采用拉氏时间推进加重映到初始网格的方式,在结构化交错欧拉网格上实现一种新型两步欧拉法。拉氏时间推进采用预估-校正方法,混合网格的拉氏计算中引入压力松弛模型。用MOF(Moment of Fluid)重构显式界面,将混合网格剖分为多个介质多面...采用拉氏时间推进加重映到初始网格的方式,在结构化交错欧拉网格上实现一种新型两步欧拉法。拉氏时间推进采用预估-校正方法,混合网格的拉氏计算中引入压力松弛模型。用MOF(Moment of Fluid)重构显式界面,将混合网格剖分为多个介质多面体,实现了精确的相交重映。考虑到已有拉氏网格与拉氏网格相交算法的低效性,实现了与两步欧拉法更适配的拉氏网格与欧拉网格相交算法。数值模拟结果表明:在欧拉框架下构造显式界面,能够提高欧拉方法对界面的分辨能力,本文构造显式界面进行相交重映的算法具有健壮且高效的特点,在大变形模拟中也可以保持较好的完整性。展开更多
Sheet metal spinning is an incremental forming process for producing axisymmetric thinwalled parts through continuous local deformation under the action of rollers.While studying the spinning process by finite element...Sheet metal spinning is an incremental forming process for producing axisymmetric thinwalled parts through continuous local deformation under the action of rollers.While studying the spinning process by finite element(FE)method,a critical bottleneck is the enormous simulation time.For beating off this challenge,a novel multi-mesh method is developed.The method can dynamically track the movement of rollers and adaptively refine the mesh.Thus,a locally refined quadrilateral computation mesh can be generated in the locally-deforming zone and reduce the unnecessary fine elements outside the locally-deforming zone.In the multi-mesh system,the fine elements and coarse elements are extracted from a storage mesh and a background mesh,respectively.Meanwhile,the hanging nodes in the locally refined mesh are removed by designing 4-refinement templates.Between computation mesh and storage mesh,a bi-cubic parametric surface fitting algorithm and accurate remapping methods are conducted to transmit geometric information and physical fields.The proposed method has been verified by two spinning processes.The results suggest that the method can save time by up to about 67%with satisfactory accuracy,especially for distributions of thickness and strain compared with the fully refined mesh.展开更多
A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapp...A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapping method to the multi-material regime (LOUBERE, R. and SHASHKOV,M. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics, 209, 105–138 (2005)). A complete remapping procedure of all fluid quantities is described detailedly in this paper. In the pure material regions, remapping of mass and internal energy is performed by using the original subcell-remapping method. In the regions near the material interfaces, remapping of mass and internal energy is performed with the intersection-based fluxes where intersections are performed between the swept regions and pure material polygons in the Lagrangian mesh, and an approximate approach is then introduced for constructing the subcell mass fluxes. In remapping of the subcell momentum, the mass fluxes are used to construct the momentum fluxes by multiplying a reconstructed velocity in the swept region. The nodal velocity is then conservatively recovered. Some numerical examples simulated in the full MMALE regime and several purely cyclic remapping examples are presented to prove the properties of the remapping method.展开更多
The ERA-Interim reanalysis wind based on the distance-weighted average remapping for studying the wind circulation in Nigeria is presented. The wind flow using this atmospheric model simulation is studied for identifi...The ERA-Interim reanalysis wind based on the distance-weighted average remapping for studying the wind circulation in Nigeria is presented. The wind flow using this atmospheric model simulation is studied for identification of grid-tie electrification opportunities in different wind locations. A 10-year reanalysis wind speed components at a surface level of the planetary layer at 0.25° × 0.25° spatial resolution is obtained and remapped into a new horizontal wind field at a grid resolution of 0.125° × 0.125° covering longitudinal and latitudinal directions of 3.0 - 15.0°E and 15.0 - 3.0°N, respectively. Using the distance-weighted average technique, the remapped wind field at a new grid resolution of 0.125° × 0.125° is compared at different terrain elevations and approximated close to the actual wind field of the same resolution. To determine the suitability of the prevailing wind for small-scale energy conversion, the magnitude of wind flow across the remapped wind field is studied for a 10-year period. Analysis shows that northern regions of Nigeria have a fair wind potential for a stand-alone application based on the wind flow originated at Gulf of Guinea as well as Chad and Niger. Furthermore, hourly surface wind speed observations from 18 synoptic stations in Nigeria are obtained and compared with the bilinear interpolated wind stations. The reanalysis wind reflects the surface wind observations and proves that the prevailing wind in Nigeria is higher than the reanalysis wind projection obtained from gridded data at resolution of 0.125° × 0.125°. The sectorwise wind directions at each synoptic stations for a period of 10 years are presented.展开更多
A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequenc...A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequence within the sampling period is calculated. Lagrange interpolation is used to fit the overlapping rate curve of the sequence. An empirical threshold for the overlapping rate is then applied to filter candidate key frames from the sequence. In the second stage, the principle of minimizing remapping spots is used to dynamically adjust and determine the final key frame close to the candidate key frames. Comparative experiments show that the proposed method significantly improves stitching speed and accuracy by more than 40%.展开更多
文摘采用拉氏时间推进加重映到初始网格的方式,在结构化交错欧拉网格上实现一种新型两步欧拉法。拉氏时间推进采用预估-校正方法,混合网格的拉氏计算中引入压力松弛模型。用MOF(Moment of Fluid)重构显式界面,将混合网格剖分为多个介质多面体,实现了精确的相交重映。考虑到已有拉氏网格与拉氏网格相交算法的低效性,实现了与两步欧拉法更适配的拉氏网格与欧拉网格相交算法。数值模拟结果表明:在欧拉框架下构造显式界面,能够提高欧拉方法对界面的分辨能力,本文构造显式界面进行相交重映的算法具有健壮且高效的特点,在大变形模拟中也可以保持较好的完整性。
基金co-supported by the supports of Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120047)the National Natural Science Foundation of China(No.52130507)。
文摘Sheet metal spinning is an incremental forming process for producing axisymmetric thinwalled parts through continuous local deformation under the action of rollers.While studying the spinning process by finite element(FE)method,a critical bottleneck is the enormous simulation time.For beating off this challenge,a novel multi-mesh method is developed.The method can dynamically track the movement of rollers and adaptively refine the mesh.Thus,a locally refined quadrilateral computation mesh can be generated in the locally-deforming zone and reduce the unnecessary fine elements outside the locally-deforming zone.In the multi-mesh system,the fine elements and coarse elements are extracted from a storage mesh and a background mesh,respectively.Meanwhile,the hanging nodes in the locally refined mesh are removed by designing 4-refinement templates.Between computation mesh and storage mesh,a bi-cubic parametric surface fitting algorithm and accurate remapping methods are conducted to transmit geometric information and physical fields.The proposed method has been verified by two spinning processes.The results suggest that the method can save time by up to about 67%with satisfactory accuracy,especially for distributions of thickness and strain compared with the fully refined mesh.
基金Project supported by the China Postdoctoral Science Foundation(No.2017M610823)
文摘A new flux-based hybrid subcell-remapping algorithm for staggered multimaterial arbitrary Lagrangian-Eulerian (MMALE) methods is presented. This new method is an effective generalization of the original subcell-remapping method to the multi-material regime (LOUBERE, R. and SHASHKOV,M. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods. Journal of Computational Physics, 209, 105–138 (2005)). A complete remapping procedure of all fluid quantities is described detailedly in this paper. In the pure material regions, remapping of mass and internal energy is performed by using the original subcell-remapping method. In the regions near the material interfaces, remapping of mass and internal energy is performed with the intersection-based fluxes where intersections are performed between the swept regions and pure material polygons in the Lagrangian mesh, and an approximate approach is then introduced for constructing the subcell mass fluxes. In remapping of the subcell momentum, the mass fluxes are used to construct the momentum fluxes by multiplying a reconstructed velocity in the swept region. The nodal velocity is then conservatively recovered. Some numerical examples simulated in the full MMALE regime and several purely cyclic remapping examples are presented to prove the properties of the remapping method.
文摘The ERA-Interim reanalysis wind based on the distance-weighted average remapping for studying the wind circulation in Nigeria is presented. The wind flow using this atmospheric model simulation is studied for identification of grid-tie electrification opportunities in different wind locations. A 10-year reanalysis wind speed components at a surface level of the planetary layer at 0.25° × 0.25° spatial resolution is obtained and remapped into a new horizontal wind field at a grid resolution of 0.125° × 0.125° covering longitudinal and latitudinal directions of 3.0 - 15.0°E and 15.0 - 3.0°N, respectively. Using the distance-weighted average technique, the remapped wind field at a new grid resolution of 0.125° × 0.125° is compared at different terrain elevations and approximated close to the actual wind field of the same resolution. To determine the suitability of the prevailing wind for small-scale energy conversion, the magnitude of wind flow across the remapped wind field is studied for a 10-year period. Analysis shows that northern regions of Nigeria have a fair wind potential for a stand-alone application based on the wind flow originated at Gulf of Guinea as well as Chad and Niger. Furthermore, hourly surface wind speed observations from 18 synoptic stations in Nigeria are obtained and compared with the bilinear interpolated wind stations. The reanalysis wind reflects the surface wind observations and proves that the prevailing wind in Nigeria is higher than the reanalysis wind projection obtained from gridded data at resolution of 0.125° × 0.125°. The sectorwise wind directions at each synoptic stations for a period of 10 years are presented.
文摘A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequence within the sampling period is calculated. Lagrange interpolation is used to fit the overlapping rate curve of the sequence. An empirical threshold for the overlapping rate is then applied to filter candidate key frames from the sequence. In the second stage, the principle of minimizing remapping spots is used to dynamically adjust and determine the final key frame close to the candidate key frames. Comparative experiments show that the proposed method significantly improves stitching speed and accuracy by more than 40%.