期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Link Prediction Based on the Relational Path Inference of Triangular Structures
1
作者 Xin Li Qilong Han +1 位作者 Lijie Li Ye Wang 《国际计算机前沿大会会议论文集》 EI 2023年第2期255-268,共14页
Link prediction is used to complete the knowledge graph.Convolu-tional neural network models are commonly used for link prediction tasks,but they only consider the direct relations between entity pairs,ignoring the se... Link prediction is used to complete the knowledge graph.Convolu-tional neural network models are commonly used for link prediction tasks,but they only consider the direct relations between entity pairs,ignoring the semantic information contained in the relation paths.In addition,the embedding dimension of the relation is generally larger than that of the entity in the ConvR model,which blocks the progress of downstream tasks.If we reduce the embedding dimension of the relation,the performance will be greatly degraded.This paper proposes a convolutional model PITri-R-ConvR based on triangular structure relational infer-ence.The model uses relational path inference to capture semantic information,while using a triangular structure to ensure the reliability and computational effi-ciency of relational inference.In addition,the decoder R-ConvR improves the initial embedding of the ConvR model,which solves the problems of the ConvR model and significantly improves the prediction performance.Finally,this paper conducts sufficient experiments in multiple datasets to verify the superiority of the model and the rationality of each module. 展开更多
关键词 Link Prediction Triangular Structure relational path inference Attention Mechanism Convolution Neural Network Model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部