期刊文献+
共找到5,810篇文章
< 1 2 250 >
每页显示 20 50 100
Reliability-Based Topology Optimization of Fail-Safe Structures Using Moving Morphable Bars 被引量:2
1
作者 Xuan Wang Yuankun Shi +3 位作者 Van-Nam Hoang Zeng Meng Kai Long Yuesheng Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3173-3195,共23页
This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between ... This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between cost and robustness,reliability and structural safety.To this end,a performancemeasure approach(PMA)-based doubleloop optimization algorithmis developed tominimize the relative volume percentage while achieving the reliability criterion.To ensure the compliance value of the worst failure case can better approximate the quantified design requirement,a p-norm constraint approach with correction parameter is introduced.Finally,the significance of accounting for uncertainty in the fail-safe design is illustrated by contrasting the findings of the proposed reliabilitybased topology optimization(RBTO)method with those of the deterministic design method in three typical examples.Monte Carlo simulation shows that the relative error of the reliability index of the optimized structure does not exceed 3%. 展开更多
关键词 topology optimization fail-safe design uncertainty reliability-based topology optimization moving morphable bars
在线阅读 下载PDF
Non-probabilistic reliability-based topology optimization method for continuum structures via isogeometric analysis and interval mathematics
2
作者 Lei WANG Jiayao GUO Zeshang LI 《Science China(Technological Sciences)》 2025年第6期302-319,共18页
This study proposes a non-probabilistic reliability-based topology optimization(NRBTO)method based on isogeometric analysis(IGA),considering the structural stiffness performance.In this study,a geometric model was con... This study proposes a non-probabilistic reliability-based topology optimization(NRBTO)method based on isogeometric analysis(IGA),considering the structural stiffness performance.In this study,a geometric model was constructed using non-uniform rational B-splines(NURBS),and the NURBS basis function was used as the shape function of the analytical model.In topology optimization,the classic finite element method(FEM)was replaced by a mesh-independent IGA method.The formulation of isogeometric topology optimization(ITO)based on the solid isotropic microstructures with penalization(SIMP)interpolation model was derived,and a sensitivity analysis was performed using the adjoint method.Considering the uncertainties of material properties and loads,the parameter uncertainty is quantified by interval theory,the propagation analysis is conducted using the interval parametric vertex method,the optimization feature distance is selected as the nonprobabilistic reliability-based index,and a sensitivity analysis is performed on the reliability index to establish a reliability-based topology optimization method based on isogeometric analysis.The method of moving asymptotes(MMA)is used to solve the optimization problem.Several numerical examples were used to verify the method’s effectiveness in practical applications. 展开更多
关键词 isogeometric analysis topology optimization non-probabilistic reliability-based topology optimization solid isotropic microstructures with penalization NURBS
原文传递
Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization
3
作者 ZHOU Yun-fei ZOU Lin-er +1 位作者 CHENG Yang-bing SHEN Yun 《中国光学(中英文)》 北大核心 2025年第6期1475-1483,共9页
Metalens technology has been applied extensively in miniaturized and integrated infrared imaging systems.However,due to the high phase dispersion of unit structures,metalens often exhibits chromatic aberration,making ... Metalens technology has been applied extensively in miniaturized and integrated infrared imaging systems.However,due to the high phase dispersion of unit structures,metalens often exhibits chromatic aberration,making broadband achromatic infrared imaging challenging to achieve.In this paper,six different unit structures based on chalcogenide glass are constructed,and their phase-dispersion parameters are analyzed to establish a database.On this basis,using chromatic aberration compensation and parameterized adjoint topology optimization,a broadband achromatic metalens with a numerical aperture of 0.5 is designed by arranging these six unit structures in the far-infrared band.Simulation results show that the metalens achieves near diffraction-limited focusing within the operating wavelength range of 9−11μm,demonstrating the good performance of achromatic aberration with flat focusing efficiency of 54%−58%across all wavelengths. 展开更多
关键词 metalens chalcogenide glass topology optimization high efficiency long wave infrared broadband operation
在线阅读 下载PDF
Topology,Size,and Shape Optimization in Civil Engineering Structures:A Review
4
作者 Ahmed Manguri Hogr Hassan +1 位作者 Najmadeen Saeed Robert Jankowski 《Computer Modeling in Engineering & Sciences》 2025年第2期933-971,共39页
The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal de... The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned. 展开更多
关键词 Structural optimization topology optimization size optimization shape optimization multi-objective optimization
在线阅读 下载PDF
Yield and buckling stress limits in topology optimization of multiscale structures
5
作者 Christoffer Fyllgraf Christensen Fengwen Wang Ole Sigmund 《Acta Mechanica Sinica》 2025年第7期211-232,共22页
This study presents an extension of multiscale topology optimization by integrating both yield stress and local/global buckling considerations into the design process.Building upon established multiscale methodologies... This study presents an extension of multiscale topology optimization by integrating both yield stress and local/global buckling considerations into the design process.Building upon established multiscale methodologies,we develop a new framework incorporating yield stress limits either as constraints or objectives alongside previously established local and global buckling constraints.This approach significantly refines the optimization process,ensuring that the resulting designs meet mechanical performance criteria and adhere to critical material yield constraints.First,we establish local density-dependent von Mises yield surfaces based on local yield estimates from homogenization-based analysis to predict the local yield limits of the homogenized materials.Then,these local yield-based load factors are combined with local and global buckling criteria to obtain topology optimized designs that consider yield and buckling failure on all levels.This integration is crucial for the practical application of optimized structures in real-world scenarios,where material yield and stability behavior critically influence structural integrity and durability.Numerical examples demonstrate how optimized designs depend on the stiffness to yield ratio of the considered building material.Despite the foundational assumption of the separation of scales,the de-homogenized structures,even at relatively coarse length scales,exhibit a remarkably high degree of agreement with the corresponding homogenized predictions. 展开更多
关键词 Yield stress Stress constraints Buckling strength Multiscale topology optimization
原文传递
Topology Optimization of Lattice Structures through Data-Driven Model of M-VCUT Level Set Based Substructure
6
作者 Minjie Shao Tielin Shi +1 位作者 Qi Xia Shiyuan Liu 《Computer Modeling in Engineering & Sciences》 2025年第9期2685-2703,共19页
A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching... A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching their diversity of configuration while ensuring connectivity.To construct the data-driven model of substructure,a database is prepared by sampling the space of substructures spanned by several substructure prototypes.Then,for each substructure in this database,the stiffness matrix is condensed so that its degrees of freedomare reduced.Thereafter,the data-drivenmodel of substructures is constructed through interpolationwith compactly supported radial basis function(CS-RBF).The inputs of the data-driven model are the design variables of topology optimization,and the outputs are the condensed stiffness matrix and volume of substructures.During the optimization,this data-driven model is used,thus avoiding repeated static condensation that would requiremuch computation time.Several numerical examples are provided to verify the proposed method. 展开更多
关键词 DATA-DRIVEN lattice structure SUBSTRUCTURE M-VCUT level set topology optimization
在线阅读 下载PDF
Microstructural Topology Optimization for Periodic Beam-Like Structures Using Homogenization Method
7
作者 Jiao Jia Xin He +1 位作者 Zhenchen Liu Shiqing Wu 《Computer Modeling in Engineering & Sciences》 2025年第6期3215-3231,共17页
As primary load-bearing components extensively utilized in engineering applications,beam structures necessitate the design of their microstructural configurations to achieve lightweight objectives while satisfying div... As primary load-bearing components extensively utilized in engineering applications,beam structures necessitate the design of their microstructural configurations to achieve lightweight objectives while satisfying diverse mechanical performance requirements.Combining topology optimization with fully coupled homogenization beam theory,we provide a highly efficient design tool to access desirable periodic microstructures for beams.The present optimization framework comprehensively takes into account for key deformation modes,including tension,bending,torsion,and shear deformation,all within a unified formulation.Several numerical results prove that our method can be used to handle kinds of microstructure design for beam-like structures,e.g.,extreme tension(compression)-torsion stiffness,maximization of minimum critical buckling load,and minimization of structural compliance.When optimizing microstructures for macroscopic performance,we emphasize investigating the influence of shear stiffness on the optimized results.The novel chiral beam-like structures are fabricated and tested.The experimental results indicate that the optimized tension(compression)-torsion structure has excellent buffer characteristics,as compared with the traditional square tube.This proposed optimization framework can be further extended to other physical problems of Timoshenko beams. 展开更多
关键词 Microstructure design topology optimization periodic beam homogenization theory
在线阅读 下载PDF
Bi-Directional Evolutionary Topology Optimization with Adaptive Evolutionary Ratio for Nonlinear Structures
8
作者 Linli Tian Wenhua Zhang 《Chinese Journal of Mechanical Engineering》 2025年第5期337-350,共14页
Current topology optimization methods for nonlinear continuum structures often suffer from low computational efficiency and limited applicability to complex nonlinear problems.To address these issues,this paper propos... Current topology optimization methods for nonlinear continuum structures often suffer from low computational efficiency and limited applicability to complex nonlinear problems.To address these issues,this paper proposes an improved bi-directional evolutionary structural optimization(BESO)method tailored for maximizing stiffness in nonlinear structures.The optimization program is developed in Python and can be combined with Abaqus software to facilitate finite element analysis(FEA).To accelerate the speed of optimization,a novel adaptive evolutionary ratio(ER)strategy based on the BESO method is introduced,with four distinct adaptive ER functions proposed.The Newton-Raphson method is utilized for iteratively solving nonlinear equilibrium equations,and the sensitivity information for updating design variables is derived using the adjoint method.Additionally,this study extends topology optimization to account for both material nonlinearity and geometric nonlinearity,analyzing the effects of various nonlinearities.A series of comparative studies are conducted using benchmark cases to validate the effectiveness of the proposed method.The results show that the BESO method with adaptive ER significantly improves the optimization efficiency.Compared to the BESO method with a fixed ER,the convergence speed of the four adaptive ER BESO methods is increased by 37.3%,26.7%,12%and 18.7%,respectively.Given that Abaqus is a powerful FEA platform,this method has the potential to be extended to large-scale engineering structures and to address more complex optimization problems.This research proposes an improved BESO method with novel adaptive ER,which significantly accelerates the optimization process and enables its application to topology optimization of nonlinear structures. 展开更多
关键词 topology optimization Adaptive evolutionary ratio BESO method NONLINEAR
在线阅读 下载PDF
Reliability Topology Optimization Based on Kriging-Assisted Level Set Function and Novel Dynamic Hybrid Particle Swarm Optimization Algorithm
9
作者 Hang Zhou Xiaojun Ding +1 位作者 Song Chen Qijun Zhang 《Computer Modeling in Engineering & Sciences》 2025年第8期1907-1933,共27页
Structural Reliability-Based Topology Optimization(RBTO),as an efficient design methodology,serves as a crucial means to ensure the development ofmodern engineering structures towards high performance,long service lif... Structural Reliability-Based Topology Optimization(RBTO),as an efficient design methodology,serves as a crucial means to ensure the development ofmodern engineering structures towards high performance,long service life,and high reliability.However,in practical design processes,topology optimization must not only account for the static performance of structures but also consider the impacts of various responses and uncertainties under complex dynamic conditions,which traditional methods often struggle accommodate.Therefore,this study proposes an RBTO framework based on a Kriging-assisted level set function and a novel Dynamic Hybrid Particle Swarm Optimization(DHPSO)algorithm.By leveraging the Kriging model as a surrogate,the high cost associated with repeatedly running finite element analysis processes is reduced,addressing the issue of minimizing structural compliance.Meanwhile,the DHPSO algorithm enables a better balance between the population’s developmental and exploratory capabilities,significantly accelerating convergence speed and enhancing global convergence performance.Finally,the proposed method is validated through three different structural examples,demonstrating its superior performance.Observed that the computational that,compared to the traditional Solid Isotropic Material with Penalization(SIMP)method,the proposed approach reduces the upper bound of structural compliance by approximately 30%.Additionally,the optimized results exhibit clear material interfaces without grayscale elements,and the stress concentration factor is reduced by approximately 42%.Consequently,the computational results fromdifferent examples verify the effectiveness and superiority of this study across various fields,achieving the goal of providing more precise optimization results within a shorter timeframe. 展开更多
关键词 Reliability topology optimization kriging model level set function dynamic hybrid particle swarm optimization engineering structure
在线阅读 下载PDF
Topology Optimization Design of a Hub Central Component Considering Fatigue Performance
10
作者 Rui Xu Chaogan Gao +2 位作者 Jiale Shi Guorui Yu Quhao Li 《Computer Modeling in Engineering & Sciences》 2025年第10期1-16,共16页
To address the design challenges of helicopter hub central components under high-performance requirements,this paper conducts safe-life topology optimization design research considering fatigue performance for rotor h... To address the design challenges of helicopter hub central components under high-performance requirements,this paper conducts safe-life topology optimization design research considering fatigue performance for rotor hub central components under multi-load conditions,combined with helicopter fatigue strength engineering design theory.For dealing with the issues of derivative calculation difficulties when directly considering fatigue constraints in existing topology optimization methods,this study establishes a mathematical formulation suitable for structural topology optimization of hub central components by combining modified structural safety fatigue limits based on isolife curves.Then the sensitivity analysis of design variables is derived,and an optimization designmodel for typical main rotor hub central components is constructed.By controlling the safe-life equivalent stress of the hub central structure,the goal of managing structural fatigue life is achieved,providing new insights for long-life,high-reliability hub central component design.The paper presents a topology optimization case study of a typical five-armhub central component,completes optimized structure reconstruction and fatigue strength analysis,which validates the effectiveness of the proposed methodology. 展开更多
关键词 Hub central component equivalent stress fatigue performance safe-life design topology optimization
在线阅读 下载PDF
Topology Optimization for Variable Thickness Shell-Infill Composites Based on Stress Analysis Preprocessing
11
作者 Xuefei Yang Ying Zhou +1 位作者 Liang Gao Hao Li 《Computers, Materials & Continua》 2025年第10期613-635,共23页
Inspired by natural biomimetic structures exemplified by femoral bones,the shell-infill composite design has emerged as a research focus in structural optimization.However,existing studies predominantly focus on unifo... Inspired by natural biomimetic structures exemplified by femoral bones,the shell-infill composite design has emerged as a research focus in structural optimization.However,existing studies predominantly focus on uniform-thickness shell designs and lack robust methodologies for generating high-resolution porous infill configurations.To address these challenges,a novel topology optimization framework for full-scale shell-filled composite structures is developed in this paper.First,a physics-driven,non-uniform partial differential equation(PDE)filter is developed,enabling precise control of variable-thickness shells by establishing explicit mapping relationships between shell thickness and filter radii.Second,this study addresses the convergence inefficiency of traditional full-scale topology optimization methods based on local volume constraints.It is revealed that a reduced influence radius exacerbates algorithm convergence challenges,thereby impeding the design of intricate porous structures.To overcome this bottleneck,a physics-driven stress skeleton generation method is developed.By integrating stress trajectories and rasterization processing,this method constructs an initial density field,effectively guiding material evolution and significantly enhancing convergence in porous structural optimization within the full-scale framework.Classical numerical examples demonstrate that our proposed optimization framework achieves biomimetic non-uniform shell thickness optimization and enables precise control of the shell thickness.Additionally,density preprocessing effectively eliminates intermediate density regions and void aggregation.Moreover,the generated trabecular-like infill patterns with spatially graded porosity,akin to multiscale topology optimization(MTO),provide an innovative solution for multifunctional,lightweight,complex shell-infill composite structures in aerospace and biomedical applications. 展开更多
关键词 topology optimization shell-infill structure bionic structural design composite structure
在线阅读 下载PDF
A Novel Multi-Objective Topology Optimization Method for Stiffness and Strength-Constrained Design Using the SIMP Approach
12
作者 Jianchang Hou Zhanpeng Jiang +4 位作者 Fenghe Wu Hui Lian Zhaohua Wang Zijian Liu Weicheng Li 《Computer Modeling in Engineering & Sciences》 2025年第8期1545-1572,共28页
In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are reg... In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are regulated through sensitivity filtering tomitigate numerical instabilities associatedwith stress concentrations.Ap-norm aggregation function is employed to globalize local stress constraints,and a normalization technique linearly weights strain energy and stress,transforming the multi-objective problem into a single-objective formulation.The sensitivity of the objective function with respect to design variables is rigorously derived.Three numerical examples are presented,comparing the optimized structures in terms of strain energy,mass,and stress across five different mathematical models with varying combinations of optimization objectives.The results validate the effectiveness and feasibility of the proposed method for achieving a balanced design between structural stiffness and strength.This approach offers a new perspective for future research on stiffness-strength coordinated structural optimization. 展开更多
关键词 topology optimization stiffness-strength coordination SIMP method stress constraints p-norm aggregation sensitivity analysis
在线阅读 下载PDF
Improved Guide-Weight method for multi-material topology optimization under inertial loads based on the alternating active-phase algorithm
13
作者 Zihao Meng Yiru Ren 《Acta Mechanica Sinica》 2025年第8期138-148,共11页
The application of multi-material topology optimization affords greater design flexibility compared to traditional single-material methods.However,density-based topology optimization methods encounter three unique cha... The application of multi-material topology optimization affords greater design flexibility compared to traditional single-material methods.However,density-based topology optimization methods encounter three unique challenges when inertial loads become dominant:non-monotonous behavior of the objective function,possible unconstrained characterization of the optimal solution,and parasitic effects.Herein,an improved Guide-Weight approach is introduced,which effectively addresses the structural topology optimization problem when subjected to inertial loads.Smooth and fast convergence of the compliance is achieved by the approach,while also maintaining the effectiveness of the volume constraints.The rational approximation of material properties model and smooth design are utilized to guarantee clear boundaries of the final structure,facilitating its seamless integration into manufacturing processes.The framework provided by the alternating active-phase algorithm is employed to decompose the multi-material topological problem under inertial loading into a set of sub-problems.The optimization of multi-material under inertial loads is accomplished through the effective resolution of these sub-problems using the improved Guide-Weight method.The effectiveness of the proposed approach is demonstrated through numerical examples involving two-phase and multi-phase materials. 展开更多
关键词 topology optimization Improved Guide-Weight method Alternating active-phase algorithm Inertial loads Multi-material
原文传递
A Multi-Grid,Single-Mesh Online Learning Framework for Stress-Constrained Topology Optimization Based on Isogeometric Formulation
14
作者 Kangjie Li Wenjing Ye 《Computer Modeling in Engineering & Sciences》 2025年第11期1665-1688,共24页
Recent progress in topology optimization(TO)has seen a growing integration of machine learning to accelerate computation.Among these,online learning stands out as a promising strategy for large-scale TO tasks,as it el... Recent progress in topology optimization(TO)has seen a growing integration of machine learning to accelerate computation.Among these,online learning stands out as a promising strategy for large-scale TO tasks,as it eliminates the need for pre-collected training datasets by updating surrogate models dynamically using intermediate optimization data.Stress-constrained lightweight design is an important class of problem with broad engineering relevance.Most existing frameworks use pixel or voxel-based representations and employ the finite element method(FEM)for analysis.The limited continuity across finite elements often compromises the accuracy of stress evaluation.To overcome this limitation,isogeometric analysis is employed as it enables smooth representation of structures and thus more accurate stress computation.However,the complexity of the stress-constrained design problem together with the isogeometric representation results in a large computational cost.This work proposes a multi-grid,single-mesh online learning framework for isogeometric topology optimization(ITO),leveraging the Fourier Neural Operator(FNO)as a surrogate model.Operating entirely within the isogeometric analysis setting,the framework provides smooth geometry representation and precise stress computation,without requiring traditional mesh generation.A localized training approach is employed to enhance scalability,while a multi-grid decomposition scheme incorporates global structural context into local predictions to boost FNO accuracy.By learning the mapping from spatial features to sensitivity fields,the framework enables efficient single-resolution optimization,avoiding the computational burden of two-resolution simulations.The proposed method is validated through 2D stress-constrained design examples,and the effect of key parameters is studied. 展开更多
关键词 Isogeometric topology optimization multi-grid decomposition online learning fourier neural operator
在线阅读 下载PDF
Level-Set-Based Topology Optimization of a Geometrically Nonlinear Structure Considering Thermo-mechanical Coupling Effect
15
作者 Sujun Wang An Xu Ruohong Zhao 《Acta Mechanica Solida Sinica》 2025年第1期100-114,共15页
This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element couplin... This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings. 展开更多
关键词 topology optimization Geometric nonlinearity Thermo-mechanical coupling effect Level set method Multiple constraints
原文传递
A body-fitted adaptive mesh and Helmholtz-type filter based parameterized level-set method for structural topology optimization
16
作者 Yijie Lu Xueying Chang +3 位作者 Zhengwei Zhang Hui Liu Yanguo Zhou Hao Li 《Acta Mechanica Sinica》 2025年第5期131-147,共17页
Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation o... Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation of new holes.However,most pertinent investigations in the field rely predominantly on fixed background mesh,which is never remeshed.Consequently,the mesh element partitioned by material interface during the optimization process necessitates approximation by using artificial interpolation models to obtain its element stiffness or other properties.This paper introduces a novel approach to topology op-timization by integrating the PLSM with body-fitted adaptive mesh and Helmholtz-type filter.Primarily,combining the PLSM with body-fitted adaptive mesh enables the regeneration of mesh based on the zero level-set interface.This not only precludes the direct traversal of the material interface through the mesh element during the topology optimization process,but also improves the accuracy of calculation.Additionally,the incorporation of a Helmholtz-type partial differential equation filter,relying solely on mesh information essential for finite element discretization,serves to regulate the topological complexity and the minimum feature size of the optimized structure.Leveraging these advantages,the topology optimization program demonstrates its versa-tility by successfully addressing various design problems,encompassing the minimum mean compliance problem and minimum energy dissipation problem.Ultimately,the result of numerical example indicates that the optimized structure exhibits a dis-tinct and smooth boundary,affirming the effective control over both topological complexity and the minimum feature size of the optimized structure. 展开更多
关键词 topology optimization Parameterized level-set method Helmholtz-type filter Body-fitted adaptive mesh
原文传递
Concurrent Design on Three-Legged Jacket Structure and Transition Piece of Offshore Wind Turbine by Exploiting Topology Optimization
17
作者 Yiming Zhou Jinhua Zhang +5 位作者 Kai Long Ayesha Saed Yutang Chen Rongrong Geng Tao Tao Xiaohui Guo 《Computer Modeling in Engineering & Sciences》 2025年第5期1743-1761,共19页
The jacket structure and transition piece comprise the supporting structure of a bottom-fixed offshore wind turbine(OWT)connected to the steel tower,which determines the overall structural dynamic performance of the e... The jacket structure and transition piece comprise the supporting structure of a bottom-fixed offshore wind turbine(OWT)connected to the steel tower,which determines the overall structural dynamic performance of the entire OWT.Ideally,optimal performance can be realized by effectively coordinating two components,notwithstanding their separate design processes.In pursuit of this objective,this paper proposes a concurrent design methodology for the jacket structure and transition piece by exploiting topology optimization(TO).The TO for a three-legged jacket foundation is formulated by minimizing static compliance.In contrast to conventional TO,two separated volume fractions are imposed upon the structural design domain of the jacket structure and transition piece to ensure continuity.A 5 MW(megawatt)OWT supported by a four-legged or three-legged jacket substructure is under investigation.The external loads are derived from various design load cases that are acquired using the commercial software platform DNV Bladed(Det Norske Veritas).Through a comparative analysis of the fundamental frequency and maximum nodal deformation,it was found that the optimized solution demonstrates a reduced weight and superior stiffness.The findings demonstrate the present concurrent design approach using TO can yield significant benefits by reducing the overall design cycle and enhancing the feasibility of the final design. 展开更多
关键词 Offshore wind turbine topology optimization jacket structure transition piece design load case
在线阅读 下载PDF
GPU-Enabled Isogometric Topology Optimization with Bezier Element Stiffness Mapping
18
作者 Xuesong Li Shuting Wang +3 位作者 Nianmeng Luo Aodi Yang Xing Yuan Xianda Xie 《Computer Modeling in Engineering & Sciences》 2025年第2期1481-1514,共34页
Due to the high-order B-spline basis functions utilized in isogeometric analysis(IGA)and the repeatedly updating global stiffness matrix of topology optimization,Isogeometric topology optimization(ITO)intrinsically su... Due to the high-order B-spline basis functions utilized in isogeometric analysis(IGA)and the repeatedly updating global stiffness matrix of topology optimization,Isogeometric topology optimization(ITO)intrinsically suffers from the computationally demanding process.In this work,we address the efficiency problem existing in the assembling stiffness matrix and sensitivity analysis using B˙ezier element stiffness mapping.The Element-wise and Interaction-wise parallel computing frameworks for updating the global stiffness matrix are proposed for ITO with B˙ezier element stiffness mapping,which differs from these ones with the traditional Gaussian integrals utilized.Since the explicit stiffness computation formula derived from B˙ezier element stiffness mapping possesses a typical parallel structure,the presented GPU-enabled ITO method can greatly accelerate the computation speed while maintaining its high memory efficiency unaltered.Numerical examples demonstrate threefold speedup:1)the assembling stiffness matrix is accelerated by 10×maximumly with the proposed GPU strategy;2)the solution efficiency of a sparse linear system is enhanced by up to 30×with Eigen replaced by AMGCL;3)the efficiency of sensitivity analysis is promoted by 100×with GPU applied.Therefore,the proposed method is a promising way to enhance the numerical efficiency of ITO for both single-patch and multiple-patch design problems. 展开更多
关键词 Isogeometric analysis topology optimization GPU sparse system solver Bezier element stiffness mapping
在线阅读 下载PDF
Smooth Boundary Topology Optimization-A New Framework for Movable Morphable Smooth Boundary Method
19
作者 Jiazheng Du Ju Chen +2 位作者 Hongling Ye Bing Lin Zhichao Guo 《Computer Modeling in Engineering & Sciences》 2025年第7期791-809,共19页
The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through... The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through post-processing,potentially altering the mechanical properties of the optimized structure.A topology optimization method of Movable Morphable Smooth Boundary(MMSB)is proposed based on the idea of mesh adaptation to solve the problem of jagged boundaries and the influence of post-processing.Based on the ICM method,the rational fraction function is introduced as the filtering function,and a topology optimization model with the minimum weight as the objective and the displacement as the constraint is established.A triangular mesh is utilized as the base mesh in this method.The mesh is re-divided in the optimization process based on the contour line,and a smooth boundary parallel to the contour line is obtained.Numerical examples demonstrate that the MMSB method effectively resolves the jagged boundary issues,leading to enhanced structural performance. 展开更多
关键词 Movable Morphable Smooth Boundary continuum structure topology optimization jagged boundary ICM method
在线阅读 下载PDF
A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization
20
作者 Zhao Li Hongyu Xu +2 位作者 Shuai Zhang Jintao Cui Xiaofeng Liu 《Computers, Materials & Continua》 2026年第1期2213-2230,共18页
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m... The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples. 展开更多
关键词 topology optimization MMC method boundary element reconstruction surrogate material model local mesh
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部