期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Syntax-Enhanced Entity Relation Extraction with Complex Knowledge
1
作者 Mingwen Bi Hefei Chen Zhenghong Yang 《Computers, Materials & Continua》 2025年第4期861-876,共16页
Entity relation extraction,a fundamental and essential task in natural language processing(NLP),has garnered significant attention over an extended period.,aiming to extract the core of semantic knowledge from unstruc... Entity relation extraction,a fundamental and essential task in natural language processing(NLP),has garnered significant attention over an extended period.,aiming to extract the core of semantic knowledge from unstructured text,i.e.,entities and the relations between them.At present,the main dilemma of Chinese entity relation extraction research lies in nested entities,relation overlap,and lack of entity relation interaction.This dilemma is particularly prominent in complex knowledge extraction tasks with high-density knowledge,imprecise syntactic structure,and lack of semantic roles.To address these challenges,this paper presents an innovative“character-level”Chinese part-of-speech(CN-POS)tagging approach and incorporates part-of-speech(POS)information into the pre-trained model,aiming to improve its semantic understanding and syntactic information processing capabilities.Additionally,A relation reference filling mechanism(RF)is proposed to enhance the semantic interaction between relations and entities,utilize relations to guide entity modeling,improve the boundary prediction ability of entity models for nested entity phenomena,and increase the cascading accuracy of entity-relation triples.Meanwhile,the“Queue”sub-task connection strategy is adopted to alleviate triplet cascading errors caused by overlapping relations,and a Syntax-enhanced entity relation extraction model(SE-RE)is constructed.The model showed excellent performance on the self-constructed E-commerce Product Information dataset(EPI)in this article.The results demonstrate that integrating POS enhancement into the pre-trained encoding model significantly boosts the performance of entity relation extraction models compared to baseline methods.Specifically,the F1-score fluctuation in subtasks caused by error accumulation was reduced by 3.21%,while the F1-score for entity-relation triplet extraction improved by 1.91%. 展开更多
关键词 Entity relation extraction complex knowledge syntax-enhanced semantic interaction pre-trained BERT
在线阅读 下载PDF
Chinese relation extraction for constructing satellite frequency and orbit knowledge graph:A survey
2
作者 Yuanzhi He Zhiqiang Li Zheng Dou 《Digital Communications and Networks》 2025年第5期1305-1317,共13页
As Satellite Frequency and Orbit(SFO)constitute scarce natural resources,constructing a Satellite Frequency and Orbit Knowledge Graph(SFO-KG)becomes crucial for optimizing their utilization.In the process of building ... As Satellite Frequency and Orbit(SFO)constitute scarce natural resources,constructing a Satellite Frequency and Orbit Knowledge Graph(SFO-KG)becomes crucial for optimizing their utilization.In the process of building the SFO-KG from Chinese unstructured data,extracting Chinese entity relations is the fundamental step.Although Relation Extraction(RE)methods in the English field have been extensively studied and developed earlier than their Chinese counterparts,their direct application to Chinese texts faces significant challenges due to linguistic distinctions such as unique grammar,pictographic characters,and prevalent polysemy.The absence of comprehensive reviews on Chinese RE research progress necessitates a systematic investigation.A thorough review of Chinese RE has been conducted from four methodological approaches:pipeline RE,joint entityrelation extraction,open domain RE,and multimodal RE techniques.In addition,we further analyze the essential research infrastructure,including specialized datasets,evaluation benchmarks,and competitions within Chinese RE research.Finally,the current research challenges and development trends in the field of Chinese RE were summarized and analyzed from the perspectives of ecological construction methods for datasets,open domain RE,N-ary RE,and RE based on large language models.This comprehensive review aims to facilitate SFO-KG construction and its practical applications in SFO resource management. 展开更多
关键词 Relation extraction Information extraction Distant supervision Parsing tree Joint entity-relation extraction
在线阅读 下载PDF
Chinese satellite frequency and orbit entity relation extraction method based on dynamic integrated learning
3
作者 Yuanzhi He Zhiqiang Li Zheng Dou 《Digital Communications and Networks》 2025年第3期787-794,共8页
Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatical... Given the scarcity of Satellite Frequency and Orbit(SFO)resources,it holds paramount importance to establish a comprehensive knowledge graph of SFO field(SFO-KG)and employ knowledge reasoning technology to automatically mine available SFO resources.An essential aspect of constructing SFO-KG is the extraction of Chinese entity relations.Unfortunately,there is currently no publicly available Chinese SFO entity Relation Extraction(RE)dataset.Moreover,publicly available SFO text data contain numerous NA(representing for“No Answer”)relation category sentences that resemble other relation sentences and pose challenges in accurate classification,resulting in low recall and precision for the NA relation category in entity RE.Consequently,this issue adversely affects both the accuracy of constructing the knowledge graph and the efficiency of RE processes.To address these challenges,this paper proposes a method for extracting Chinese SFO text entity relations based on dynamic integrated learning.This method includes the construction of a manually annotated Chinese SFO entity RE dataset and a classifier combining features of SFO resource data.The proposed approach combines integrated learning and pre-training models,specifically utilizing Bidirectional Encoder Representation from Transformers(BERT).In addition,it incorporates one-class classification,attention mechanisms,and dynamic feedback mechanisms to improve the performance of the RE model.Experimental results show that the proposed method outperforms the traditional methods in terms of F1 value when extracting entity relations from both balanced and long-tailed datasets. 展开更多
关键词 Knowledge graph Relation extraction One-class classification Satellite frequency and orbit resources BERT
在线阅读 下载PDF
A Review of Joint Extraction Techniques for Relational Triples Based on NYT and WebNLG Datasets
4
作者 Chenglong Mi Huaibin Qin +1 位作者 Quan Qi Pengxiang Zuo 《Computers, Materials & Continua》 2025年第3期3773-3796,共24页
In recent years,with the rapid development of deep learning technology,relational triplet extraction techniques have also achieved groundbreaking progress.Traditional pipeline models have certain limitations due to er... In recent years,with the rapid development of deep learning technology,relational triplet extraction techniques have also achieved groundbreaking progress.Traditional pipeline models have certain limitations due to error propagation.To overcome the limitations of traditional pipeline models,recent research has focused on jointly modeling the two key subtasks-named entity recognition and relation extraction-within a unified framework.To support future research,this paper provides a comprehensive review of recently published studies in the field of relational triplet extraction.The review examines commonly used public datasets for relational triplet extraction techniques and systematically reviews current mainstream joint extraction methods,including joint decoding methods and parameter sharing methods,with joint decoding methods further divided into table filling,tagging,and sequence-to-sequence approaches.In addition,this paper also conducts small-scale replication experiments on models that have performed well in recent years for each method to verify the reproducibility of the code and to compare the performance of different models under uniform conditions.Each method has its own advantages in terms of model design,task handling,and application scenarios,but also faces challenges such as processing complex sentence structures,cross-sentence relation extraction,and adaptability in low-resource environments.Finally,this paper systematically summarizes each method and discusses the future development prospects of joint extraction of relational triples. 展开更多
关键词 Relation triplet extraction joint extraction methods named entity recognition relation extraction
在线阅读 下载PDF
E^(2)CNN:entity-type-enriched cascaded neural network for Chinese financial relation extraction
5
作者 Mengfan LI Xuanhua SHI +5 位作者 Chenqi QIAO Xiao HUANG Weihao WANG Yao WAN Teng ZHANG Hai JIN 《Frontiers of Computer Science》 2025年第10期13-24,共12页
Knowledge Graphs(KGs)are pivotal for effectively organizing and managing structured information across various applications.Financial KGs have been successfully employed in advancing applications such as audit,anti-fr... Knowledge Graphs(KGs)are pivotal for effectively organizing and managing structured information across various applications.Financial KGs have been successfully employed in advancing applications such as audit,anti-fraud,and anti-money laundering.Despite their success,the construction of Chinese financial KGs has seen limited research due to the complex semantics.A significant challenge is the overlap triples problem,where entities feature in multiple relations within a sentence,hampering extraction accuracy-more than 39%of the triples in Chinese datasets exhibit the overlap triples.To address this,we propose the Entity-type-Enriched Cascaded Neural Network(E^(2)CNN),leveraging special tokens for entity boundaries and types.E^(2)CNN ensures consistency in entity types and excludes specific relations,mitigating overlap triple problems and enhancing relation extraction.Besides,we introduce the available Chinese financial dataset FINCORPUS.CN,annotated from annual reports of 2,000 companies,containing 48,389 entities and 23,368 triples.Experimental results on the DUIE dataset and FINCORPUS.CN underscore E^(2)CNN’s superiority over state-of-the-art models. 展开更多
关键词 financial knowledge graph overlap triples cascaded neural network relation extraction
原文传递
Dialogue Relation Extraction Enhanced with Trigger:A Multi-Feature Filtering and Fusion Model
6
作者 Haitao Wang Yuanzhao Guo +1 位作者 Xiaotong Han Yuan Tian 《Computers, Materials & Continua》 2025年第4期137-155,共19页
Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low informatio... Relation extraction plays a crucial role in numerous downstream tasks.Dialogue relation extraction focuses on identifying relations between two arguments within a given dialogue.To tackle the problem of low information density in dialogues,methods based on trigger enhancement have been proposed,yielding positive results.However,trigger enhancement faces challenges,which cause suboptimal model performance.First,the proportion of annotated triggers is low in DialogRE.Second,feature representations of triggers and arguments often contain conflicting information.In this paper,we propose a novel Multi-Feature Filtering and Fusion trigger enhancement approach to overcome these limitations.We first obtain representations of arguments,and triggers that contain rich semantic information through attention and gate methods.Then,we design a feature filtering mechanism that eliminates conflicting features in the encoding of trigger prototype representations and their corresponding argument pairs.Additionally,we utilize large language models to create prompts based on Chain-of-Thought and In-context Learning for automated trigger extraction.Experiments show that our model increases the average F1 score by 1.3%in the dialogue relation extraction task.Ablation and case studies confirm the effectiveness of our model.Furthermore,the feature filtering method effectively integrates with other trigger enhancement models,enhancing overall performance and demonstrating its ability to resolve feature conflicts. 展开更多
关键词 Dialogue relation extraction feature filtering chain-of-thought
在线阅读 下载PDF
Adversarial Learning for Distant Supervised Relation Extraction 被引量:7
7
作者 Daojian Zeng Yuan Dai +2 位作者 Feng Li R.Simon Sherratt Jin Wang 《Computers, Materials & Continua》 SCIE EI 2018年第4期121-136,共16页
Recently,many researchers have concentrated on using neural networks to learn features for Distant Supervised Relation Extraction(DSRE).These approaches generally use a softmax classifier with cross-entropy loss,which... Recently,many researchers have concentrated on using neural networks to learn features for Distant Supervised Relation Extraction(DSRE).These approaches generally use a softmax classifier with cross-entropy loss,which inevitably brings the noise of artificial class NA into classification process.To address the shortcoming,the classifier with ranking loss is employed to DSRE.Uniformly randomly selecting a relation or heuristically selecting the highest score among all incorrect relations are two common methods for generating a negative class in the ranking loss function.However,the majority of the generated negative class can be easily discriminated from positive class and will contribute little towards the training.Inspired by Generative Adversarial Networks(GANs),we use a neural network as the negative class generator to assist the training of our desired model,which acts as the discriminator in GANs.Through the alternating optimization of generator and discriminator,the generator is learning to produce more and more discriminable negative classes and the discriminator has to become better as well.This framework is independent of the concrete form of generator and discriminator.In this paper,we use a two layers fully-connected neural network as the generator and the Piecewise Convolutional Neural Networks(PCNNs)as the discriminator.Experiment results show that our proposed GAN-based method is effective and performs better than state-of-the-art methods. 展开更多
关键词 Relation extraction generative adversarial networks distant supervision piecewise convolutional neural networks pair-wise ranking loss
在线阅读 下载PDF
Ontology-Based BERT Model for Automated Information Extraction from Geological Hazard Reports 被引量:4
8
作者 Kai Ma Miao Tian +3 位作者 Yongjian Tan Qinjun Qiu Zhong Xie Rong Huang 《Journal of Earth Science》 SCIE CAS CSCD 2023年第5期1390-1405,共16页
Geological knowledge can provide support for knowledge discovery, knowledge inference and mineralization predictions of geological big data. Entity identification and relationship extraction from geological data descr... Geological knowledge can provide support for knowledge discovery, knowledge inference and mineralization predictions of geological big data. Entity identification and relationship extraction from geological data description text are the key links for constructing knowledge graphs. Given the lack of publicly annotated datasets in the geology domain, this paper illustrates the construction process of geological entity datasets, defines the types of entities and interconceptual relationships by using the geological entity concept system, and completes the construction of the geological corpus. To address the shortcomings of existing language models(such as Word2vec and Glove) that cannot solve polysemous words and have a poor ability to fuse contexts, we propose a geological named entity recognition and relationship extraction model jointly with Bidirectional Encoder Representation from Transformers(BERT) pretrained language model. To effectively represent the text features, we construct a BERT-bidirectional gated recurrent unit network(BiGRU)-conditional random field(CRF)-based architecture to extract the named entities and the BERT-BiGRU-Attention-based architecture to extract the entity relations. The results show that the F1-score of the BERT-BiGRU-CRF named entity recognition model is 0.91 and the F1-score of the BERT-BiGRU-Attention relationship extraction model is 0.84, which are significant performance improvements when compared to classic language models(e.g., word2vec and Embedding from Language Models(ELMo)). 展开更多
关键词 ONTOLOGY BERT model name entity recognition relation extraction knowledge graph
原文传递
BOOTSTRAPPING FOR EXTRACTING RELATIONS FROM LARGE CORPORA 被引量:5
9
作者 Li Weigang Liu Ting Li Sheng 《Journal of Electronics(China)》 2008年第1期89-96,共8页
A new approach of relation extraction is described in this paper. It adopts a bootstrap- ping model with a novel iteration strategy, which generates more precise examples of specific relation. Compared with previous m... A new approach of relation extraction is described in this paper. It adopts a bootstrap- ping model with a novel iteration strategy, which generates more precise examples of specific relation. Compared with previous methods, the proposed method has three main advantages: first, it needs less manual intervention; second, more abundant and reasonable information are introduced to represent a relation pattern; third, it reduces the risk of circular dependency occurrence in bootstrapping. Scalable evaluation methodology and metrics are developed for our task with comparable techniques over TianWang 100G corpus. The experimental results show that it can get 90% precision and have excellent expansibility. 展开更多
关键词 Relation extraction BOOTSTRAPPING PATTERNS TUPLES
在线阅读 下载PDF
A Knowledge-Enriched and Span-Based Network for Joint Entity and Relation Extraction 被引量:5
10
作者 Kun Ding Shanshan Liu +4 位作者 Yuhao Zhang Hui Zhang Xiaoxiong Zhang Tongtong Wu Xiaolei Zhou 《Computers, Materials & Continua》 SCIE EI 2021年第7期377-389,共13页
The joint extraction of entities and their relations from certain texts plays a significant role in most natural language processes.For entity and relation extraction in a specific domain,we propose a hybrid neural fr... The joint extraction of entities and their relations from certain texts plays a significant role in most natural language processes.For entity and relation extraction in a specific domain,we propose a hybrid neural framework consisting of two parts:a span-based model and a graph-based model.The span-based model can tackle overlapping problems compared with BILOU methods,whereas the graph-based model treats relation prediction as graph classification.Our main contribution is to incorporate external lexical and syntactic knowledge of a specific domain,such as domain dictionaries and dependency structures from texts,into end-to-end neural models.We conducted extensive experiments on a Chinese military entity and relation extraction corpus.The results show that the proposed framework outperforms the baselines with better performance in terms of entity and relation prediction.The proposed method provides insight into problems with the joint extraction of entities and their relations. 展开更多
关键词 Entity recognition relation extraction dependency parsing 1 Introduction
在线阅读 下载PDF
A Two-Phase Paradigm for Joint Entity-Relation Extraction 被引量:2
11
作者 Bin Ji Hao Xu +4 位作者 Jie Yu Shasha Li JunMa Yuke Ji Huijun Liu 《Computers, Materials & Continua》 SCIE EI 2023年第1期1303-1318,共16页
An exhaustive study has been conducted to investigate span-based models for the joint entity and relation extraction task.However,these models sample a large number of negative entities and negative relations during t... An exhaustive study has been conducted to investigate span-based models for the joint entity and relation extraction task.However,these models sample a large number of negative entities and negative relations during the model training,which are essential but result in grossly imbalanced data distributions and in turn cause suboptimal model performance.In order to address the above issues,we propose a two-phase paradigm for the span-based joint entity and relation extraction,which involves classifying the entities and relations in the first phase,and predicting the types of these entities and relations in the second phase.The two-phase paradigm enables our model to significantly reduce the data distribution gap,including the gap between negative entities and other entities,aswell as the gap between negative relations and other relations.In addition,we make the first attempt at combining entity type and entity distance as global features,which has proven effective,especially for the relation extraction.Experimental results on several datasets demonstrate that the span-based joint extraction model augmented with the two-phase paradigm and the global features consistently outperforms previous state-ofthe-art span-based models for the joint extraction task,establishing a new standard benchmark.Qualitative and quantitative analyses further validate the effectiveness the proposed paradigm and the global features. 展开更多
关键词 Joint extraction span-based named entity recognition relation extraction data distribution global features
在线阅读 下载PDF
Lexicalized Dependency Paths Based Supervised Learning for Relation Extraction 被引量:2
12
作者 Huiyu Sun Ralph Grishman 《Computer Systems Science & Engineering》 SCIE EI 2022年第12期861-870,共10页
Log-linear models and more recently neural network models used forsupervised relation extraction requires substantial amounts of training data andtime, limiting the portability to new relations and domains. To this en... Log-linear models and more recently neural network models used forsupervised relation extraction requires substantial amounts of training data andtime, limiting the portability to new relations and domains. To this end, we propose a training representation based on the dependency paths between entities in adependency tree which we call lexicalized dependency paths (LDPs). We showthat this representation is fast, efficient and transparent. We further propose representations utilizing entity types and its subtypes to refine our model and alleviatethe data sparsity problem. We apply lexicalized dependency paths to supervisedlearning using the ACE corpus and show that it can achieve similar performancelevel to other state-of-the-art methods and even surpass them on severalcategories. 展开更多
关键词 Relation extraction dependency paths lexicalized dependency paths supervised learning rule-based models
在线阅读 下载PDF
Medical Entity and Attributes Extraction System Based on Relation Annotation 被引量:1
13
作者 ZOU Yuwei GU Jinguang FU Haidong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第2期145-150,共6页
The abundant entities and entity-attribute relations in medical websites are important data resources for medical research.However,the medical websites are usually characterized of storing entity and attribute values ... The abundant entities and entity-attribute relations in medical websites are important data resources for medical research.However,the medical websites are usually characterized of storing entity and attribute values in different pages.To extract those data records efficiently,we propose an automatic extraction system which is related to entity and attribute relations(attributes and values)of separate storage.Our system includes following modules:(1)rich-information interactive annotation page rendering;(2)separate storage attribute relations annotating;(3)annotated relations for pattern generating and data records extracting.This paper presents the relations about the attributes which are stored in many pages by effective annotation,then generates rules for data records extraction.The experiments show that the system can not only complete attribute relations of separate storage extraction,but also be compatible with regular relation extraction,while maintaining high accuracy. 展开更多
关键词 relation annotation information extraction medical data relation extraction
原文传递
Deep learning models for spatial relation extraction in text 被引量:1
14
作者 Kehan Wu Xueying Zhang +1 位作者 Yulong Dang Peng Ye 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第1期58-70,共13页
Spatial relation extraction is the process of identifying geographic entities from text and determining their corresponding spatial relations.Traditional spatial relation extraction mainly uses rule-based pattern matc... Spatial relation extraction is the process of identifying geographic entities from text and determining their corresponding spatial relations.Traditional spatial relation extraction mainly uses rule-based pattern matching,supervised learning-based or unsupervised learning-based methods.However,these methods suffer from poor time-sensitive,high labor cost and high dependence on large-scale data.With the development of pre-trained language models greatly alleviating the shortcomings of traditional methods,supervised learning methods incorporating pre-trained language models have become the mainstream relation extraction methods.Pipeline extraction and joint extraction,as the two most dominant ideas of relation extraction,both have obtained good performance on different datasets,and whether to share the contextual information of entities and relations is the main differences between the two ideas.In this paper,we compare the performance of two ideas oriented to spatial relation extraction based on Chinese corpus data in the field of geography and verify which method based on pre-trained language models is more suitable for Chinese spatial relation extraction.We fine-tuned the hyperparameters of the two models to optimize the extraction accuracy before the comparison experiments.The results of the comparison experiments show that pipeline extraction performs better than joint extraction of spatial relation extraction for Chinese text data with sentence granularity,because different tasks have different focus on contextual information,and it is difficult to take account into the needs of both tasks by sharing contextual information.In addition,we further compare the performance of the two models with the rule-based template approach in extracting topological,directional and distance relations,summarize the shortcomings of this experiment and provide an outlook for future work. 展开更多
关键词 Spatial relation extraction pre-trained language model pipeline extraction joint extraction
原文传递
Local-to-Global Causal Reasoning for Cross-Document Relation Extraction 被引量:1
15
作者 Haoran Wu Xiuyi Chen +3 位作者 Zefa Hu Jing Shi Shuang Xu Bo Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1608-1621,共14页
Cross-document relation extraction(RE),as an extension of information extraction,requires integrating information from multiple documents retrieved from open domains with a large number of irrelevant or confusing nois... Cross-document relation extraction(RE),as an extension of information extraction,requires integrating information from multiple documents retrieved from open domains with a large number of irrelevant or confusing noisy texts.Previous studies focus on the attention mechanism to construct the connection between different text features through semantic similarity.However,similarity-based methods cannot distinguish valid information from highly similar retrieved documents well.How to design an effective algorithm to implement aggregated reasoning in confusing information with similar features still remains an open issue.To address this problem,we design a novel local-toglobal causal reasoning(LGCR)network for cross-document RE,which enables efficient distinguishing,filtering and global reasoning on complex information from a causal perspective.Specifically,we propose a local causal estimation algorithm to estimate the causal effect,which is the first trial to use the causal reasoning independent of feature similarity to distinguish between confusing and valid information in cross-document RE.Furthermore,based on the causal effect,we propose a causality guided global reasoning algorithm to filter the confusing information and achieve global reasoning.Experimental results under the closed and the open settings of the large-scale dataset Cod RED demonstrate our LGCR network significantly outperforms the state-ofthe-art methods and validate the effectiveness of causal reasoning in confusing information processing. 展开更多
关键词 Causal reasoning cross document graph reasoning relation extraction(RE)
在线阅读 下载PDF
Enhancing Relational Triple Extraction in Specific Domains:Semantic Enhancement and Synergy of Large Language Models and Small Pre-Trained Language Models 被引量:1
16
作者 Jiakai Li Jianpeng Hu Geng Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2481-2503,共23页
In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple e... In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach. 展开更多
关键词 Relational triple extraction semantic interaction large language models data augmentation specific domains
在线阅读 下载PDF
Joint Self-Attention Based Neural Networks for Semantic Relation Extraction 被引量:1
17
作者 Jun Sun Yan Li +5 位作者 Yatian Shen Wenke Ding Xianjin Shi Lei Zhang Xiajiong Shen Jing He 《Journal of Information Hiding and Privacy Protection》 2019年第2期69-75,共7页
Relation extraction is an important task in NLP community.However,some models often fail in capturing Long-distance dependence on semantics,and the interaction between semantics of two entities is ignored.In this pape... Relation extraction is an important task in NLP community.However,some models often fail in capturing Long-distance dependence on semantics,and the interaction between semantics of two entities is ignored.In this paper,we propose a novel neural network model for semantic relation classification called joint self-attention bi-LSTM(SA-Bi-LSTM)to model the internal structure of the sentence to obtain the importance of each word of the sentence without relying on additional information,and capture Long-distance dependence on semantics.We conduct experiments using the SemEval-2010 Task 8 dataset.Extensive experiments and the results demonstrated that the proposed method is effective against relation classification,which can obtain state-ofthe-art classification accuracy just with minimal feature engineering. 展开更多
关键词 Self-attention relation extraction neural networks
在线阅读 下载PDF
Relational Turkish Text Classification Using Distant Supervised Entities and Relations
18
作者 Halil Ibrahim Okur Kadir Tohma Ahmet Sertbas 《Computers, Materials & Continua》 SCIE EI 2024年第5期2209-2228,共20页
Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved throu... Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research. 展开更多
关键词 Text classification relation extraction NER distant supervision deep learning machine learning
在线阅读 下载PDF
A Joint Entity Relation Extraction Model Based on Relation Semantic Template Automatically Constructed
19
作者 Wei Liu Meijuan Yin +1 位作者 Jialong Zhang Lunchong Cui 《Computers, Materials & Continua》 SCIE EI 2024年第1期975-997,共23页
The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of... The joint entity relation extraction model which integrates the semantic information of relation is favored by relevant researchers because of its effectiveness in solving the overlapping of entities,and the method of defining the semantic template of relation manually is particularly prominent in the extraction effect because it can obtain the deep semantic information of relation.However,this method has some problems,such as relying on expert experience and poor portability.Inspired by the rule-based entity relation extraction method,this paper proposes a joint entity relation extraction model based on a relation semantic template automatically constructed,which is abbreviated as RSTAC.This model refines the extraction rules of relation semantic templates from relation corpus through dependency parsing and realizes the automatic construction of relation semantic templates.Based on the relation semantic template,the process of relation classification and triplet extraction is constrained,and finally,the entity relation triplet is obtained.The experimental results on the three major Chinese datasets of DuIE,SanWen,and FinRE showthat the RSTAC model successfully obtains rich deep semantics of relation,improves the extraction effect of entity relation triples,and the F1 scores are increased by an average of 0.96% compared with classical joint extraction models such as CasRel,TPLinker,and RFBFN. 展开更多
关键词 Natural language processing deep learning information extraction relation extraction relation semantic template
在线阅读 下载PDF
Qualia Role-Based Quantity Relation Extraction for Solving Algebra Story Problems
20
作者 Bin He Hao Meng +2 位作者 Zhejin Zhang Rui Liu Ting Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期403-419,共17页
A qualia role-based entity-dependency graph(EDG)is proposed to represent and extract quantity relations for solving algebra story problems stated in Chinese.Traditional neural solvers use end-to-end models to translat... A qualia role-based entity-dependency graph(EDG)is proposed to represent and extract quantity relations for solving algebra story problems stated in Chinese.Traditional neural solvers use end-to-end models to translate problem texts into math expressions,which lack quantity relation acquisition in sophisticated scenarios.To address the problem,the proposed method leverages EDG to represent quantity relations hidden in qualia roles of math objects.Algorithms were designed for EDG generation and quantity relation extraction for solving algebra story problems.Experimental result shows that the proposedmethod achieved an average accuracy of 82.2%on quantity relation extraction compared to 74.5%of baseline method.Another prompt learning result shows a 5%increase obtained in problem solving by injecting the extracted quantity relations into the baseline neural solvers. 展开更多
关键词 Quantity relation extraction algebra story problem solving qualia role entity dependency graph
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部