期刊文献+
共找到26,167篇文章
< 1 2 250 >
每页显示 20 50 100
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
1
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
基于注意力增强与边缘感知的脑肿瘤MRI跨模态生成方法
2
作者 李好 杨智慧 李丰森 《中国医学物理学杂志》 2026年第1期65-75,共11页
目的:规避脑肿瘤MRI成像过程中存在的时间成本高、伪影多和模态获取不全等问题,研究一种高质量的跨模态脑肿瘤MRI图像生成方法。方法:提出一种融合注意力机制与边缘感知的配准生成对抗网络(AE-RegGAN),对T1模态到T2模态图像的跨模态合成... 目的:规避脑肿瘤MRI成像过程中存在的时间成本高、伪影多和模态获取不全等问题,研究一种高质量的跨模态脑肿瘤MRI图像生成方法。方法:提出一种融合注意力机制与边缘感知的配准生成对抗网络(AE-RegGAN),对T1模态到T2模态图像的跨模态合成,在生成器中引入CoordAttention模块以增强关键区域感知,并结合Sobel边缘检测以强化肿瘤边界表达;在判别器中加入梯度惩罚正则化以提升训练稳定性并缓解模式崩溃问题。结果:在对5760例脑肿瘤MRI数据训练、768例测试中,AE-RegGAN相较于原始RegGAN在局部肿瘤区域的峰值信噪比(PSNR)提升0.51 dB,结构相似性指数(SSIM)提升0.029;在全局图像上PSNR提升0.900 dB,SSIM提升0.032。全局图像配对t检验结果显示平均绝对误差(P=0.0264)、PSNR(P<0.0001)、SSIM(P<0.0001)指标差异均有统计学意义。消融实验进一步验证了注意力与边缘感知模块的有效性。结论:AE-RegGAN在多模态脑部MRI图像合成中表现出更优的结构保持能力与病灶敏感性,为辅助诊断提供了稳定、可信的图像补全方案。 展开更多
关键词 生成对抗网络 脑肿瘤mrI图像生成 注意力机制 边缘感知 梯度正则化
暂未订购
Numerical estimation of choice of the regularization parameter for NMR T2 inversion 被引量:2
3
作者 You-Long Zou Ran-Hong Xie Alon Arad 《Petroleum Science》 SCIE CAS CSCD 2016年第2期237-246,共10页
Nuclear Magnetic inversion is the basis of NMR Resonance (NMR) T2 logging interpretation. The regularization parameter selection of the penalty term directly influences the NMR T2 inversion result. We implemented b... Nuclear Magnetic inversion is the basis of NMR Resonance (NMR) T2 logging interpretation. The regularization parameter selection of the penalty term directly influences the NMR T2 inversion result. We implemented both norm smoothing and curvature smoothing methods for NMR T2 inversion, and compared the inversion results with respect to the optimal regular- ization parameters ((Xopt) which were selected by the dis- crepancy principle (DP), generalized cross-validation (GCV), S-curve, L-curve, and the slope of L-curve methods, respectively. The numerical results indicate that the DP method can lead to an oscillating or oversmoothed solution which is caused by an inaccurately estimated noise level. The (Xopt selected by the L-curve method is occa- sionally small or large which causes an undersmoothed or oversmoothed T2 distribution. The inversion results from GCV, S-curve and the slope of L-curve methods show satisfying inversion results. The slope of the L-curve method with less computation is more suitable for NMR T2 inversion. The inverted T2 distribution from norm smoothing is better than that from curvature smoothing when the noise level is high. 展开更多
关键词 Nmr T2 inversion Tikhonov regularizationVariable substitution Levenberg-Marquardt method regularization parameter selection
原文传递
Gamma-ray spectral energy resolution calibration based on locally constrained regularization for scintillation detector response:methodology,numerical,and experimental analysis
4
作者 Guo-Feng Yang Wen-Zheng Peng +3 位作者 Dong-Ming Liu Xiao-Long Wu Meng Chen Xiang-Jun Liu 《Nuclear Science and Techniques》 2025年第4期92-104,共13页
Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration para... Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking. 展开更多
关键词 Energy resolution regularization Gaussian broadening Spectral analysis Scintillation detector
在线阅读 下载PDF
Absorption compensation via structure tensor regularization multichannel inversion
5
作者 Liang Bing Zhao Dong-feng +4 位作者 Xia Lian-jun Tang Guo-song Luo Zhen Guan Wen-hua Wang Xue-jing 《Applied Geophysics》 2025年第3期635-646,892,893,共14页
Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seis... Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seismic data.Therefore,this paper proposes a multichannel inversion absorption compensation method based on structure tensor regularization.First,the structure tensor is utilized to extract the spatial inclination of seismic signals,and the spatial prediction filter is designed along the inclination direction.The spatial prediction filter is then introduced into the regularization condition of multichannel inversion absorption compensation,and the absorption compensation is realized under the framework of multichannel inversion theory.The spatial predictability of seismic signals is also introduced into the objective function of absorption compensation inversion.Thus,the inversion system can effectively suppress the noise amplification effect during absorption compensation and improve the recovery accuracy of high-frequency signals.Synthetic and field data tests are conducted to demonstrate the accuracy and effectiveness of the proposed method. 展开更多
关键词 Absorption compensation Structure tensor RESOLUTION Signal-to-noise ratio regularization
在线阅读 下载PDF
Robust visual tracking using temporal regularization correlation filter with high-confidence strategy
6
作者 Xiao-Gang Dong Ke-Xuan Li +2 位作者 Hong-Xia Mao Chen Hu Tian Pu 《Journal of Electronic Science and Technology》 2025年第2期81-96,共16页
Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking ro... Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking robustness and precision.In this paper,a universally applicable method based on correlation filters is introduced to mitigate model drift in complex scenarios.It employs temporal-confidence samples as a priori to guide the model update process and ensure its precision and consistency over a long period.An improved update mechanism based on the peak side-lobe to peak correlation energy(PSPCE)criterion is proposed,which selects high-confidence samples along the temporal dimension to update temporal-confidence samples.Extensive experiments on various benchmarks demonstrate that the proposed method achieves a competitive performance compared with the state-of-the-art methods.Especially when the target appearance changes significantly,our method is more robust and can achieve a balance between precision and speed.Specifically,on the object tracking benchmark(OTB-100)dataset,compared to the baseline,the tracking precision of our model improves by 8.8%,8.8%,5.1%,5.6%,and 6.9%for background clutter,deformation,occlusion,rotation,and illumination variation,respectively.The results indicate that this proposed method can significantly enhance the robustness and precision of target tracking in dynamic and challenging environments,offering a reliable solution for applications such as real-time monitoring,autonomous driving,and precision guidance. 展开更多
关键词 Appearance changes Correlation filter High-confidence strategy Temporal regularization Visual tracking
在线阅读 下载PDF
Graph-Based Transform and Dual Graph Laplacian Regularization for Depth Map Denoising
7
作者 MENG Yaqun GE Huayong +2 位作者 HOU Xinxin JI Yukai LI Sisi 《Journal of Donghua University(English Edition)》 2025年第5期534-542,共9页
Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,ter... Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,termed graph-based transform(GBT)and dual graph Laplacian regularization(DGLR)(DGLR-GBT).This model specifically aims to remove Gaussian white noise by capitalizing on the nonlocal self-similarity(NSS)and the piecewise smoothness properties intrinsic to depth maps.Within the group sparse coding(GSC)framework,a combination of GBT and DGLR is implemented.Firstly,within each group,the graph is constructed by using estimates of the true values of the averaged blocks instead of the observations.Secondly,the graph Laplacian regular terms are constructed based on rows and columns of similar block groups,respectively.Lastly,the solution is obtained effectively by combining the alternating direction multiplication method(ADMM)with the weighted thresholding method within the domain of GBT. 展开更多
关键词 depth map graph signal processing dual graph Laplacian regularization(DGLR) graph-based transform(GBT) group sparse coding(GSC)
在线阅读 下载PDF
Mechanical response identification of local interconnections in board- level packaging structures under projectile penetration using Bayesian regularization
8
作者 Xu Long Yuntao Hu Irfan Ali 《Defence Technology(防务技术)》 2025年第7期79-95,共17页
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to... Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions. 展开更多
关键词 Board-level packaging structure High strain-rate constitutive model Load identification Bayesian regularization Wavelet thresholding method
在线阅读 下载PDF
Full waveform inversion with fractional anisotropic total p-variation regularization
9
作者 Bo Li Xiao-Tao Wen +2 位作者 Yu-Qiang Zhang Zi-Yu Qin Zhi-Di An 《Petroleum Science》 2025年第8期3266-3278,共13页
Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model ... Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model with high accuracy.However,due to inaccurate initial models,the absence of low-frequency data,and incomplete observational data,full waveform inversion(FWI)exhibits pronounced nonlinear characteristics.When the strata are buried deep,the inversion capability of this method is constrained.To enhance the accuracy and precision of FWI,this paper introduces a novel approach to address the aforementioned challenges—namely,a fractional-order anisotropic total p-variation regularization for full waveform inversion(FATpV-FWI).This method incorporates fractional-order total variation(TV)regularization to construct the inversion objective function,building upon TV regularization,and subsequently employs the alternating direction multiplier method for solving.This approach mitigates the step effect stemming from total variation in seismic inversion,thereby facilitating the reconstruction of sharp interfaces of geophysical parameters while smoothing background variations.Simultaneously,replacing integer-order differences with fractional-order differences bolsters the correlation among seismic data and diminishes the scattering effect caused by integer-order differences in seismic inversion.The outcomes of model tests validate the efficacy of this method,highlighting its ability to enhance the overall accuracy of the inversion process. 展开更多
关键词 Full waveform inversion Anisotropic total p-variation Fractional-order differences Sparse regularization
原文传递
Deterministic Convergence Analysis for GRU Networks via Smoothing Regularization
10
作者 Qian Zhu Qian Kang +2 位作者 Tao Xu Dengxiu Yu Zhen Wang 《Computers, Materials & Continua》 2025年第5期1855-1879,共25页
In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/... In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/exploding issues in sequential modeling,they remain prone to overfitting,particularly under noisy or limited training data.Traditional L_(1)regularization,despite enforcing sparsity and accelerating optimization,introduces non-differentiable points in the error function,leading to oscillations during training.To address this,we propose a novel smoothing L_(1)regularization framework that replaces the non-differentiable absolute function with a quadratic approximation,ensuring gradient continuity and stabilizing the optimization landscape.Theoretically,we rigorously establish threekey properties of the resulting smoothing L_(1)-regularizedGRU(SL_(1)-GRU)model:(1)monotonic decrease of the error function across iterations,(2)weak convergence characterized by vanishing gradients as iterations approach infinity,and(3)strong convergence of network weights to fixed points under finite conditions.Comprehensive experiments on benchmark datasets-spanning function approximation,classification(KDD Cup 1999 Data,MNIST),and regression tasks(Boston Housing,Energy Efficiency)-demonstrate SL_(1)-GRUs superiority over baseline models(RNN,LSTM,GRU,L_(1)-GRU,L2-GRU).Empirical results reveal that SL_(1)-GRU achieves 1.0%-2.4%higher test accuracy in classification,7.8%-15.4%lower mean squared error in regression compared to unregularized GRU,while reducing training time by 8.7%-20.1%.These outcomes validate the method’s efficacy in balancing computational efficiency and generalization capability,and they strongly corroborate the theoretical calculations.The proposed framework not only resolves the non-differentiability challenge of L_(1)regularization but also provides a theoretical foundation for convergence guarantees in recurrent neural network training. 展开更多
关键词 Gated recurrent unit regularization convergence
在线阅读 下载PDF
基于非零水平集保凸算法的左心室MRI分割
11
作者 李季 刘艾汶 秦柳 《山东大学学报(理学版)》 北大核心 2025年第7期32-47,共16页
心脏左心室分割临床应用要求是分割的左心室保持凸形且包含左心室腔、小梁和乳头肌,提出一个包含改进距离正则项和非零水平集保凸项的心脏核磁共振成像分割模型,其利用水平集轮廓的曲率来保持凸性,从而使轮廓最终演化为凸形。使用ACDC M... 心脏左心室分割临床应用要求是分割的左心室保持凸形且包含左心室腔、小梁和乳头肌,提出一个包含改进距离正则项和非零水平集保凸项的心脏核磁共振成像分割模型,其利用水平集轮廓的曲率来保持凸性,从而使轮廓最终演化为凸形。使用ACDC MICCAI 2017数据集进行模型评估,该模型在心脏舒张末期和收缩末期阶段的平均Dice系数分别为0.961和0.936,平均豪斯多夫距离分别为4.89和5.79。同时该模型无需对训练数据进行人工标注和学习,分割精度和鲁棒性均可以达到与基于深度学习的左心室分割模型相同的分割性能。 展开更多
关键词 非零水平集 保凸 水平集方法 左心室分割 距离正则化 双阱势函数
原文传递
基于协同训练的直肠肿瘤MRI半监督分割方法
12
作者 李亚楠 赵雅坤 +1 位作者 金鑫 王明甲 《青岛科技大学学报(自然科学版)》 2025年第3期143-151,共9页
直肠肿瘤病灶区域的精确分割可以为肿瘤的临床治疗和预后监测提供重要依据。直肠肿瘤MRI图像结构比较复杂,标签数据获取困难且成本高,为了利用大量无标记数据,本研究采用半监督图像分割方法。针对直肠癌目标靶区在MRI上呈现大小、形状... 直肠肿瘤病灶区域的精确分割可以为肿瘤的临床治疗和预后监测提供重要依据。直肠肿瘤MRI图像结构比较复杂,标签数据获取困难且成本高,为了利用大量无标记数据,本研究采用半监督图像分割方法。针对直肠癌目标靶区在MRI上呈现大小、形状、纹理及边界清晰度存在个体差异性的问题,本研究在U-Net网络的基础上设计了一种新型分割网络DCCBAM-UNet,并结合使用基于协同训练的半监督方法开展直肠肿瘤MRI的分割研究。该方法通过对双学生-教师模型设置不同初始化的方式进行一致性约束,以集成方法获取高质量的伪标签,引入蒙特卡罗Dropout方法度量伪标签的不确定性,减轻低质量伪标签对分割性能的影响。在使用30%的训练数据下,该模型的DICE达到了0.9234,Jaccard达到了0.6542,HD达到了12.035。实验结果表明,该模型在医学图像分割的有效性和泛化性上有一定的性能提升,能有效解决数据集数量少、病灶区域分割难度大的问题。 展开更多
关键词 半监督学习 直肠肿瘤分割 协同训练 伪标签 一致性正则化
在线阅读 下载PDF
甲状腺结节、乳腺增生和子宫肌瘤三病的相关性及患病规律:基于真实世界数据的研究
13
作者 李春晓 张莹莹 +3 位作者 凌霄 杨玉晴 张业 金艳涛 《中华中医药学刊》 北大核心 2026年第1期7-12,共6页
目的旨在探究甲状腺结节(thyroid nodules,TN)、乳腺增生(hyperplasia of mammary gland,HMG)和子宫肌瘤(uterine leiomyomas,UL)三种疾病之间的相互关联性及其患病规律,为临床诊疗方案和合理用药提供科学依据。方法回顾性分析了河南中... 目的旨在探究甲状腺结节(thyroid nodules,TN)、乳腺增生(hyperplasia of mammary gland,HMG)和子宫肌瘤(uterine leiomyomas,UL)三种疾病之间的相互关联性及其患病规律,为临床诊疗方案和合理用药提供科学依据。方法回顾性分析了河南中医药大学第一附属医院体检中心2011年10月19日—2018年12月19日进行甲状腺、乳房、子宫超声检查的女性体检者的电子健康记录。根据检出结果,将单独检出任一疾病、任意两种疾病共发及三病并发的病例纳入病例组,未检出任何疾病的个体纳入对照组。通过SPSS Statistics 22.0软件运用Cochran-Mantel-Haenszel检验及描述性统计方法,分析三种疾病之间的相关性及患病规律。结果共纳入符合研究条件的病例5252例,其中病例组2902例。相关性分析显示,任意两病的共发均有显著的正向相关性。其中TN与HMG在45~59岁年龄组(r=0.106,P<0.001)、TN与UL在18~44岁年龄组(r=0.122,P<0.001)、HMG和UL在45~59岁年龄组(r=0.157,P<0.001)的相关性最为显著。描述性统计分析表明,三病或任意两病的并发主要集中在45~59岁年龄段。三种疾病患者的中医体质主要为痰湿质和阳虚质,血压、血脂及血糖水平大多正常,但与对照组相比存在显著差异(P<0.001)。实验室检查结果显示,血常规、肝功能和肾功能指标均处于正常范围内,但与对照组相比存在显著差异(P<0.001)。结论基于真实世界数据的研究结果显示,甲状腺结节、乳腺增生和子宫肌瘤三种疾病间存在显著的正向相关性,且在年龄分布、中医体质、血压、血糖、血脂及实验室检验指标方面与正常组相比均有显著差异,为这三种疾病的早期发现、预防和治疗提供了重要依据。 展开更多
关键词 甲状腺结节 乳腺增生 子宫肌瘤 数据挖掘 真实世界研究 患病规律
原文传递
Study on algorithms of low SNR inversion of T_2 spectrum in NMR 被引量:4
14
作者 林峰 王祝文 +2 位作者 李静叶 张雪昂 江玉龙 《Applied Geophysics》 SCIE CSCD 2011年第3期233-238,241,共7页
The method of regularization factor selection determines stability and accuracy of the regularization method. A formula of regularization factor was proposed by analyzing the relationship between the improved SVD and ... The method of regularization factor selection determines stability and accuracy of the regularization method. A formula of regularization factor was proposed by analyzing the relationship between the improved SVD and regularization method. The improved SVD algorithm and regularization method could adapt to low SNR. The regularization method is better than the improved SVD in the case that SNR is below 30 and the improved SVD is better than the regularization method when SNR is higher than 30. The regularization method with the regularization factor proposed in this paper can be better applied into low SNR (5〈SNR) NMR logging. The numerical simulations and real NMR data process results indicated that the improved SVD algorithm and regularization method could adapt to the low signal to noise ratio and reduce the amount of computation greatly. These algorithms can be applied in NMR logging. 展开更多
关键词 nuclear magnetic resonance T2 spectrum singular value decomposition regularization method
在线阅读 下载PDF
3D density inversion of gravity gradient data using the extrapolated Tikhonov regularization 被引量:4
15
作者 刘金钊 柳林涛 +1 位作者 梁星辉 叶周润 《Applied Geophysics》 SCIE CSCD 2015年第2期137-146,273,共11页
We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations b... We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies. 展开更多
关键词 extrapolated Tikhonov regularization depth weighting gravity gradient tensor eieenvector
在线阅读 下载PDF
定期成分献血者血常规相关指标分析
16
作者 于媛 谯铭铭 +2 位作者 王娜 徐昊 陈元锋 《中国实用医药》 2026年第2期37-42,共6页
目的对山东省血液中心定期成分献血者外周血血常规指标进行回顾性分析,探讨献血次数及不同机型血细胞分离机对血常规的影响,以期为献血者的关爱与保护及定期成分献血者队伍建设提供参考。方法在唐山启奥科技SHINOW 9.5系统中调取2024年2... 目的对山东省血液中心定期成分献血者外周血血常规指标进行回顾性分析,探讨献血次数及不同机型血细胞分离机对血常规的影响,以期为献血者的关爱与保护及定期成分献血者队伍建设提供参考。方法在唐山启奥科技SHINOW 9.5系统中调取2024年2月X、Y两个献血屋的献血者资料,从中选取从未捐献过全血并且在2018年2月~2024年2月间只采用同一种A或B机型血细胞分离机进行采集的献血者,调取血常规相关指标数据按照男女性别分别进行不同频次、不同机型分析。将选出的献血者按照男女分别进行分组:2月份初次前来即以往从未捐献过的献血者作为初次组;1次≤捐献次数<3次的成分献血者设为偶尔献血组;≥第4次前来捐献即已经捐献次数≥3次的成分献血者作为定期献血组;定期献血者中≥第21次前来捐献即已经捐献次数≥20次的成分献血者设为较高频次定期献血组;在较高频次定期献血组内再按采集机型不同分为A机型组、B机型组。男性:初次组25人,偶尔献血组21人,定期献血组79人,其中较高频次定期献血组29人;较高频次定期献血组的A机型组12人,B机型组17人。女性:初次组5人,偶尔献血组4人,定期献血组8人,其中较高频次定期献血组3人;较高频次定期献血组的A机型组1人,B机型组2人。比较各组男性的血常规相关指标[血红蛋白浓度(HGB)、血小板计数(PLT)、红细胞压积(HCT)、红细胞计数(RBC)、白细胞计数(WBC)、平均红细胞体积(MCV)、平均红细胞血红蛋白量(MCH)、平均红细胞血红蛋白浓度(MCHC)、淋巴细胞计数、淋巴细胞百分比、平均血小板体积(MPV)],初次组与采用不同机型的较高频次定期献血组男性的血常规相关指标,各组女性的血常规相关指标。结果较高频次定期献血组男性的WBC、HGB、HCT分别为5.00(4.30,5.65)×10^(9)/L、145.00(140.50,155.00)g/L、44.00(42.00,46.00)%,均明显低于初次组男性的6.20(5.50,6.85)×10^(9)/L、153.00(150.00,160.50)g/L、46.00(45.00,48.00)%,具有统计学意义(经Bonferroni校准后,P=0.003、0.028、0.021<0.05);较高频次定期献血组男性与初次组男性其他指标相比均没有统计学差异(P>0.05)。各组男性RBC、PLT、MCV、MCH、MCHC、淋巴细胞计数、淋巴细胞百分比、MPV两两相比均没有统计学差异(P>0.05)。B机型组男性RBC 4.80(4.70,5.20)×10^(12)/L、WBC 4.90(4.25,5.65)×10^(9)/L、HGB 144.00(138.50,151.00)g/L、HCT 43.00(42.00,44.00)%、淋巴细胞计数1.70(1.40,1.85)×10^(9)/L、MPV 9.50(9.10,9.85)fl均低于初次组男性的5.10(5.00,5.30)×10^(12)/L、6.20(5.50,6.85)×10^(9)/L、153.00(150.00,160.50)g/L、46.00(45.00,48.00)%、2.10(1.65,2.60)×10^(9)/L、9.90(9.65,10.35)fl,具有统计学意义(经Bonferroni校准后,P=0.022、0.001、0.001、0.000、0.044、0.023<0.05);B机型组男性HCT 43.00(42.00,44.00)%低于A机型组男性的45.00(44.00,47.00)%,具有统计学意义(经Bonferroni校准后,P=0.017<0.05)。其他相关指标相比均没有统计学差异(P>0.05)。17例女性的血常规相关指标数据均在可接受范围内,因样本数较少,未进行统计学比较。结论采集频次和采集机型不同对定期成分献血者血常规相关指标是有影响的,均在可接受范围内波动。工作人员需严格执行国家标准,建议根据献血者自身采集频次选择适宜机型,对定期献血者实行关爱和保护。 展开更多
关键词 定期成分献血 血常规 血细胞分离机
暂未订购
Iterative regularization method for image denoising with adaptive scale parameter
17
作者 李文书 骆建华 +2 位作者 刘且根 何芳芳 魏秀金 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期453-456,共4页
In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoi... In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images. 展开更多
关键词 iterative regularization model (IRM) total variation varying scale parameter image denoising
在线阅读 下载PDF
一类双层正则化GMRES方法(英文) 被引量:2
18
作者 柳建军 贺国强 《工程数学学报》 CSCD 北大核心 2009年第4期741-748,共8页
近年来,GMRES方法作为一种求解大规模线性不适定方程组的正则化技术越来越受到人们的关注。然而,单独直接应用GMRES求解正则化效果较弱。将GMRES和不同的正则化参数选取准则相结合—外层应用已知误差水平的后验选取、内层应用未知误差... 近年来,GMRES方法作为一种求解大规模线性不适定方程组的正则化技术越来越受到人们的关注。然而,单独直接应用GMRES求解正则化效果较弱。将GMRES和不同的正则化参数选取准则相结合—外层应用已知误差水平的后验选取、内层应用未知误差水平准则,提出一类双层正则化GMRES方法。数值试验表明,要使新方法得到较好的正则化效果,重开始策略及双层正则化都是必须的。 展开更多
关键词 KRYLOV子空间 双层正则化GmrES 正则化参数选取准则
在线阅读 下载PDF
基于联合正则化及压缩传感的MRI图像重构 被引量:9
19
作者 王艳 练秋生 李凯 《光学技术》 CAS CSCD 北大核心 2010年第3期350-355,共6页
基于压缩传感的MRI图像重构利用图像稀疏的先验知识能从很少的投影值重构原图像。目前MRI重构算法只利用MRI图像稀疏性表示或只利用基于其局部光滑性的先验知识,重构效果不理想。针对此问题,结合两种先验知识,提出一种基于联合正则化及... 基于压缩传感的MRI图像重构利用图像稀疏的先验知识能从很少的投影值重构原图像。目前MRI重构算法只利用MRI图像稀疏性表示或只利用基于其局部光滑性的先验知识,重构效果不理想。针对此问题,结合两种先验知识,提出一种基于联合正则化及压缩传感的MRI图像重构方法。利用块坐标下降法将求解联合正则化问题转化为交替求解二次凸优化、稀疏正则化和全变差正则化三个简单的优化问题。并提出分别采用共轭梯度法、二元自适应收缩法以及梯度下降法对以上优化问题求解。实验结果表明,该算法重构效果比现有算法有明显地提高。 展开更多
关键词 mrI图像重构 压缩传感 联合正则化 共轭梯度法
原文传递
GMRES(m)算法在离散不适定问题中的应用 被引量:3
20
作者 张海燕 闵涛 刘相国 《科技导报》 CAS CSCD 2007年第13期54-59,共6页
基于投影方法的规划算法——Krylov子空间技术,研究了离散不适定正则化和Krylov子空间广义极小残余算法(GMRES(m))的基本理论,特别是残余向量与Krylov子空间的关系。利用离散不适定正则化方法,将不适定问题转化为适定问题,利用广义极小... 基于投影方法的规划算法——Krylov子空间技术,研究了离散不适定正则化和Krylov子空间广义极小残余算法(GMRES(m))的基本理论,特别是残余向量与Krylov子空间的关系。利用离散不适定正则化方法,将不适定问题转化为适定问题,利用广义极小残余算法对此适定问题进行数值求解。数值结果表明该算法是可靠和有效的。 展开更多
关键词 GmrES(m)算法 不适定 ARNOLDI 正则化
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部