期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Using ontology and rules to retrieve the semantics of disaster remote sensing data 被引量:1
1
作者 DONG Yumin LI Ziyang +1 位作者 LI Xuesong LI Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1211-1218,共8页
Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster... Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency. 展开更多
关键词 remote sensing data DISASTER ONTOLOGY semantic reasoning
在线阅读 下载PDF
The Review of Land Use/Land Cover Mapping AI Methodology and Application in the Era of Remote Sensing Big Data 被引量:1
2
作者 ZHANG Xinchang SHI Qian +2 位作者 SUN Ying HUANG Jianfeng HE Da 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期1-23,共23页
With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to th... With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to the applications of earth observation and information retrieval,including climate change monitoring,natural resource investigation,ecological environment protection,and territorial space planning.Over the past decade,artificial intelligence technology represented by deep learning has made significant contributions to the field of Earth observation.Therefore,this review will focus on the bottlenecks and development process of using deep learning methods for land use/land cover mapping of the Earth’s surface.Firstly,it introduces the basic framework of semantic segmentation network models for land use/land cover mapping.Then,we summarize the development of semantic segmentation models in geographical field,focusing on spatial and semantic feature extraction,context relationship perception,multi-scale effects modelling,and the transferability of models under geographical differences.Then,the application of semantic segmentation models in agricultural management,building boundary extraction,single tree segmentation and inter-species classification are reviewed.Finally,we discuss the future development prospects of deep learning technology in the context of remote sensing big data. 展开更多
关键词 remote sensing big data deep learning semantic segmentation land use/land cover mapping
在线阅读 下载PDF
Improved Hungarian algorithm-based task scheduling optimization strategy for remote sensing big data processing 被引量:1
3
作者 Sheng Zhang Yong Xue +3 位作者 Heng Zhang Xiran Zhou Kaiyuan Li Runze Liu 《Geo-Spatial Information Science》 CSCD 2024年第4期1141-1154,共14页
With the development of remote sensing technology and computing science,remote sensing data present typical big data characteristics.The rapid development of remote sensing big data has brought a large number of data ... With the development of remote sensing technology and computing science,remote sensing data present typical big data characteristics.The rapid development of remote sensing big data has brought a large number of data processing tasks,which bring huge challenges to computing.Distributed computing is the primary means to process remote sensing big data,and task scheduling plays a key role in this process.This study analyzes the characteristics of batch processing of remote sensing big data.This paper uses the Hungarian algorithm as a basis for proposing a novel strategy for task assignment optimization of remote sensing big data batch workflow,called optimal sequence dynamic assignment algorithm,which is applicable to heterogeneously distributed computing environments.This strategy has two core contents:the improved Hungarian algorithm model and the multi-level optimal assignment task queue mechanism.Moreover,the strategy solves the dependency,mismatch,and computational resource idleness problems in the optimal scheduling of remote sensing batch processing tasks.The proposed strategy likewise effectively improves data processing efficiency without increasing computer hardware resources and without optimizing the computational algorithm.We experimented with the aerosol optical depth retrieval algorithm workflow using this strategy.Compared with the processing before optimization,the makespan of the proposed method was shortened by at least 20%.Compared with popular scheduling algorithm,the proposed method has evident competitiveness in acceleration effect and large-scale task scheduling. 展开更多
关键词 WORKFLOW Hungarian algorithm optimal assignment remote sensing big data large-scale task
原文传递
China’s poverty assessment and analysis under the framework of the UN SDGs based on multisource remote sensing data
4
作者 Mengjie Wang Yanjun Wang +3 位作者 Fei Teng Shaochun Li Yunhao Lin Hengfan Cai 《Geo-Spatial Information Science》 CSCD 2024年第1期111-131,共21页
Poverty has always been a global concern that has restricted human development.The first goal(SDG 1)of the United Nations Sustainable Development Goals(SDGs)is to eliminate all forms of poverty all over the world.The ... Poverty has always been a global concern that has restricted human development.The first goal(SDG 1)of the United Nations Sustainable Development Goals(SDGs)is to eliminate all forms of poverty all over the world.The establishment of a scientific and effective localized SDG 1 evaluation and monitoring method is the key to achieving SDG 1.This paper proposes SDG 1 China district and county-level localization evaluation method based on multi-source remote sensing data for the United Nations Sustainable Development Framework.The temporal and spatial distribution characteristics of China’s poverty areas and their SDG 1 evaluation values in 2012,2014,2016,and 2018 have been analyzed.Based on the SDGs global indicator framework,this paper first constructed SDG 1 China’s district and county localization indicator system and then extracted multidimensional feature factors from nighttime light images,land cover data,and digital elevation model data.Secondly,we establish SDG 1 China’s localized partial least squares estimation model and SDG 1 China’s localized machine learning estimation model.Finally,we analyze and verify the spatiotemporal distribution characteristics of China’s poverty areas and counties and their SDG 1 evaluation values.The results show that SDG 1 China’s district and county localization indicator system proposed in this study and SDG 1 China’s localized partial least squares estimation model can better reflect the poverty level of China’s districts and counties.The estimated model R^(2) is 0.65,which can identify 72.77%of China’s national poverty counties.From 2012 to 2018,the spatial distribution pattern of SDG evaluation values in China’s districts and counties is that the SDG evaluation values gradually increase from western China to eastern China.In addition,the average SDG 1 evaluation value of China’s districts and counties increased by 23%from 2012 to 2018.This paper is oriented to the United Nations SDGs framework,explores the SDG 1 localized evaluation method of China’s districts and counties based on multisource remote sensing data,and provides a scientific and rapid regional poverty monitoring and evaluation program for the implementation of the 2030 agenda poverty alleviation goals. 展开更多
关键词 Multisource remote sensing data Sustainable Development Goals(SDGs) poverty indicator system partial least squares machine learning
原文传递
Dynamic of Chinas cultivated land and landcover changes of its typical regions based on remote sensing data 被引量:1
5
作者 张佳华 董文杰 +2 位作者 王长耀 刘纪远 姚凤梅 《Journal of Forestry Research》 SCIE CAS CSCD 2001年第3期183-186,210,共5页
Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigati... Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigation showed that the whole distribution of the cultivated land shifted to Northeast and Northwest China, and as a result, the ecological quality of cultivated land dropped down. The seacoast and cultivated land in the area of Yellow River Mouth expanded by an increasing rate of 0.73 kma-1, with a depositing rate of 2.1 kma-1. The desertification area of the dynamic of Horqin Sandy Land increased from 60.02% of the total land area in1970s to 64.82% in1980s but decreased to 54.90% in early 1990s. As to the change of North Tibet lakes, the water area of the Namu Lake decreased by 38.58 km2 from year 1970 to 1988, with a decreasing rate of 2.14 km2a-1. 展开更多
关键词 remote sensing data Cultivated land Landcover change Typical ecological regions China
在线阅读 下载PDF
Establishing evaluation index system for desertification of Keerqin sandy land with remote sensing data 被引量:4
6
作者 FAN Wen-yi ZHANG Wen-hua +1 位作者 YU Su-fang LIU Dan 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第3期209-212,共4页
Keerqin sand land is located in the transitional terrain between the Northeast Plain and Inner Mongolia (42°41′-45°15′N, 118°35′-123°30′ E) in Northeast China and it is seriously affected by ... Keerqin sand land is located in the transitional terrain between the Northeast Plain and Inner Mongolia (42°41′-45°15′N, 118°35′-123°30′ E) in Northeast China and it is seriously affected by desertification. According to the configuration and ecotope of the earths surface, the coverage of vegetation, occupation ratio of bare sandy land and the soil texture were selected as evaluation indexes by using the field investigation data. The evaluation index system of Keerqin sandy desertification was established by using Remote Sensing data. and the occupation ratio of bare sandy land was obtained by mixed spectrum model. This index system is validated by the field investioation data and results indicate that it is suitable for the desertification evaluation of Keerqin.Foundation Item: This study is supported by a grant from the National Natural Science Foundation of China (No. 30371192) 展开更多
关键词 Sandy desertification Evaluation index system remote sensing data Keerqin sandy land Inner Mongolia
在线阅读 下载PDF
The Identification and Geological Significance of Fault Buried in the Gasikule Salt Lake in China based on the Multi-source Remote Sensing Data 被引量:2
7
作者 WANG Junhu ZHAO Yingjun +1 位作者 WU Ding LU Donghua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第3期996-1007,共12页
The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great... The salinity of the salt lake is an important factor to evaluate whether it contains some mineral resources or not,the fault buried in the salt lake could control the abundance of the salinity.Therefore,it is of great geological importance to identify the fault buried in the salt lake.Taking the Gasikule Salt Lake in China for example,the paper established a new method to identify the fault buried in the salt lake based on the multi-source remote sensing data including Landsat TM,SPOT-5 and ASTER data.It includes the acquisition and selection of the multi-source remote sensing data,data preprocessing,lake waterfront extraction,spectrum extraction of brine with different salinity,salinity index construction,salinity separation,analysis of the abnormal salinity and identification of the fault buried in salt lake,temperature inversion of brine and the fault verification.As a result,the study identified an important fault buried in the east of the Gasikule Salt Lake that controls the highest salinity abnormal.Because the level of the salinity is positively correlated to the mineral abundance,the result provides the important reference to identify the water body rich in mineral resources in the salt lake. 展开更多
关键词 multi-source remote sensing data Gasikule Salt Lake Mangya depression China
在线阅读 下载PDF
Progress of Geological Survey Using Airborne Hyperspectral Remote Sensing Data in the Gansu and Qinghai Regions 被引量:3
8
作者 ZHAO Yingjun QIN Kai +6 位作者 SUN Yu LIU Dechang TIAN Feng PEI Chengkai YANG Yanjie YANG Guofang ZHOU Jiajing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第5期1783-1784,共2页
Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Theref... Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Therefore, they can be effectively used to identify these grotmd objects which are difficult to discriminate by using wide-band data, and show much promise in geological survey. At the height of 1500 m, have 36 bands in visible to the CASI hyperspectral data near-infrared spectral range, with a spectral resolution of 19 nm and a space resolution of 0.9 m. The SASI data have 101 bands in the shortwave infrared spectral range, with a spectral resolution of 15 nm and a space resolution of 2.25 m. In 2010, China Geological Survey deployed an airborne CASI/SASI hyperspectral measurement project, and selected the Liuyuan and Fangshankou areas in the Beishan metallogenic belt of Gansu Province, and the Nachitai area of East Kunlun metallogenic belt in Qinghai Province to conduct geological survey. The work period of this project was three years. 展开更多
关键词 In Progress of Geological Survey Using Airborne Hyperspectral remote Sensing data in the Gansu and Qinghai Regions maps
在线阅读 下载PDF
Modeling and predicting dengue fever cases in key regions of the Philippines using remote sensing data 被引量:2
9
作者 Maria Ruth B.Pineda-Cortel Benjie M.Clemente Pham Thi Thanh Nga 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2019年第2期60-66,共7页
Objective: To correlate climatic and environmental factors such as land surface temperature, rainfall, humidity and normalized difference vegetation index with the incidence of dengue to develop prediction models for ... Objective: To correlate climatic and environmental factors such as land surface temperature, rainfall, humidity and normalized difference vegetation index with the incidence of dengue to develop prediction models for the Philippines using remote-sensing data.Methods: Timeseries analysis was performed using dengue cases in four regions of the Philippines and monthly climatic variables extracted from Global Satellite Mapping of Precipitation for rainfall, and MODIS for the land surface temperature and normalized difference vegetation index from 2008-2015.Consistent dataset during the period of study was utilized in Autoregressive Integrated Moving Average models to predict dengue incidence in the four regions being studied.Results: The best-fitting models were selected to characterize the relationship between dengue incidence and climate variables.The predicted cases of dengue for January to December 2015 period fitted well with the actual dengue cases of the same timeframe.It also showed significantly good linear regression with a square of correlation of 0.869 5 for the four regions combined.Conclusion: Climatic and environmental variables are positively associated with dengue incidence and suit best as predictor factors using Autoregressive Integrated Moving Average models.This finding could be a meaningful tool in developing an early warning model based on weather forecasts to deliver effective public health prevention and mitigation programs. 展开更多
关键词 Dengue fever Climate change remote sensing data Autoregressive Integrated Moving Average models
暂未订购
A Marine Remote Sensing Spatial Database Engine for Web Publishing 被引量:1
10
作者 CHEN Zhirong XU Caijiang 《Geo-Spatial Information Science》 2008年第4期252-256,共5页
To meet the requirements of efficient management and web publishing for marine remote sensing data, a spatial database engine, named MRSSDE, is designed independently. The logical model, physical model, and optimizati... To meet the requirements of efficient management and web publishing for marine remote sensing data, a spatial database engine, named MRSSDE, is designed independently. The logical model, physical model, and optimization method of MRSSDE are discussed in detail. Compared to the ArcSDE, which is the leading product of Spatial Database Engine, the MRSSDE proved to be more effective. 展开更多
关键词 marine remote sensing data spatial database engine geographic information system web publishing
原文传递
AN IMPROVED ALGORITHM FOR SUPERVISED FUZZY C-MEANS CLUSTERING OF REMOTELY SENSED DATA 被引量:1
11
作者 ZHANG Jingxiong Roger P Kirby 《Geo-Spatial Information Science》 2000年第1期39-44,共6页
This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional... This paper describes an improved algorithm for fuzzy c-means clustering of remotely sensed data, by which the degree of fuzziness of the resultant classification is de- creased as comparing with that by a conventional algorithm: that is, the classification accura- cy is increased. This is achieved by incorporating covariance matrices at the level of individual classes rather than assuming a global one. Empirical results from a fuzzy classification of an Edinburgh suburban land cover confirmed the improved performance of the new algorithm for fuzzy c-means clustering, in particular when fuzziness is also accommodated in the assumed reference data. 展开更多
关键词 remotely sensed data (images) CLASSIFICATION fuzzyc-means clustering fuzzy membership values (FMVs) Mahalanobis distances covariance matrix
在线阅读 下载PDF
Extending self-organizing maps for supervised classification of remotely sensed data 被引量:1
12
作者 CHEN Yongliang 《Global Geology》 2009年第1期46-56,共11页
An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the ... An extended self-organizing map for supervised classification is proposed in this paper. Unlike other traditional SOMs, the model has an input layer, a Kohonen layer, and an output layer. The number of neurons in the input layer depends on the dimensionality of input patterns. The number of neurons in the output layer equals the number of the desired classes. The number of neurons in the Kohonen layer may be a few to several thousands, which depends on the complexity of classification problems and the classification precision. Each training sample is expressed by a pair of vectors : an input vector and a class codebook vector. When a training sample is input into the model, Kohonen's competitive learning rule is applied to selecting the winning neuron from the Kohouen layer and the weight coefficients connecting all the neurons in the input layer with both the winning neuron and its neighbors in the Kohonen layer are modified to be closer to the input vector, and those connecting all the neurons around the winning neuron within a certain diameter in the Kohonen layer with all the neurons in the output layer are adjusted to be closer to the class codebook vector. If the number of training sam- ples is sufficiently large and the learning epochs iterate enough times, the model will be able to serve as a supervised classifier. The model has been tentatively applied to the supervised classification of multispectral remotely sensed data. The author compared the performances of the extended SOM and BPN in remotely sensed data classification. The investigation manifests that the extended SOM is feasible for supervised classification. 展开更多
关键词 Self-organizing map modified competitive learning supervised classification remotely sensed data
在线阅读 下载PDF
Principle and mathematical method for inverting stress state of a medium from the remote sensing data
13
作者 尹京苑 邓明德 +3 位作者 钱家栋 房宗绯 赵宝宗 刘晓琳 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第4期413-421,共9页
It has been proved through experiments that the electromagnetic radiation energy of a substance will vary when stress acts on the substance. This moment, the electromagnetic radiation energy (observation value) receiv... It has been proved through experiments that the electromagnetic radiation energy of a substance will vary when stress acts on the substance. This moment, the electromagnetic radiation energy (observation value) received by the remote sensor is triggered not only by the substance temperature and also by the stress. Separating quantitatively these two kinds of electromagnetic radiation energy and then inversing the actual temperature state and stress state of a medium is a matter with practical significance in earthquake prediction and stability monitoring for the large-scale geotechnical engineering. In this paper the principle and the mathematical method for inversing stress by using multiband remote sensing data are discussed in detail. A calculation example is listed. 展开更多
关键词 remote sensing data inversing stress PRINCIPLE METHOD
在线阅读 下载PDF
Detection of landuse/landcover changes using remotely-sensed data
14
作者 Jinwoo Park Jungsoo Lee 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第6期1343-1350,共8页
We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-r... We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-resolution remote sensing (RS) satellite images. Deforestation identified in this way (hereafter, RSD) was compared to administrative data on deforestation. We also compared high-resolution satellite images (HR-RSD) and actual deforestation based on categories which were Intergovernmental Panel on Climate Change data. RSD generated by medium-resolution satellite images overesti- mated the amount of deforested area by 1.5-2.4 times the actual deforested area, whereas RSD generated by HR- RSD underestimated the amount of deforested area by 0.4-0.9 times the actual area. The highest degree of matching (90 %) was found in HR-RSD with a grid interval of 500 m and the accuracy of HR-RSD was the highest, at 67 %. The results also revealed that the largest cause of deforestation was the establishment of settlements followed by conversion to cropland and grassland. We conclude that for the identification of deforestation using satellite images, HR-RSD with a grid interval of 500 m is most suitable. 展开更多
关键词 DEFORESTATION Spatial sampling method remotely sensed data. Land cover change Spatial resolution
在线阅读 下载PDF
Mapping a Paleodrainage System of the Keriya River Using Remote Sensing Data and Historical Materials
15
作者 Lei Luo Xinyuan Wang +2 位作者 Heng Cai Chao Li Wei Ji 《Journal of Earth Science and Engineering》 2012年第12期712-721,共10页
Keriya River,one of the ancient Four Green Corridors in the Tarim Basin,recording the changes of climate-environment and the ancient Silk Road of the region.According to the archaeological data,historical materials an... Keriya River,one of the ancient Four Green Corridors in the Tarim Basin,recording the changes of climate-environment and the ancient Silk Road of the region.According to the archaeological data,historical materials and paleoclimates information,its eeo-environment and climate have taken great changes since the 1.09 Ma B.P,especially during the recent 2,000 years,many famous ancient cities having been abandoned and the south route of the Silk Road has been moved southward.This study illustrates the capability of the remote sensing data(radar data,topographic data and optical images)and historical materials,in mapping the ancient drainage networks.A major paleodrainage system of Keriya River has linked the Kunlun Mountains to the Tienshan Mountains,possibly as far back as the early Pleistocene.The Keriya River will have important implications for not only the understanding of the paleoenvironments and paleoclimates of Tarim Basin from the early Pleistocene to the Holocene,but also the changes of the Silk Road. 展开更多
关键词 remote sensing data historical materials PALEOCHANNEL Keriya Tarim Basin Silk Road.
在线阅读 下载PDF
Red Tide Information Extraction Based on Multi-source Remote Sensing Data in Haizhou Bay
16
作者 LU Xia JIAO Ming-lian 《Meteorological and Environmental Research》 CAS 2011年第8期78-81,共4页
[Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IR... [Objective] The aim was to extract red tide information in Haizhou Bay on the basis of multi-source remote sensing data.[Method] Red tide in Haizhou Bay was studied based on multi-source remote sensing data,such as IRS-P6 data on October 8,2005,Landsat 5-TM data on May 20,2006,MODIS 1B data on October 6,2006 and HY-1B second-grade data on April 22,2009,which were firstly preprocessed through geometric correction,atmospheric correction,image resizing and so on.At the same time,the synchronous environment monitoring data of red tide water were acquired.Then,band ratio method,chlorophyll-a concentration method and secondary filtering method were adopted to extract red tide information.[Result] On October 8,2005,the area of red tide was about 20.0 km2 in Haizhou Bay.There was no red tide in Haizhou bay on May 20,2006.On October 6,2006,large areas of red tide occurred in Haizhou bay,with area of 436.5 km2.On April 22,2009,red tide scattered in Haizhou bay,and its area was about 10.8 km2.[Conclusion] The research would provide technical ideas for the environmental monitoring department of Lianyungang to implement red tide forecast and warning effectively. 展开更多
关键词 Haizhou Bay Red tide monitoring region Multi-source remote sensing data Secondary filtering method Band ratio method Chlorophyll-a concentration method China
在线阅读 下载PDF
A STUDY OF SOIL CONSERVATION MONITORING INFORMATION SYSTEM BASED ON REMOTELY SENSED DATA FOR A CATCHMENT ON THE LOESS PLATEAU
17
作者 Li Rui, Li Bichen, Ma Xiaoyun (Northwesterng Institute of Soil and Water Conservation, Academia Sinica and Ministry of Water Resources) 《遥感信息》 CSCD 1990年第A02期41-42,共2页
The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq.... The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau. 展开更多
关键词 SCMIS A STUDY OF SOIL CONSERVATION MONITORING INFORMATION SYSTEM BASED ON remoteLY SENSED data FOR A CATCHMENT ON THE LOESS PLATEAU GIS data
在线阅读 下载PDF
Impacts of data sources on the predictive performance of species distribution models:a case study for Scomber japonicus in the offshore waters southern Zhejiang,China
18
作者 Wen Ma Ling Ding +3 位作者 Xinghua Wu Chunxia Gao Jin Ma Jing Zhao 《Acta Oceanologica Sinica》 CSCD 2024年第12期113-122,共10页
As our understanding of ecology deepens and modeling techniques advance,species distribution models have grown increasingly sophisticated,enhancing both their fitting and predictive capabilities.However,the dependabil... As our understanding of ecology deepens and modeling techniques advance,species distribution models have grown increasingly sophisticated,enhancing both their fitting and predictive capabilities.However,the dependability of predictive accuracy remains a critical issue,as the precision of these predictions largely hinges on the quality of the base data.We developed models using both field survey and remote sensing data from 2016 to 2020 to evaluate the impact of different data sources on the accuracy of predictions for Scomber japonicus distributions.Our research findings indicate that the variability of water temperature and salinity data from field suvery is significantly greater than that from remote sensing data.Within the same season,we found that the relationship between the abundance of S.japonicus and environmental factors varied significantly depending on the data source.Models using field survey data were able to more accurately reflect the complex relationships between resource distribution and environmental factors.Additionally,in terms of model predictive performance,models based on field survey data demonstrated greater accuracy in predicting the abundance of S.japonicus compared to those based on remote sensing data,allowing for more accurate mastery of their spatial distribution characteristics.This study highlights the significant impact of data sources on the accuracy of species distribution models and offers valuable insights for fisheries resources management. 展开更多
关键词 species distribution model remote sensing data field survey data predictive performance offshore waters southern Zhejiang Scomber japonicus
在线阅读 下载PDF
Enhanced remote astronomical archive system based on the file-level Unlimited Sliding-Window technique
19
作者 Cong-Ming Shi Hui Deng +6 位作者 Feng Wang Ying Mei Shao-Guang Guo Chen Yang Chen Wu Shou-Lin Wei Andreas Wicenec 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第10期119-126,共8页
Data archiving is one of the most critical issues for modern astronomical observations.With the development of a new generation of radio telescopes,the transfer and archiving of massive remote data have become urgent ... Data archiving is one of the most critical issues for modern astronomical observations.With the development of a new generation of radio telescopes,the transfer and archiving of massive remote data have become urgent problems to be solved.Herein,we present a practical and robust file-level flow-control approach,called the Unlimited Sliding-Window(USW),by referring to the classic flow-control method in the TCP protocol.Based on the USW and the Next Generation Archive System(NGAS)developed for the Murchison Widefield Array telescope,we further implemented an enhanced archive system(ENGAS)using ZeroMQ middleware.The ENGAS substantially improves the transfer performance and ensures the integrity of transferred files.In the tests,the ENGAS is approximately three to twelve times faster than the NGAS and can fully utilize the bandwidth of network links.Thus,for archiving radio observation data,the ENGAS reduces the communication time,improves the bandwidth utilization,and solves the remote synchronous archiving of data from observatories such as Mingantu spectral radioheliograph.It also provides a better reference for the future construction of the Square Kilometer Array(SKA)Science Regional Center. 展开更多
关键词 remote data archive NGAS sliding window
在线阅读 下载PDF
A revolutionary multi-dimensional data format for remote sensing
20
作者 Lifu Zhang Sai Zhang +4 位作者 Arif U.R.Rehman Sa Wang Xuejian Sun Yongxin Liu Qingxi Tong 《The Innovation》 2025年第8期13-14,共2页
Dear Editor,Remote sensing data formats are essential for storing,organizing,and managing imagery collected by satellites and sensors.These formats store remote sensing images and their related information,such as geo... Dear Editor,Remote sensing data formats are essential for storing,organizing,and managing imagery collected by satellites and sensors.These formats store remote sensing images and their related information,such as geographic coordinates and band information.It specifies the data storage order,encoding method,header file(which includes the basic information of the image,including the number of rows,columns,bands,and data types),and the organization of the data body. 展开更多
关键词 geographic coordinates sensing data formats multi dimensional data format satellite imagery remote sensing images remote sensing data formats sensor imagery data body
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部