolution of the data),acid mine drainage formation and seasonal migration.These findings suggest that dynamic mineral resource models and live geochemical monitoring(e.g.,of elemental mobility and structural changes)are possible without additional physical sampling.展开更多
基金funded by the 863 Project (2011AA12A104)National Natural Science Foundation of China (41375025)
文摘Three total column dry-air mole fractions of CO_2(XCO_2) products from satellite retrievals, namely SCIAMACHY, NIES-GOSAT, and ACOS-GOSAT, in the Northern Hemisphere were validated by ground data from the Total Carbon Column Observing Network(TCCON). The results showed that the satellite data have the same seasonal fluctuations as in the TCCON data, with maximum in April or May and minimum in August or September. The three products all underestimate the XCO2. The ACOS-GOSAT and the NIES-GOSAT products are roughly equivalent, and their mean standard deviations are 2.26 × 10^(-6)and 2.27 × 10^(-6)respectively. The accuracy of the SCIMACHY product is slightly lower, with a mean standard deviation of 2.91 × 10^(-6).
基金The National Natural Science Foundation of China under contract No.61871353。
文摘A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing simulation platform.The corresponding wave parameters of large-amplitude convex mode-2 ISWs under smooth surfaces are investigated along with the optical remote sensing characteristic parameters.The mode-2 ISWs in the experimentally obtained optical remote sensing image are produced by their overall modulation effect on the water surface,and the extreme points of the gray value of the profile curve of bright-dark stripes appear at the same location as the real optical remote sensing image.The present data extend to a larger range than previous studies,and for the characteristics of large amplitude convex mode-2 ISWs,the experimental results show a second-order dependence of wavelength on amplitude.There is a close relationship between optical remote sensing characteristic parameters and wave parameters of mode-2 ISWs,in which there is a positive linear relationship between the bright-dark spacing and wavelength and a nonlinear relationship with the amplitude,especially when the amplitude is very large,there is a significant increase in bright-dark spacing.
文摘The research was carried out on the territory of the Karelian Isthmus of the Leningrad Region using Sentinel-2B images and data from a network of ground sample plots. The ground sample plots are located in the studied territory mainly in a regular manner, laid and surveyed according to the ICP-Forests methodology with some additions. The total area of the sample plots is a small part of the entire study area. One of the objectives of the study was to determine the possibility of using the k-NN (nearest neighbor method) to assess the state of forests throughout the whole studied territory by joint statistical processing of data from ground sample plots and Sentinel-2B imagery. The data of the ground-based sample plots were divided into 2 equal parts, one for the application of the k-NN method, the second for checking the results of the method application. The systematic error in determining the mean damage class of the tree stands on sample plots by the k-NN method turned out to be zero, the random error is equal to one point. These results offer a possibility to determine the state of the forest in the entire study area. The second objective of the study was to examine the possibility of using the short-wave vegetation index (SWVI) to assess the state of forests. As a result, a close statistically reliable dependence of the average score of the state of plantations and the value of the SWVI index was established, which makes it possible to use the established relationship to determine the state of forests throughout the studied territory. The joint use and statistical processing of remotely sensed data and ground-based test areas by the two studied methods make it possible to assess the state of forests throughout the large studied area within the image. The results obtained can be used to monitor the state of forests in large areas and design appropriate forestry protective measures.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0402701)the National Natural Science Foundation of China(Grants No.51879067 and 51579131)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20180022)the Six Talent Peaks Project in Jiangsu Province(Grant No.NY-004)the Fundamental Research Funds for the Central Universities of China(Grants No.2018842914 and 2018B04714)the China National Flash Flood Disaster Prevention and Control Project(Grant No.126301001000150068)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0572)
文摘The objective of this study was to retrieve daily composite soil moisture by jointly using brightness temperature observations from multiple operating satellites for near real-time application with better coverage and higher accuracy.Our approach was to first apply the single-channel brightness radiometric algorithm to estimate soil moisture from the respective brightness temperature observations of the SMAP,SMOS,AMSR2,FY3B,and FY3C satellites on the same day and then produce a daily composite dataset by averaging the individual satellite-retrieved soil moisture.We further evaluated our product,the official soil moisture products of the five satellites,and the ensemble mean (i.e.,arithmetic mean) of the five official satellite soil moisture products against ground observations from two networks in Central Tibet and Anhui Province,China.The results show that our product outperforms the individual released products of the five satellites and their ensemble means in the two validation areas.The root mean square error (RMSE ) values of our product were 0.06 and 0.09 m3/m3 in Central Tibet and Anhui Province,respectively.Relative to the ensemble mean of the five satellite products,our product improves the accuracy by 9.1% and 57.7% in Central Tibet and Anhui Province,respectively.This demonstrates that jointly using brightness temperature observations from multiple satellites to retrieve soil moisture not only improves the spatial coverage of daily observations but also produces better daily composite products.
文摘The humidity sensing properties of La^3+ and K^+ co-doped Ti0.9Sn0.1O2 thin films were investigated. The humidity sensitive thin films were prepared by sol-gel method on alumina substrates. The sensing behaviors of thin films were inspected at different sintering temperatures by constructing a humidity-impedance measuring system. It was found that the addition of rare earth ion La^3+ and alkali ion K^+ was beneficial for improving the humidity sensitive properties of the samples and La0.003K0.5Ti0.9Sn0.1O2 sintered at 500 ℃ for 4 h showed the best humidity sensing properties. The impedance of this thin film decreased from 109 to 104 Ω with excellent linearity in the humidity range of 11%-95%. Narrow hysteresis loop, prominent stability and high sensitivity were obtained. The effects of dopant con-tent and doping mechanism on humidity sensitivity were also discussed in terms of segregation of rare earth ions at grain boundaries and granularity of crystalline and influence of K^+ on the decrease in the intrinsic resistance of the materials, and increase in the number of wa-ter adsorption sites.
文摘Based on the in situ optical measurements in the Bohai Sea of China, which belongs to a typical case-2 water area, we studied the characteristics of DCM (deep chlorophyll maximum) such as its spatial distribution, vertical profile, etc. We found that when the depth of the chlorophyll maximum is comparatively small, even in turbid coastal water regions, there is always a good correlation between the concentrations of chlorophyll maximum and the satellite-received signals in blue-green spectral bands; the correlation is even better than that between the surface chlorophyll concentrations and the satellite-received signals. The strong correlation existing even in turbid coastal water regions indicates that an ocean color model to retrieve the concentration of DCM can be constructed for coastal waters if a comprehensive knowledge of the vertical distribution of chlorophyll concentration in the Bohai Sea of China is available.
基金the National Natural Science Foundation of China through Grant 8206100245the Chinese Meteorological Administration through Grant FY-APP-ZX-2022.0222.
文摘We demonstrate here that global-scale determination of a key ionospheric parameter,the peak height of the F_(2)region(h_(m)F_(2)),can be obtained by making a simple ratio measurement of the atomic oxygen 130.4 and 135.6 nm emissions in the far-ultraviolet nightglow with a nadir-viewing system such as a pair of photometers suitable for flight on a CubeSat.We further demonstrate that measurements from an altitude that is within the typical range of nighttime h_(m)F_(2)250−450 km can provide the ratios that are needed for retrieval of the h_(m)F_(2).Our study is conducted mostly through numerical simulations by using radiative transfer models of the two emissions coupled with empirical models of the atmosphere and ionosphere.Modeling results show that the relationship between the h_(m)F_(2)and the intensity ratio is sensitive to the altitude from which the emissions are observed,primarily because of the distinctly different degrees of resonant scattering of the two emissions in the atmosphere.A roughly quadratic relationship can be established for observations from an orbit of~400 km,which enables h_(m)F_(2)retrieval.Parametric analysis indicates that the relationship can be affected by the ambient atmospheric conditions through resonant scattering and O2 absorption.For typical nighttime conditions with h_(m)F_(2)250−450 km,retrieval of the h_(m)F_(2)from synthetic observations shows that the typical errors are only a few kilometers(up to~20 km),depending on the accuracy of the ambient conditions predicted by the empirical models.Our findings pave the way for use of the 130.4/135.6 nm intensity ratios for global-scale monitoring of the nighttime ionosphere at mid to low latitudes.
文摘Hyperspectral remote sensing offers an effective approach for frequent, synoptic water quality measurements over a large spatial extent. However, the optical complexity of case 2 water makes the water quality monitoring by remote sensing in estuarine water a challenge. The prime objective of this study was to develop algorithms for hyperspectral remote sensing of water quality based on in situ spectral measurement of water reflectance. In this study, water reflectance spectra R(λ) were acquired by a pair of Ocean Optic 2000 spectroradiometers during the summers from 2008 to 2011 at Patuxent River, a tributary of Chesapeake Bay, USA. Simultaneously, concentrations of chlorophyll a and total suspended solids (TSS), as well as absorption of colored dissolved organic matter (CDOM) were measured. Empirical models that based on spectral features of water reflectance generally showed good correlations with water quality parameters. The retrieval model that using spectral bands at red/NIR showed a high correlation with chlorophyll a concentration (R2 = 0.81). The ratio of green to blue spectral bands is the best predictor for TSS (R2 = 0.75), and CDOM absorption is best correlated with spectral features at blue and NIR regions (R2 = 0.85). These empirical models were further applied to the ASIA Eagle hyperspectral aerial imagery to demonstrate the feasibility of hyperspectral remote sensing of water quality in the optical complex estuarine waters.
基金Project supported by the National Natural Science Foundation of China(51401197,61605192)the Natural Science Foundation of Zhejiang Province(LQ13F050003,LZ14B010001)
文摘The effects of Li~+ co-doping concentration on the structure, upconversion luminescence and temperature sensing behavior of Er^(3+):La_2O_3 phosphors were investigated. X-ray diffraction and scanning electron microscopy observations reveal that Li~+ ion co-doping can change the lattice parameter of La_2O_3 host and increase the particle size of the samples. The optical investigation shows that co-doping of Li~+ ions can enhance the upconversion emission of Er^(3+) ions in La_2O_3 matrix effectively. Most importantly, the temperature sensing sensitivity of the samples is found to be dependent on Li~+ co-doping concentration,when the emission intensity ratio of the(~2H_(11/2)→~4 I_(15/2)) and(~4 S_(3/2)→~4 I_(15/2)) transitions of Er^(3+) is chosen as the thermometric index. Both of the optimum upconversion luminescence and temperature sensing sensitivity are obtained for 7 mol% Li~+ co-doped sample. When the Li~+ concentration is beyond 7 mol%,both the quenching in upconversion intensity and the degradation of temperature sensitivity are observed, which may be due to the serious distortion in local crystal field around Er^(3+) ions caused by the excess Li~+ ions.
基金supported by the National Natural Science Foundation of China(Nos.51674067,51422402)FundamentalResearch Funds for the Central Universities(Nos.N180102032,N180106002,N180408018,N170106005)+3 种基金Liaoning Revitalization Talents Program(No.XLYC1807160)Liaoning BaiQianWan Talents Program(No.201892127)Open Foundation of State Key Laborato ry of Mineral Processing(No.BGRIMM-KJSKL-2019-12)Open Foundation of State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control(No.HB201902)。
文摘Ag-and Pt-doped WO3-0.33 H2O nanorods with high response and selectivity to NH3 were synthesized from a tungsten-containing mine ral of scheelite concentrate by a simple combined process,namely by a high pressure leaching method to obtain tungstate ions-containing leaching solution and followed by a hydrothermal method to prepare corresponding nanorods.The microstructure and NH3 sensing perfo rmance of the final products were investigated systematically.The microstructure characte rization showed that the as-prepared WO3-0.33 H2 O nanorods had a hexagonal crystal structure,and Ag and Pt nanoparticles were uniformly distributed in the WO3-0.33 H2O nano rods.Gas sensing measurements indicated that Ag and Pt nanopa rticles not only could obviously enhance NH3 sensing properties in terms of response,selectivity as well as response/recovery time,but also could reduce the optimal operating temperature at which the highest response was achieved.The highest responses of 22.4 and 47.6 for Agand Pt-doped WO3-0.33 H2O nanorods to 1000 ppm NH3 were obtained at 225 and 175℃,respectively,which were about four and eight folds higher than that of pure one at 250℃.The superior NH3 sensing properties are mainly ascribed to the catalytic activities of noble metals and the different work functions between noble metals and WO3-0.33 H2 O.
文摘This paper is to discuss the sensing characteristics of SnO_2 semiconductor components in which Pr_6O_(11) is added.When experimenting under 11 gases of CH_3COCH_3,C_2H_5OH.C_6H_5CH_3,H_2,NH_3,CO, CO_2 CH_4,C_4H_10,n—C_6H_(14)and n—C_7H_(16),we find that the components have selectivity to CH_3COCH_3, C_2H_5OH and that the ideal amount of Pr_6O_(11) in the components is about I.Owt%.The experiments also show that with the increase of the amount of Pr_6O_(11),the ideal working temperature,the response and restoration time decrease.
基金supported by the National Natural Science Foundation of China (No. 20871071)the Science and Technology Commission Foundation of Tianjin (Nos. 09JCYBJC03600 and 10JCYBJC03900)
文摘Porous α-Fe2O3 was synthesized by a simple hydrothermal treatment of FeC13 aqueous solution followed by a calcination process. In the synthesis of porous α-Fe2O3, no templates or pore-directing agents were used. The as-prepared porous α-Fe2O3 was further employed as a support for loading Pt nanoparticles. The gas sensing performance of the obtained porous α-Fe2O3-supported Pt to VOCs was investigated. The sensor presented a high response and fast response-recovery characteristic to several VOCs including acetone, ether, methanol, ethanol, butanol and hexanol. Meanwhile, it exhibited a much higher response than the pure α-Fe2O3 at the operating temperature of 260 ℃. The enhanced sensing properties may be related to the unique porous structure of the α-Fe2O3 support and the promoting effect of active Pt nanoparticles for the sensing reactions.
基金supported by the Natural Sciences and Engineering Research Council of Canada[RGPIN-2021-03624].
文摘The maintenance and restoration of wetland habitat is a priority conservation action for most waterfowl and other wetland-dependent species in North America.Despite much progress in targeting habitat management in staging and wintering areas,methods to identify and target high-quality breeding habitats that result in the greatest potential for wildlife are still required.This is particularly true for species that breed in remote,inaccessible areas such as the American black duck,an intensively managed game bird in Eastern North America.Although evidence suggests that black ducks prefer productive,nutrient-rich waterbodies,such as beaver ponds,information about the distribution and quality of these habitats across the vast boreal forest is lacking with accurate identification remaining a challenge.Continuing advancements in remote sensing technologies that provide spatially extensive and temporally repeated information are particularly useful in meeting this information gap.In this study,we used multi-source remotely sensed information and a fuzzy analytical hierarchy process to map the spatial distribution of beaver ponds in Ontario.The use of multi-source data,including a Digital Elevation Model,a Sentinel-2 Multi-Spectral Image,and RadarSat 2 Polarimetric data,enabled us to identify individual beaver ponds on the landscape.Our model correctly identified an average of 83.0%of the known beaver dams and 72.5%of the known beaver ponds based on validation with an independent dataset.This study demonstrates that remote sensing is an effective approach for identifying beaver-modified wetland features and can be applied to map these and other wetland habitat features of interest across large spatial extents.Furthermore,the systematic acquisition strategy of the remote sensors employed is well suited for monitoring changes in wetland conditions that affect the availability of habitats important to waterfowl and other wildlife.
文摘This paper focuses on prediction of change in agricultural lands by using ART2 algorithm. The existing method used ENVI and ARCGIS software to predict the changes in land, which showed less accuracy due to human errors. To overcome this user friendly GUI based ART2 algorithm has been developed in java to obtain more accuracy in prediction of changes in land. The input is satellite temporal images of the years 1990 and 2014. By using the ART2 algorithm, the input images of the years 1990 and 2014 are classified, where the features are identified to form cluster. The clustered image is given as input and pixel to pixel comparison method in ART2 is implemented in java, for detecting the changes in agricultural lands. The comparison results of ENVI and ARCGIS and GUI based ART2 with in situ data show that the prediction of changes in agricultural land is more accurate in the case of GUI based ART2 implementation.
基金supported by a Department of Science and Innovation(DSI)-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity.This direction is more significant where traditional geochemical data are not ideal,which is the case for evaluating unconventional resources,such as tailing storage facilities(TSFs),because they are not static due to sedimentation,compaction and changes associated with hydrospheric and lithospheric processes(e.g.,erosion,saltation and mobility of chemical constituents).In this paper,we generate big secondary geochemical data derived from Sentinel-2 satellite-remote sensing data to showcase the benefits of big geochemical data using TSFs from the Witwatersrand Basin(South Africa).Using spatially fused remote sensing and legacy geochemical data on the Dump 20 TSF,we trained a machine learning model to predict in-situ gold grades.Subsequently,we deployed the model to the Lindum TSF,which is 3 km away,over a period of a few years(2015-2019).We were able to visualize and analyze the temporal variation in the spatial distributions of the gold grade of the Lindum TSF.Additionally,we were able to infer extraction sequencing(to the resolution of the data),acid mine drainage formation and seasonal migration.These findings suggest that dynamic mineral resource models and live geochemical monitoring(e.g.,of elemental mobility and structural changes)are possible without additional physical sampling.