Based on the theory of reliability-based structural shape optimization, exact expressions of the sensibility using the stochastic finite element method for contact problems were derived in detail, and the basic steps ...Based on the theory of reliability-based structural shape optimization, exact expressions of the sensibility using the stochastic finite element method for contact problems were derived in detail, and the basic steps of structural optimization were given. A coattail-type tenon/mortise of an aero-engine was optimized. In this model, the maximum equivalent stress of the nodes on the boundary of the tenon was the objective function; the width of tooth’s neck and the side surface’s slope angle of a tenon were design variables, with constraints of tension stress, extrusion stress and reliability index. The result showed that the distributions of the contact pressure between tenon and mortise, the equivalence stress and reliability index were more reasonable. It validates the correctness of the optimization model and the reliability-based structural shape optimization, and provides valuable references for structural design of the tenon/mortise.展开更多
The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal de...The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned.展开更多
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici...Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.展开更多
Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncert...Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncertainties being explicitly considered, typically manifested by the use of reliability constraints. Generally, a direct integration of reliability concept and topol- ogy optimization may lead to computational difficulties. In view of this fact, three methodologies have been presented in this study, including the double-loop approach (the performance measure approach, PMA) and the decoupled approaches (the so-called Hybrid method and the sequential optimization and reliability assessment, SORA). For reliability analysis, the stochastic response surface method (SRSM) was applied, combining with the design of experiments generated by the sparse grid method, which has been proven as an effective and special discretization technique. The methodologies were investigated with three numerical examples considering the uncertainties including material properties and external loads. The optimal topologies obtained using the de- terministic, RBTOs were compared with one another; and useful conclusions regarding validity, accuracy and efficiency were drawn.展开更多
This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimizat...This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimization method is applied to the reliability-based design of composites. In the sequential single-loop optimization, the optimization and the reliability analysis are decoupled to improve the computational efficiency. As shown in examples, the minimum weight problems under the constraint of structural reliability are solved for laminated composites. The Particle Swarm Optimization (PSO) algorithm is utilized to search for the optimal solutions. The design results indicate that, under the mixture of random and interval variables, the method that combines the sequential single-loop optimization and the PSO algorithm can deal effectively with the reliability-based design of composites.展开更多
A scheme based on irregular V-shaped silicon nanoantennas is proposed to optimize transverse unidirectional scattering under plane wave irradiation.Traditional methods of designing regular shapes offer fewer parameter...A scheme based on irregular V-shaped silicon nanoantennas is proposed to optimize transverse unidirectional scattering under plane wave irradiation.Traditional methods of designing regular shapes offer fewer parameters and higher search efficiency.However,due to the limitations of regular shapes,it is challenging to meet high-precision design requirements.Irregular shape design allows for a broader range of adjustments,but the complexity of shape parameters leads to lower search efficiency and a higher likelihood of converging to local optima.展开更多
This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between ...This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between cost and robustness,reliability and structural safety.To this end,a performancemeasure approach(PMA)-based doubleloop optimization algorithmis developed tominimize the relative volume percentage while achieving the reliability criterion.To ensure the compliance value of the worst failure case can better approximate the quantified design requirement,a p-norm constraint approach with correction parameter is introduced.Finally,the significance of accounting for uncertainty in the fail-safe design is illustrated by contrasting the findings of the proposed reliabilitybased topology optimization(RBTO)method with those of the deterministic design method in three typical examples.Monte Carlo simulation shows that the relative error of the reliability index of the optimized structure does not exceed 3%.展开更多
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr...To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as th...Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.展开更多
Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ...Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.展开更多
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of...In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.展开更多
An efficient computational framework for reliability analysis and reliability-based design optimization of piezoelectric composite beam with delamination is presented.In the proposed approach,the transverse shear defo...An efficient computational framework for reliability analysis and reliability-based design optimization of piezoelectric composite beam with delamination is presented.In the proposed approach,the transverse shear deformation,delamination and piezoelectricity of the beam are taken into account.By introducing the Heaviside step function into the displacement components and using the Rayleigh-Ritz method,and the buckling governing equations for the piezoelectric composite beams is obtained.The reliability of the beams is obtained by integrating the support vector machine method and first order reliability method,further the reliability-based optimization is executed through employing genetic algorithm.The effects of ply style,delamination length and voltage are discussed in details.Numerical results indicate that the comprehensive computational scheme provides a unified numerical framework to analysis the nondeterministic buckling and reliability efficiently.展开更多
Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta...Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.展开更多
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl...An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.展开更多
The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process o...The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process of reliability-based optimization and reliability constrains are calculated in inner loop. Innovation of suggested approach is in application of newly developed optimization strategy based on multilevel simulation using an advanced Latin Hypercube Sampling technique. This method is called Aimed multilevel sampling and it is designated for optimization of problems where only limited number of simulations is possible to perform due to enormous com- putational demands.展开更多
Aim To introduce a new method of adaptive shape optimization (ASOP) based on three-dimensional structure boundary strength and optimize an engine bearing cap with the method. Methods Using the normal substance's p...Aim To introduce a new method of adaptive shape optimization (ASOP) based on three-dimensional structure boundary strength and optimize an engine bearing cap with the method. Methods Using the normal substance's property of thermal expansion and cooling shrinkage,the load which is proportional to the difference between the nodes' stress and their respective objective stress were applied to the corresponding variable nodes on the boundary.The thermal load made the nodes whose stress is greater than their objective stress expand along the boundary's normal direction and the nodes whose stress is less than objec- tive stress shrink in the opposite direction , This process would repeat until the stress on the boundary nodes was converge to the objective stress. Results The satisfied results have been obtained when optimizing an engine bearing cap.The mass of the bearing cap is reduced to 55 percent of the total. Conclusion ASOP is an efficient,practical and reliable method which is suitable for optimizing the shape of the continuous structures.展开更多
A variable-fidelity method can remarkably improve the efficiency of a design optimization based on a high-fidelity and expensive numerical simulation,with assistance of lower-fidelity and cheaper simulation(s).However...A variable-fidelity method can remarkably improve the efficiency of a design optimization based on a high-fidelity and expensive numerical simulation,with assistance of lower-fidelity and cheaper simulation(s).However,most existing works only incorporate‘‘two"levels of fidelity,and thus efficiency improvement is very limited.In order to reduce the number of high-fidelity simulations as many as possible,there is a strong need to extend it to three or more fidelities.This article proposes a novel variable-fidelity optimization approach with application to aerodynamic design.Its key ingredient is the theory and algorithm of a Multi-level Hierarchical Kriging(MHK),which is referred to as a surrogate model that can incorporate simulation data with arbitrary levels of fidelity.The high-fidelity model is defined as a CFD simulation using a fine grid and the lower-fidelity models are defined as the same CFD model but with coarser grids,which are determined through a grid convergence study.First,sampling shapes are selected for each level of fidelity via technique of Design of Experiments(DoE).Then,CFD simulations are conducted and the output data of varying fidelity is used to build initial MHK models for objective(e.g.C_D)and constraint(e.g.C_L,C_m)functions.Next,new samples are selected through infillsampling criteria and the surrogate models are repetitively updated until a global optimum is found.The proposed method is validated by analytical test cases and applied to aerodynamic shape optimization of a NACA0012 airfoil and an ONERA M6 wing in transonic flows.The results confirm that the proposed method can significantly improve the optimization efficiency and apparently outperforms the existing single-fidelity or two-level-fidelity method.展开更多
Smart morphing wing, which is equipped with smart materials and able to change structural geometry adaptively, can further improve aerodynamic efficiency of aircraft. This paper presents a new integrated layout and to...Smart morphing wing, which is equipped with smart materials and able to change structural geometry adaptively, can further improve aerodynamic efficiency of aircraft. This paper presents a new integrated layout and topology optimization design for morphing wing driven by shape memory alloys(SMAs). By simultaneously optimizing the layout of smart actuators and topology of wing substrate, the ultimately determined configuration can achieve smooth, continuous and accurate geometric shape changes. In addition, aerodynamic analysis is carried out to compare smart morphing wing with traditional hinged airfoil. Finally, the optimized smart wing structure is constructed and tested to demonstrate and verify the morphing functionality. Application setbacks are also pointed out for further investigation.展开更多
基金National Natural Science Foundation of China (5 9875 0 3 7)
文摘Based on the theory of reliability-based structural shape optimization, exact expressions of the sensibility using the stochastic finite element method for contact problems were derived in detail, and the basic steps of structural optimization were given. A coattail-type tenon/mortise of an aero-engine was optimized. In this model, the maximum equivalent stress of the nodes on the boundary of the tenon was the objective function; the width of tooth’s neck and the side surface’s slope angle of a tenon were design variables, with constraints of tension stress, extrusion stress and reliability index. The result showed that the distributions of the contact pressure between tenon and mortise, the equivalence stress and reliability index were more reasonable. It validates the correctness of the optimization model and the reliability-based structural shape optimization, and provides valuable references for structural design of the tenon/mortise.
文摘The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant 51490662)the Funds for Distinguished Young Scientists of Hunan Province (Grant 14JJ1016)+1 种基金the State Key Program of the National Science Foundation of China (11232004)the Heavy-duty Tractor Intelligent Manufacturing Technology Research and System Development (Grant 2016YFD0701105)
文摘Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Nos.51275040 and 50905017)the Programme of Introducing Talents of Discipline to Universities(No.B12022)
文摘Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncertainties being explicitly considered, typically manifested by the use of reliability constraints. Generally, a direct integration of reliability concept and topol- ogy optimization may lead to computational difficulties. In view of this fact, three methodologies have been presented in this study, including the double-loop approach (the performance measure approach, PMA) and the decoupled approaches (the so-called Hybrid method and the sequential optimization and reliability assessment, SORA). For reliability analysis, the stochastic response surface method (SRSM) was applied, combining with the design of experiments generated by the sparse grid method, which has been proven as an effective and special discretization technique. The methodologies were investigated with three numerical examples considering the uncertainties including material properties and external loads. The optimal topologies obtained using the de- terministic, RBTOs were compared with one another; and useful conclusions regarding validity, accuracy and efficiency were drawn.
基金the National Natural Science Foundation of China(No.10772070)Ph.D Programs Foundation of Ministry of Education of China(No.20070487064).
文摘This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimization method is applied to the reliability-based design of composites. In the sequential single-loop optimization, the optimization and the reliability analysis are decoupled to improve the computational efficiency. As shown in examples, the minimum weight problems under the constraint of structural reliability are solved for laminated composites. The Particle Swarm Optimization (PSO) algorithm is utilized to search for the optimal solutions. The design results indicate that, under the mixture of random and interval variables, the method that combines the sequential single-loop optimization and the PSO algorithm can deal effectively with the reliability-based design of composites.
基金supported by the National Natural Science Foundation of China(Nos.62475121 and 62335012)。
文摘A scheme based on irregular V-shaped silicon nanoantennas is proposed to optimize transverse unidirectional scattering under plane wave irradiation.Traditional methods of designing regular shapes offer fewer parameters and higher search efficiency.However,due to the limitations of regular shapes,it is challenging to meet high-precision design requirements.Irregular shape design allows for a broader range of adjustments,but the complexity of shape parameters leads to lower search efficiency and a higher likelihood of converging to local optima.
基金supported by the National Natural Science Foundation of China(Grant No.12172114)Natural Science Foundation of Anhui Province(Grant No.2008085QA21)+1 种基金Fundamental Research Funds for the Central Universities(Grant No.JZ2022HGTB0291)China Postdoctoral Science Foundation(Grant No.2022M712358).
文摘This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between cost and robustness,reliability and structural safety.To this end,a performancemeasure approach(PMA)-based doubleloop optimization algorithmis developed tominimize the relative volume percentage while achieving the reliability criterion.To ensure the compliance value of the worst failure case can better approximate the quantified design requirement,a p-norm constraint approach with correction parameter is introduced.Finally,the significance of accounting for uncertainty in the fail-safe design is illustrated by contrasting the findings of the proposed reliabilitybased topology optimization(RBTO)method with those of the deterministic design method in three typical examples.Monte Carlo simulation shows that the relative error of the reliability index of the optimized structure does not exceed 3%.
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
基金Projects(51275138,51475025)supported by the National Natural Science Foundation of ChinaProject(12531109)supported by the Science Foundation of Heilongjiang Provincial Department of Education,China+1 种基金Projects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program,ChinaProject(2015M580037)supported by Postdoctoral Science Foundation of China
文摘To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
基金This project is supported by National Natural Science Foundation of China(No.50575072)Outstanding Youth Fund of Hunan Education Department, China (No.04B007).
文摘Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.
基金supported by the National Natural Science Foundation of China under Grant(Number:52105136)the Hong Kong Scholar program under Grant(Number:XJ2022013)China Postdoctoral Science Foundation under Grant(Number:2021M690290)Academic Excellence Foundation of BUAA under Grant(Number:BY2004103).
文摘Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.
基金support from the Key R&D Program of Shandong Province(Grant No.2019JZZY010431)the National Natural Science Foundation of China(Grant No.52175130)+1 种基金the Sichuan Science and Technology Program(Grant No.2022YFQ0087)the Sichuan Science and Technology Innovation Seedling Project Funding Projeet(Grant No.2021112)are gratefully acknowledged.
文摘In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.
基金National Natural Science Foundation of China(No.11662004)National Key Research and Development(R&D)Program of China(No.2017YFB1201103-04)Research Program for Employees of Jishou University,China(No.jsdxrcyjkyxm201602)
文摘An efficient computational framework for reliability analysis and reliability-based design optimization of piezoelectric composite beam with delamination is presented.In the proposed approach,the transverse shear deformation,delamination and piezoelectricity of the beam are taken into account.By introducing the Heaviside step function into the displacement components and using the Rayleigh-Ritz method,and the buckling governing equations for the piezoelectric composite beams is obtained.The reliability of the beams is obtained by integrating the support vector machine method and first order reliability method,further the reliability-based optimization is executed through employing genetic algorithm.The effects of ply style,delamination length and voltage are discussed in details.Numerical results indicate that the comprehensive computational scheme provides a unified numerical framework to analysis the nondeterministic buckling and reliability efficiently.
基金supported by the S&T Special Program of Huzhou(Grant No.2023GZ09)the Open Fund Project of the ShanghaiKey Laboratory of Lightweight Structural Composites(Grant No.2232021A4-06).
文摘Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.
文摘An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.
基金support of projects of Ministry of Education of Czech Republic KONTAKT No.LH12062previous achievements worked out under the project of Technological Agency of Czech Republic No.TA01011019.
文摘The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process of reliability-based optimization and reliability constrains are calculated in inner loop. Innovation of suggested approach is in application of newly developed optimization strategy based on multilevel simulation using an advanced Latin Hypercube Sampling technique. This method is called Aimed multilevel sampling and it is designated for optimization of problems where only limited number of simulations is possible to perform due to enormous com- putational demands.
文摘Aim To introduce a new method of adaptive shape optimization (ASOP) based on three-dimensional structure boundary strength and optimize an engine bearing cap with the method. Methods Using the normal substance's property of thermal expansion and cooling shrinkage,the load which is proportional to the difference between the nodes' stress and their respective objective stress were applied to the corresponding variable nodes on the boundary.The thermal load made the nodes whose stress is greater than their objective stress expand along the boundary's normal direction and the nodes whose stress is less than objec- tive stress shrink in the opposite direction , This process would repeat until the stress on the boundary nodes was converge to the objective stress. Results The satisfied results have been obtained when optimizing an engine bearing cap.The mass of the bearing cap is reduced to 55 percent of the total. Conclusion ASOP is an efficient,practical and reliable method which is suitable for optimizing the shape of the continuous structures.
基金sponsored by the National Natural Science Foundation of China(Nos.11772261 and 11972305)Aeronautical Science Foundation of China(No.2016ZA53011)Foundation of National Key Laboratory(No.JCKYS2019607005).
文摘A variable-fidelity method can remarkably improve the efficiency of a design optimization based on a high-fidelity and expensive numerical simulation,with assistance of lower-fidelity and cheaper simulation(s).However,most existing works only incorporate‘‘two"levels of fidelity,and thus efficiency improvement is very limited.In order to reduce the number of high-fidelity simulations as many as possible,there is a strong need to extend it to three or more fidelities.This article proposes a novel variable-fidelity optimization approach with application to aerodynamic design.Its key ingredient is the theory and algorithm of a Multi-level Hierarchical Kriging(MHK),which is referred to as a surrogate model that can incorporate simulation data with arbitrary levels of fidelity.The high-fidelity model is defined as a CFD simulation using a fine grid and the lower-fidelity models are defined as the same CFD model but with coarser grids,which are determined through a grid convergence study.First,sampling shapes are selected for each level of fidelity via technique of Design of Experiments(DoE).Then,CFD simulations are conducted and the output data of varying fidelity is used to build initial MHK models for objective(e.g.C_D)and constraint(e.g.C_L,C_m)functions.Next,new samples are selected through infillsampling criteria and the surrogate models are repetitively updated until a global optimum is found.The proposed method is validated by analytical test cases and applied to aerodynamic shape optimization of a NACA0012 airfoil and an ONERA M6 wing in transonic flows.The results confirm that the proposed method can significantly improve the optimization efficiency and apparently outperforms the existing single-fidelity or two-level-fidelity method.
基金supported by National Natural Science Foundation of China (Nos. 11802243 and 11902258)Natural Science Foundation of Shaanxi Province (No. 2019JQ-176)+1 种基金Key Project of NSFC (Nos. 51790171, 51761145111 and 51735005)NSFC for Excellent Young Scholars (No. 11722219)。
文摘Smart morphing wing, which is equipped with smart materials and able to change structural geometry adaptively, can further improve aerodynamic efficiency of aircraft. This paper presents a new integrated layout and topology optimization design for morphing wing driven by shape memory alloys(SMAs). By simultaneously optimizing the layout of smart actuators and topology of wing substrate, the ultimately determined configuration can achieve smooth, continuous and accurate geometric shape changes. In addition, aerodynamic analysis is carried out to compare smart morphing wing with traditional hinged airfoil. Finally, the optimized smart wing structure is constructed and tested to demonstrate and verify the morphing functionality. Application setbacks are also pointed out for further investigation.