Objective To study the immune regulative function of Sertoli cell on testis local infection Methods Ureaplasma urealyticum (UU) was directly injected into bladders of FasL transgenic mice and wild-type mice, which m...Objective To study the immune regulative function of Sertoli cell on testis local infection Methods Ureaplasma urealyticum (UU) was directly injected into bladders of FasL transgenic mice and wild-type mice, which mimicked an ascending infectious way. At week 1, 2 and 3 after injection respectively, the mice were killed to observe the pathological alterations in testis section. And at the same time cytokines was tested by immunohistochemistry. Comparison of levels of FasL, TGF-β, IL-1α and IL-6 between UU-infected and control groups of wild mice and FasL transgenic mice was made respectively. Then the capability of Sertoli cell (FasL^+) to mediate apoptosis of Fas^+ cells between wild control and wild UU-infected groups was analyzed. Results The pathological changes of testis in FasL transgenic mice were more seriously compared with wild counterpart and the changing mode of cytokines secreted by Sertoli cells were different between the two kinds of mice. The UU-infected Sertoli cells increased Fas^+ Jurkat cell apoptosis. Conclusions High expression of FasL in FasL transgenic mice can influence the cytokines secretion during anti-infection, thus affecting the testis immune response to infection and immune balance. The high expression of FasL is not beneficial for body's anti-inflection immune response.展开更多
Objective To investigate the immune regulative mechanism of Leydig cells in the local infection of rat's testis.Methods Ureaplasma Urealyticum(UU) was injected into rat's bladder, which mimicked an ascending infec...Objective To investigate the immune regulative mechanism of Leydig cells in the local infection of rat's testis.Methods Ureaplasma Urealyticum(UU) was injected into rat's bladder, which mimicked an ascending infectious way, and at the same time culture medium was injected into rat's bladder as the control. The rats were sacrificed at week 1, 2 and 3 after injection respectively. Then pathological changes in testis were analyzed by histological examination. At the same time Leydig cells were separated from rat's testis. The comparasion of levels of IL-1,IL-6, TGF-β, Fas and FasL mRNA expression among the three groups was made by RT-PCR.Results As compared with control group, the levels of IL-1, IL-6, TGF-fl mRNA expression for UU supernatant and living UU groups increased; and levels of Fas and FasL mRNA expression decreased and increased respectively after UU infection. Conclusion During anti-infective immunity, rat's Leydig cells may regulate immune function of the testis by changing the levels of IL-1, IL-6, TGF-β, Fas and FasL mRNA expression and may contribute to maintain immune privilege of the testis.展开更多
In order to investigate the regulative function of telom erase and phosphorylated (acti- vated) extracelluar regulated protein kinase (ERK) 1and 2 in the leukemic cell lines HL - 6 0 and K5 6 2 proliferation inhibit...In order to investigate the regulative function of telom erase and phosphorylated (acti- vated) extracelluar regulated protein kinase (ERK) 1and 2 in the leukemic cell lines HL - 6 0 and K5 6 2 proliferation inhibition and apoptosis,three chemotherapeutic drugs Harringtonine(HRT) , Vincristine(VCR) and Etoposide(Vp16 ) were selected as inducers.The proliferation inhibition rate was detected by MTT m ethod,the cell cycle and cell apoptosis was analyzed by flow cytometry and the telom erase activity was detected by the telom eric repeat am plification protocol(TRAP) assay and bioluminescence analysis method.The phosphorylated ERK 1/ 2 protein expression was detected by western blot method.The results showed that HRT,VCR and Vp16 could inhibit cell proliferation,induce apoptosis,inhibit telomerase activity and down- regulate the protein expres- sion of phosphorylated ERK.Itwas suggested that ERK signal transduction pathway was involved in the down- regulation of telomerase activity and the onset of apoptosis in the leukem ic cells treat- ed by HRT,VCR and Vp16 .展开更多
Along with maintaining immune competent cells, one of the purposes of cancer patient is regulating the first line of defense for survival. Moreover, the factors that influence the acquired immune activity are systemic...Along with maintaining immune competent cells, one of the purposes of cancer patient is regulating the first line of defense for survival. Moreover, the factors that influence the acquired immune activity are systemic metabolic disorder in diabetes, malnutrition, extreme exhaustion, stresses, aging and medical side effect such as chemotherapy. So we have to select appropriate menu to regulate immune function through leukocyte storage. Especially, NK cell is first line of defense against virus infected cell and/or tumor cell. In order to recommend the effect of hot spring hydrotherapy on the peripheral white blood cells as a parameter for complementary and alternative medicine (CAM) within a short period, the granulocytes, lymphocytes, lymphocyte subsets in their peripheral blood were monitored. In the young group (35 or less), the number of granulocytes clearly decreased after hydrotherapy. In the older group (over 35 years old), the total number of leukocytes and lymphocytes significantly increased after the therapy. Using a FACScan, we investigated CD2, CD4, CD8, CD16, CD19 and CD56 positive cell as well as the cytokine containing cell, as direct assessment for immunological preparation (IFN-γ, IL-4 and IL-1β). After hydrotherapy, the CD16+ cells also increased outstandingly. However, the CD19+ cells clearly decreased. Moreover, there was a decrease in the cytokine-producing cell count of subjects whose blood cells had a higher number of the cell level before. All of the results indicated that hot spring hydrotherapy could regulate the immune system even in normal human. Like this, blood hormonal level was measured in order to know the mechanism of the quantitative and qualitative, adjustment of the leucocytes becomes possible within a short term. As a result of measuring, 7 kinds of hormone including mainly adrenocortical hormones, adrenalin level reduced in constitution dependent manner. From these results, it was suggested that the quantitative and qualitative fluctuation of the leukocyte by the hydrotherapy is closely related to dynamics of blood hormonal level.展开更多
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modu...Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accou...Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.展开更多
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro...With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.展开更多
Chlorophyll degradation and carotenoid accumulation are essential processes of fruit maturation in many horticultural plants,and play a crucial role in fruit color and quality.The pathways of chlorophyll and carotenoi...Chlorophyll degradation and carotenoid accumulation are essential processes of fruit maturation in many horticultural plants,and play a crucial role in fruit color and quality.The pathways of chlorophyll and carotenoid biosynthesis and degradation are well understood,and key regulatory genes controlling these pathways have been identified in citrus.This article reviewed the recent research on chlorophyll and carotenoid metabolism in citrus fruits,encompassing the metabolic pathways,transcriptional regulation,influencing factors,and the interplay between chlorophyll and carotenoid metabolism,aiming to provide insights into the molecular regulatory mechanisms governing the coloration of citrus fruits.展开更多
The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic ...The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs.展开更多
Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon la...Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon lattice in hard carbon.Herein,confined pitch-based soft carbon in pollen-derived hard carbon(PSC/PHC)is synthesized by vapor deposition strategy as anodes for PIBs.The ordered pitch-based soft carbon compensates for the short-range electron conduction in hard carbon to enhance the charge transfer kinetics,and the externally disordered pollen-derived hard carbon alleviates the volume change of soft carbon during cycling.Benefiting from the synergistic effect of soft and hard carbon,as well as the reinforced structure of order-in-disordered carbon,the PSC/PHC obtained with deposition time of 0.5 h(PSC/PHC-0.5)displays an excellent rate capability(148.7 mAh g^(-1)at 10 A g^(-1))and superb cycling stability(70%retention over 2000 cycles at 1 A g^(-1)).This work offers a unique insight in tuning the microcrystalline structure of soft-hard carbon anode for advanced PIBs.展开更多
The utilization and storage of CO_(2) emissions from oil production and consumption in the upstream oil industry will contribute to sustainable development.CO_(2) flooding is the key technology for the upstream oil in...The utilization and storage of CO_(2) emissions from oil production and consumption in the upstream oil industry will contribute to sustainable development.CO_(2) flooding is the key technology for the upstream oil industry to transition to sustainable development.However,there is a significant challenge in achieving high recovery and storage efficiency in unconventional reservoirs,particularly in underde-veloped countries.Numerous studies have indicated that the limited sweep range caused by premature gas channeling of CO_(2) is a crucial bottleneck that hinders the enhancement of recovery,storage efficiency and safety.This review provides a comprehensive summary of the research and technical advancements regarding the front sweep characteristics of CO_(2) during migration.It particularly focuses on the char-acteristics,applicable stages,and research progress of different technologies used for regulating CO_(2) flooding sweep.Finally,based on the current application status and development trends,the review offers insights into the future research direction for these technologies.It is concluded that the front migration characteristics of CO_(2) play a crucial role in determining the macroscopic sweep range.The focus of future research lies in achieving cross-scale correlation and information coupling of CO_(2) migration processes.Currently,the influence weight of permeability,injection speed,pressure and other parameters on the characteristics of‘fingering-gas channeling’is still not well clear.There is an urgent need to establish prediction model and early warning mechanism that considers multi-parameters and cross-scale gas channeling degrees,in order to create effective strategies for prevention and control.There are currently three technologies available for sweep regulation:flow field intervention,mobility reduction,and gas channeling plugging.To expand the sweep effectively,it is important to systematically integrate these technologies based on their regulation characteristics and applicable stages.This can be achieved by constructing an intelligent synergistic hierarchical segmented regulation technology known as‘flow field intervention+mobility regulation+channel plugging chemically’.This work is expected to provide valuable insights for achieving conformance control of CO_(2)-EOR and safe storage of CO_(2).展开更多
Taxation,the primary source of fiscal revenue,has profound implications in guiding resource allocation,promoting economic growth,adjusting social wealth distribution,and enhancing cultural influence.The development of...Taxation,the primary source of fiscal revenue,has profound implications in guiding resource allocation,promoting economic growth,adjusting social wealth distribution,and enhancing cultural influence.The development of e-taxation provides a enhanced security for taxation,but it still faces the risk of inefficiency and tax data leakage.As a decentralized ledger,blockchain provides an effective solution for protecting tax data and avoiding tax-related errors and fraud.The introduction of blockchain into e-taxation protocols can ensure the public verification of taxes.However,balancing taxpayer identity privacy with regulation remains a challenge.In this paper,we propose a blockchain-based anonymous and regulatory e-taxation protocol.This protocol ensures the supervision and tracking of malicious taxpayers while maintaining honest taxpayer identity privacy,reduces the storage needs for public key certificates in the public key infrastructure,and enables selfcertification of taxpayers’public keys and addresses.We formalize the security model of unforgeability for transactions,anonymity for honest taxpayers,and traceability for malicious taxpayers.Security analysis shows that the proposed protocol satisfies unforgeability,anonymity,and traceability.The experimental results of time consumption show that the protocol is feasible in practical applications.展开更多
5-Aminolevulinic acid(ALA),is a novel plant growth regulator that can enhance plant tolerance against salt stress.However,the molecular mechanism of ALA is not well studied.In this study,ALA improved salt tolerance of...5-Aminolevulinic acid(ALA),is a novel plant growth regulator that can enhance plant tolerance against salt stress.However,the molecular mechanism of ALA is not well studied.In this study,ALA improved salt tolerance of apple(Malus×domestica'Gala')when the detached leaves or cultured calli were used as the materials.The expression of MdWRKY71,a WRKY transcription factor(TF)gene was found to be responsive to NaCl as well as ALA treatment.Functional analysis showed that overexpressing(OE)-MdWRKY71 significantly improved the salt tolerance of the transgenic apple,while RNA interfering(RNAi)-MdWRKY71 reduced the salt tolerance.However,exogenous ALA alleviated the salt damage in the RNAi-MdWRKY71 apple.When MdWRKY71 was transferred into tobacco,the salt tolerance of transgenic plants was enhanced,which was further improved by exogenous ALA.Subsequently,MdWRKY71 bound to the W-box of promoters of MdSOS2,MdNHX1,MdCLC-g,MdSOD1,MdCAT1 and MdAPX1,transcriptionally activating the gene expressions.Since the genes are responsible for Na+and Cl-transport and antioxidant enzyme activity respectively,it can be concluded that MdWRKY71,a new TF,is involved in ALA-improved salt tolerance by regulating ion homeostasis and redox homeostasis.These results provided new insights into the transcriptional regulatory mechanism of ALA in enhancing apple salt tolerance.展开更多
Objective Poxviruses are zoonotic pathogens that infect humans,mammals,vertebrates,and arthropods.However,the specific role of ticks in transmission and evolution of these viruses remains unclear.Methods Transcriptomi...Objective Poxviruses are zoonotic pathogens that infect humans,mammals,vertebrates,and arthropods.However,the specific role of ticks in transmission and evolution of these viruses remains unclear.Methods Transcriptomic and metatranscriptomic raw data from 329 sampling pools of seven tick species across five continents were mined to assess the diversity and abundance of poxviruses.Chordopoxviral sequences were assembled and subjected to phylogenetic analysis to trace the origins of the unblasted fragments within these sequences.Results Fifty-eight poxvirus species,representing two subfamilies and 20 genera,were identified,with 212 poxviral sequences assembled.A substantial proportion of AT-rich fragments were detected in the assembled poxviral genomes.These genomic sequences contained fragments originating from rodents,archaea,and arthropods.Conclusion Our findings indicate that ticks play a significant role in the transmission and evolution of poxviruses.These viruses demonstrate the capacity to modulate virulence and adaptability through horizontal gene transfer,gene recombination,and gene mutations,thereby promoting co-existence and co-evolution with their hosts.This study advances understanding of the ecological dynamics of poxvirus transmission and evolution and highlights the potential role of ticks as vectors and vessels in these processes.展开更多
The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions durin...The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions during cycling.Electrolyte additive modification is considered one of the most effective and simplest methods for solving the aforementioned problems.Herein,the pyridine derivatives(PD)including 2,4-dihydroxypyridine(2,4-DHP),2,3-dihydroxypyridine(2,3-DHP),and 2-hydroxypyrdine(2-DHP),were em-ployed as novel electrolyte additives in ZnSO_(4)electrolyte.Both density functional theory calculation and experimental findings demonstrated that the incorporation of PD additives into the electrolyte effectively modulates the solvation structure of hydrated Zn ions,thereby suppressing side reactions in AZIBs.Ad-ditionally,the adsorption of PD molecules on the zinc anode surface contributed to uniform Zn deposi-tion and dendrite growth inhibition.Consequently,a 2,4-DHP-modified Zn/Zn symmetrical cell achieved an extremely long cyclic stability up to 5650 h at 1 mA cm^(-2).Furthermore,the Zn/NH_(4)V_(4)O_(10)full cell with 2,4-DHP-containing electrolyte exhibited an outstanding initial capacity of 204 mAh g^(-1),with a no-table capacity retention of 79%after 1000 cycles at 5 A g^(-1).Hence,this study expands the selection of electrolyte additives for AZIBs,and the working mechanism of PD additives provides new insights for electrolyte modification enabling highly reversible zinc anode.展开更多
Bioelectrochemical regulation has been proved to enhance the traditional anaerobic digestion(AD)of organic wastes.However,few investigations have explored whether it is possible to enhance the production of biomethane...Bioelectrochemical regulation has been proved to enhance the traditional anaerobic digestion(AD)of organic wastes.However,few investigations have explored whether it is possible to enhance the production of biomethane from raw corn stover(CS).A single-chamber microbial electrolysis cell(MEC)was incorporated with an AD to form a new system(MEC-AD)with aiming at more efficient bioconversion of CS to biomethane.The performance and microbiological characteristics of MEC-AD was investigated,and compared with conventional AD,which were inoculated with original inoculum(UAD)and electrically domesticated inoculum(EAD),respectively.The results showed that MEC-AD achieved the highest CH_(4)yield of 239.13 ml·g^(-1)volatile solids(VS),which was 29.28%and 12.44%higher than those of UAD and EAD,respectively.MEC-AD also achieved higher substance conversion rates of 73.24%VS,91.16%cellulose,and 77.24%hemicellulose,respectively.The community characteristics of microorganisms revealed that the relative abundance and interactions of functional microorganisms in MEC-AD were obviously different from UAD and EAD.In MEC-AD,Electroactive bacteria(Sedimentibacter)with electrotrophic methanogens(Methanosarcina and Methanosaeta)in anodic biofilms established electrotrophic methanogenesis through direct interspecies electron transfer(DIET).The process of methanotrophic methanogenesis was facilitated by the interactions between fermentative acid-producing bacteria(FABs),syntrophic organic acid oxidation bacteria(SOBs),and methylotrophic methanogens(Methyl-HMs)in MEC-AD suspensions.Efficient synergistic interactions between these functional microorganisms improved the performance of MEC-AD in converting CS to produce biomethane.The study could provide an effective means for achieving higher AD biomethane production from raw CS.展开更多
Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challe...Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.展开更多
基金This study was supported by National Natural Science Foundation of China (No. 39970283).
文摘Objective To study the immune regulative function of Sertoli cell on testis local infection Methods Ureaplasma urealyticum (UU) was directly injected into bladders of FasL transgenic mice and wild-type mice, which mimicked an ascending infectious way. At week 1, 2 and 3 after injection respectively, the mice were killed to observe the pathological alterations in testis section. And at the same time cytokines was tested by immunohistochemistry. Comparison of levels of FasL, TGF-β, IL-1α and IL-6 between UU-infected and control groups of wild mice and FasL transgenic mice was made respectively. Then the capability of Sertoli cell (FasL^+) to mediate apoptosis of Fas^+ cells between wild control and wild UU-infected groups was analyzed. Results The pathological changes of testis in FasL transgenic mice were more seriously compared with wild counterpart and the changing mode of cytokines secreted by Sertoli cells were different between the two kinds of mice. The UU-infected Sertoli cells increased Fas^+ Jurkat cell apoptosis. Conclusions High expression of FasL in FasL transgenic mice can influence the cytokines secretion during anti-infection, thus affecting the testis immune response to infection and immune balance. The high expression of FasL is not beneficial for body's anti-inflection immune response.
基金This study was supported by Shanghai Advanced Colleges Science and Technology Development Funds(02BK08) and Shnaghai Leading Academic Discipline Project (T0206).
文摘Objective To investigate the immune regulative mechanism of Leydig cells in the local infection of rat's testis.Methods Ureaplasma Urealyticum(UU) was injected into rat's bladder, which mimicked an ascending infectious way, and at the same time culture medium was injected into rat's bladder as the control. The rats were sacrificed at week 1, 2 and 3 after injection respectively. Then pathological changes in testis were analyzed by histological examination. At the same time Leydig cells were separated from rat's testis. The comparasion of levels of IL-1,IL-6, TGF-β, Fas and FasL mRNA expression among the three groups was made by RT-PCR.Results As compared with control group, the levels of IL-1, IL-6, TGF-fl mRNA expression for UU supernatant and living UU groups increased; and levels of Fas and FasL mRNA expression decreased and increased respectively after UU infection. Conclusion During anti-infective immunity, rat's Leydig cells may regulate immune function of the testis by changing the levels of IL-1, IL-6, TGF-β, Fas and FasL mRNA expression and may contribute to maintain immune privilege of the testis.
文摘In order to investigate the regulative function of telom erase and phosphorylated (acti- vated) extracelluar regulated protein kinase (ERK) 1and 2 in the leukemic cell lines HL - 6 0 and K5 6 2 proliferation inhibition and apoptosis,three chemotherapeutic drugs Harringtonine(HRT) , Vincristine(VCR) and Etoposide(Vp16 ) were selected as inducers.The proliferation inhibition rate was detected by MTT m ethod,the cell cycle and cell apoptosis was analyzed by flow cytometry and the telom erase activity was detected by the telom eric repeat am plification protocol(TRAP) assay and bioluminescence analysis method.The phosphorylated ERK 1/ 2 protein expression was detected by western blot method.The results showed that HRT,VCR and Vp16 could inhibit cell proliferation,induce apoptosis,inhibit telomerase activity and down- regulate the protein expres- sion of phosphorylated ERK.Itwas suggested that ERK signal transduction pathway was involved in the down- regulation of telomerase activity and the onset of apoptosis in the leukem ic cells treat- ed by HRT,VCR and Vp16 .
文摘Along with maintaining immune competent cells, one of the purposes of cancer patient is regulating the first line of defense for survival. Moreover, the factors that influence the acquired immune activity are systemic metabolic disorder in diabetes, malnutrition, extreme exhaustion, stresses, aging and medical side effect such as chemotherapy. So we have to select appropriate menu to regulate immune function through leukocyte storage. Especially, NK cell is first line of defense against virus infected cell and/or tumor cell. In order to recommend the effect of hot spring hydrotherapy on the peripheral white blood cells as a parameter for complementary and alternative medicine (CAM) within a short period, the granulocytes, lymphocytes, lymphocyte subsets in their peripheral blood were monitored. In the young group (35 or less), the number of granulocytes clearly decreased after hydrotherapy. In the older group (over 35 years old), the total number of leukocytes and lymphocytes significantly increased after the therapy. Using a FACScan, we investigated CD2, CD4, CD8, CD16, CD19 and CD56 positive cell as well as the cytokine containing cell, as direct assessment for immunological preparation (IFN-γ, IL-4 and IL-1β). After hydrotherapy, the CD16+ cells also increased outstandingly. However, the CD19+ cells clearly decreased. Moreover, there was a decrease in the cytokine-producing cell count of subjects whose blood cells had a higher number of the cell level before. All of the results indicated that hot spring hydrotherapy could regulate the immune system even in normal human. Like this, blood hormonal level was measured in order to know the mechanism of the quantitative and qualitative, adjustment of the leucocytes becomes possible within a short term. As a result of measuring, 7 kinds of hormone including mainly adrenocortical hormones, adrenalin level reduced in constitution dependent manner. From these results, it was suggested that the quantitative and qualitative fluctuation of the leukocyte by the hydrotherapy is closely related to dynamics of blood hormonal level.
基金supported by the National Natural Science Foundation of China, Nos.82201474 (to GL), 82071330 (to ZT), and 92148206 (to ZT)Key Research and Discovery Program of Hubei Province, No.2021BCA109 (to ZT)。
文摘Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
文摘Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.
基金supported by the Surface Project of Local De-velopment in Science and Technology Guided by Central Govern-ment(No.2021ZYD0041)the National Natural Science Founda-tion of China(Nos.52377026 and 52301192)+3 种基金the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Special Financial of Shandong Province(Struc-tural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Tal-ent Teams)the“Sanqin Scholars”Innovation Teams Project of Shaanxi Province(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.).
文摘With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LQ23C150004 and LR23C150001)National Natural Science Foundation of China(NSFC+1 种基金Grant No.32102318)NSFC Excellent Young Scientists Fund,and the Key Project for New Agricultural Cultivar Breeding in Zhejiang Province,China(Grant No.2021C02066-1).
文摘Chlorophyll degradation and carotenoid accumulation are essential processes of fruit maturation in many horticultural plants,and play a crucial role in fruit color and quality.The pathways of chlorophyll and carotenoid biosynthesis and degradation are well understood,and key regulatory genes controlling these pathways have been identified in citrus.This article reviewed the recent research on chlorophyll and carotenoid metabolism in citrus fruits,encompassing the metabolic pathways,transcriptional regulation,influencing factors,and the interplay between chlorophyll and carotenoid metabolism,aiming to provide insights into the molecular regulatory mechanisms governing the coloration of citrus fruits.
基金supported by the Natural Science Research Project of the Anhui Educational Committee,China(No.2022AH050827)the Open Research Fund Program of Anhui Province Key Laboratory of Specialty Polymers,Anhui University of Science and Technology,China(No.AHKLSP23-12)the Joint National-Local Engineering Research Center for Safe and Precise Coal Mining Fund,China(No.EC2022020)。
文摘The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs.
基金partly supported by the National Natural Science Foundation of China(52072002,52372037,and 22108003)the Postdoctoral Fellowship Program of CPSF(GZC20230015)+2 种基金the Outstanding Scientific Research and Innovation Team Program of Higher Education Institutions of Anhui Province(2023AH010015)the Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province(2023AH030026)financial support from the Anhui International Research Center of Energy Materials Green Manufacturing and Biotechnology。
文摘Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon lattice in hard carbon.Herein,confined pitch-based soft carbon in pollen-derived hard carbon(PSC/PHC)is synthesized by vapor deposition strategy as anodes for PIBs.The ordered pitch-based soft carbon compensates for the short-range electron conduction in hard carbon to enhance the charge transfer kinetics,and the externally disordered pollen-derived hard carbon alleviates the volume change of soft carbon during cycling.Benefiting from the synergistic effect of soft and hard carbon,as well as the reinforced structure of order-in-disordered carbon,the PSC/PHC obtained with deposition time of 0.5 h(PSC/PHC-0.5)displays an excellent rate capability(148.7 mAh g^(-1)at 10 A g^(-1))and superb cycling stability(70%retention over 2000 cycles at 1 A g^(-1)).This work offers a unique insight in tuning the microcrystalline structure of soft-hard carbon anode for advanced PIBs.
基金National Key Research and Development Program of China(No.2023YFB4104204)National Natural Science Foundation of China(No.U23B2090).
文摘The utilization and storage of CO_(2) emissions from oil production and consumption in the upstream oil industry will contribute to sustainable development.CO_(2) flooding is the key technology for the upstream oil industry to transition to sustainable development.However,there is a significant challenge in achieving high recovery and storage efficiency in unconventional reservoirs,particularly in underde-veloped countries.Numerous studies have indicated that the limited sweep range caused by premature gas channeling of CO_(2) is a crucial bottleneck that hinders the enhancement of recovery,storage efficiency and safety.This review provides a comprehensive summary of the research and technical advancements regarding the front sweep characteristics of CO_(2) during migration.It particularly focuses on the char-acteristics,applicable stages,and research progress of different technologies used for regulating CO_(2) flooding sweep.Finally,based on the current application status and development trends,the review offers insights into the future research direction for these technologies.It is concluded that the front migration characteristics of CO_(2) play a crucial role in determining the macroscopic sweep range.The focus of future research lies in achieving cross-scale correlation and information coupling of CO_(2) migration processes.Currently,the influence weight of permeability,injection speed,pressure and other parameters on the characteristics of‘fingering-gas channeling’is still not well clear.There is an urgent need to establish prediction model and early warning mechanism that considers multi-parameters and cross-scale gas channeling degrees,in order to create effective strategies for prevention and control.There are currently three technologies available for sweep regulation:flow field intervention,mobility reduction,and gas channeling plugging.To expand the sweep effectively,it is important to systematically integrate these technologies based on their regulation characteristics and applicable stages.This can be achieved by constructing an intelligent synergistic hierarchical segmented regulation technology known as‘flow field intervention+mobility regulation+channel plugging chemically’.This work is expected to provide valuable insights for achieving conformance control of CO_(2)-EOR and safe storage of CO_(2).
文摘Taxation,the primary source of fiscal revenue,has profound implications in guiding resource allocation,promoting economic growth,adjusting social wealth distribution,and enhancing cultural influence.The development of e-taxation provides a enhanced security for taxation,but it still faces the risk of inefficiency and tax data leakage.As a decentralized ledger,blockchain provides an effective solution for protecting tax data and avoiding tax-related errors and fraud.The introduction of blockchain into e-taxation protocols can ensure the public verification of taxes.However,balancing taxpayer identity privacy with regulation remains a challenge.In this paper,we propose a blockchain-based anonymous and regulatory e-taxation protocol.This protocol ensures the supervision and tracking of malicious taxpayers while maintaining honest taxpayer identity privacy,reduces the storage needs for public key certificates in the public key infrastructure,and enables selfcertification of taxpayers’public keys and addresses.We formalize the security model of unforgeability for transactions,anonymity for honest taxpayers,and traceability for malicious taxpayers.Security analysis shows that the proposed protocol satisfies unforgeability,anonymity,and traceability.The experimental results of time consumption show that the protocol is feasible in practical applications.
基金funded by the Natural Science Foundation of China(Grant Nos.32230097 and 32172512)the Jiangsu Agricultural Science and Technology Innovation Fund[Grant No.CX(20)2023]+1 种基金the Jiangsu Special Fund for Frontier Foundation Research of Carbon Peaking and Carbon Neutralization(Grant No.BK20220005)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘5-Aminolevulinic acid(ALA),is a novel plant growth regulator that can enhance plant tolerance against salt stress.However,the molecular mechanism of ALA is not well studied.In this study,ALA improved salt tolerance of apple(Malus×domestica'Gala')when the detached leaves or cultured calli were used as the materials.The expression of MdWRKY71,a WRKY transcription factor(TF)gene was found to be responsive to NaCl as well as ALA treatment.Functional analysis showed that overexpressing(OE)-MdWRKY71 significantly improved the salt tolerance of the transgenic apple,while RNA interfering(RNAi)-MdWRKY71 reduced the salt tolerance.However,exogenous ALA alleviated the salt damage in the RNAi-MdWRKY71 apple.When MdWRKY71 was transferred into tobacco,the salt tolerance of transgenic plants was enhanced,which was further improved by exogenous ALA.Subsequently,MdWRKY71 bound to the W-box of promoters of MdSOS2,MdNHX1,MdCLC-g,MdSOD1,MdCAT1 and MdAPX1,transcriptionally activating the gene expressions.Since the genes are responsible for Na+and Cl-transport and antioxidant enzyme activity respectively,it can be concluded that MdWRKY71,a new TF,is involved in ALA-improved salt tolerance by regulating ion homeostasis and redox homeostasis.These results provided new insights into the transcriptional regulatory mechanism of ALA in enhancing apple salt tolerance.
基金financially supported by the Shanghai New Three-Year Action Plan for Public Health(Grant No.GWVI-11.1-03)National Natural Science Foundation of China(Grant No.81872673).
文摘Objective Poxviruses are zoonotic pathogens that infect humans,mammals,vertebrates,and arthropods.However,the specific role of ticks in transmission and evolution of these viruses remains unclear.Methods Transcriptomic and metatranscriptomic raw data from 329 sampling pools of seven tick species across five continents were mined to assess the diversity and abundance of poxviruses.Chordopoxviral sequences were assembled and subjected to phylogenetic analysis to trace the origins of the unblasted fragments within these sequences.Results Fifty-eight poxvirus species,representing two subfamilies and 20 genera,were identified,with 212 poxviral sequences assembled.A substantial proportion of AT-rich fragments were detected in the assembled poxviral genomes.These genomic sequences contained fragments originating from rodents,archaea,and arthropods.Conclusion Our findings indicate that ticks play a significant role in the transmission and evolution of poxviruses.These viruses demonstrate the capacity to modulate virulence and adaptability through horizontal gene transfer,gene recombination,and gene mutations,thereby promoting co-existence and co-evolution with their hosts.This study advances understanding of the ecological dynamics of poxvirus transmission and evolution and highlights the potential role of ticks as vectors and vessels in these processes.
基金supported by the Key Science and Technol-ogy Program of Henan Province(No.232102241020)the Ph.D.Research Startup Foundation of Henan University of Science and Technology(No.400613480015)+1 种基金the Postdoctoral Research Startup Foundation of Henan University of Science and Technology(No.400613554001)the Natural Science Foundation of Henan Province(242300420021).
文摘The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions during cycling.Electrolyte additive modification is considered one of the most effective and simplest methods for solving the aforementioned problems.Herein,the pyridine derivatives(PD)including 2,4-dihydroxypyridine(2,4-DHP),2,3-dihydroxypyridine(2,3-DHP),and 2-hydroxypyrdine(2-DHP),were em-ployed as novel electrolyte additives in ZnSO_(4)electrolyte.Both density functional theory calculation and experimental findings demonstrated that the incorporation of PD additives into the electrolyte effectively modulates the solvation structure of hydrated Zn ions,thereby suppressing side reactions in AZIBs.Ad-ditionally,the adsorption of PD molecules on the zinc anode surface contributed to uniform Zn deposi-tion and dendrite growth inhibition.Consequently,a 2,4-DHP-modified Zn/Zn symmetrical cell achieved an extremely long cyclic stability up to 5650 h at 1 mA cm^(-2).Furthermore,the Zn/NH_(4)V_(4)O_(10)full cell with 2,4-DHP-containing electrolyte exhibited an outstanding initial capacity of 204 mAh g^(-1),with a no-table capacity retention of 79%after 1000 cycles at 5 A g^(-1).Hence,this study expands the selection of electrolyte additives for AZIBs,and the working mechanism of PD additives provides new insights for electrolyte modification enabling highly reversible zinc anode.
基金supports from the Fundamental Research Funds for the Central Universities(NO.JD2402).
文摘Bioelectrochemical regulation has been proved to enhance the traditional anaerobic digestion(AD)of organic wastes.However,few investigations have explored whether it is possible to enhance the production of biomethane from raw corn stover(CS).A single-chamber microbial electrolysis cell(MEC)was incorporated with an AD to form a new system(MEC-AD)with aiming at more efficient bioconversion of CS to biomethane.The performance and microbiological characteristics of MEC-AD was investigated,and compared with conventional AD,which were inoculated with original inoculum(UAD)and electrically domesticated inoculum(EAD),respectively.The results showed that MEC-AD achieved the highest CH_(4)yield of 239.13 ml·g^(-1)volatile solids(VS),which was 29.28%and 12.44%higher than those of UAD and EAD,respectively.MEC-AD also achieved higher substance conversion rates of 73.24%VS,91.16%cellulose,and 77.24%hemicellulose,respectively.The community characteristics of microorganisms revealed that the relative abundance and interactions of functional microorganisms in MEC-AD were obviously different from UAD and EAD.In MEC-AD,Electroactive bacteria(Sedimentibacter)with electrotrophic methanogens(Methanosarcina and Methanosaeta)in anodic biofilms established electrotrophic methanogenesis through direct interspecies electron transfer(DIET).The process of methanotrophic methanogenesis was facilitated by the interactions between fermentative acid-producing bacteria(FABs),syntrophic organic acid oxidation bacteria(SOBs),and methylotrophic methanogens(Methyl-HMs)in MEC-AD suspensions.Efficient synergistic interactions between these functional microorganisms improved the performance of MEC-AD in converting CS to produce biomethane.The study could provide an effective means for achieving higher AD biomethane production from raw CS.
基金supported by the National Natural Science Foundation of China(Nos.22178388 and 22108306)Taishan Scholars Program of Shandong Province(No.tsqn201909065)Chongqing Science and Technology Bureau(No.cstc2019jscx-gksb X0032).
文摘Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.