The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of ...The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of regular so lution model in molten slag systems, FeO-Fe2 O3-SIO2 ternary system, FeO-Fe2 O3-SiO2-CaO and FeO-Fe2 O3-SiO2-NiO quaternary systems have been studied by the chemical equilibrium between H2/H20 gas mixture and liquid slag con tained in solid iron. The values of interaction energy between cations concerning steelmaking slags have been deter- mined by application of ferric-ferrous iron equilibrium and iron-ferric iron equilibrium. And then the activity of Fe, O can be calculated. The results show that the relative error is 3.9% in FeO-Fe203-SiO2 system and 18% in FeO- Fe203-SiO2 CaO system. The prediction of activities of FetO in the systems are in good agreement with the measure- ments and the regular solution model is valid for predicting the activity of FetO in complex molten slags systems. The activity of Fe, O in FeO-Fe20a-NiO system have not been tested presently, and the calculated result can not be assessed.展开更多
The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 a...The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 and λ 2, which are represented as a linear function of temperature, T . The molar excess Gibbs free energy, G m E, can be written in the form G m E= x A x B[( λ 11 + λ 12 T )+( λ 21 + λ 22 T ) x B ] The calculation is carried out numerically for three immiscible binary alloy systems, Al Pb, Cu Tl and In V. The agreement between the calculated and experimentally determined values of activity coefficient is excellent.展开更多
There is a close relation between the characteristics of products and the chemical composition control of inclusions in steelmaking process. Therefore, it is very important for a warranty of product’s characteristics...There is a close relation between the characteristics of products and the chemical composition control of inclusions in steelmaking process. Therefore, it is very important for a warranty of product’s characteristics to improve inclusion quality resulting in defective products. In the present work, the control technique of inclusions’ chemical composition is discussed thermodynamically based on the Redlich-Kister type polynomial to metallic solution and regular solution model to molten oxide solution. It is very effective for the precise chemical composition control of oxides to determine the concentration of deoxidizers based on the thermodynamic relation among dissolved deoxidizers and oxygen, because it is known that oxide inclusions are equilibrated with them in molten steel in the steel making process. High alloy steel production process was focused in the present work.展开更多
The T0 face equation of a Ti-Al-H alloy system was set up by the regular solution model,and the relationship between the β phase stabilizing parameter of hydrogen and the equilibrium phase compositions was attained.A...The T0 face equation of a Ti-Al-H alloy system was set up by the regular solution model,and the relationship between the β phase stabilizing parameter of hydrogen and the equilibrium phase compositions was attained.According to the T0 face equation and the thermodynamic parameters from literature,the effect of hydrogen on the β→α(α2) transformation temperature was evaluated.The calculated results were in a better consistence with the measured ones.展开更多
基金Sponsored by National Natural Science Foundation of China (50764006,50574045)Yunnan Basic Applied Research Foundation of China (2006E0021M)
文摘The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of regular so lution model in molten slag systems, FeO-Fe2 O3-SIO2 ternary system, FeO-Fe2 O3-SiO2-CaO and FeO-Fe2 O3-SiO2-NiO quaternary systems have been studied by the chemical equilibrium between H2/H20 gas mixture and liquid slag con tained in solid iron. The values of interaction energy between cations concerning steelmaking slags have been deter- mined by application of ferric-ferrous iron equilibrium and iron-ferric iron equilibrium. And then the activity of Fe, O can be calculated. The results show that the relative error is 3.9% in FeO-Fe203-SiO2 system and 18% in FeO- Fe203-SiO2 CaO system. The prediction of activities of FetO in the systems are in good agreement with the measure- ments and the regular solution model is valid for predicting the activity of FetO in complex molten slags systems. The activity of Fe, O in FeO-Fe20a-NiO system have not been tested presently, and the calculated result can not be assessed.
文摘The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 and λ 2, which are represented as a linear function of temperature, T . The molar excess Gibbs free energy, G m E, can be written in the form G m E= x A x B[( λ 11 + λ 12 T )+( λ 21 + λ 22 T ) x B ] The calculation is carried out numerically for three immiscible binary alloy systems, Al Pb, Cu Tl and In V. The agreement between the calculated and experimentally determined values of activity coefficient is excellent.
文摘There is a close relation between the characteristics of products and the chemical composition control of inclusions in steelmaking process. Therefore, it is very important for a warranty of product’s characteristics to improve inclusion quality resulting in defective products. In the present work, the control technique of inclusions’ chemical composition is discussed thermodynamically based on the Redlich-Kister type polynomial to metallic solution and regular solution model to molten oxide solution. It is very effective for the precise chemical composition control of oxides to determine the concentration of deoxidizers based on the thermodynamic relation among dissolved deoxidizers and oxygen, because it is known that oxide inclusions are equilibrated with them in molten steel in the steel making process. High alloy steel production process was focused in the present work.
文摘The T0 face equation of a Ti-Al-H alloy system was set up by the regular solution model,and the relationship between the β phase stabilizing parameter of hydrogen and the equilibrium phase compositions was attained.According to the T0 face equation and the thermodynamic parameters from literature,the effect of hydrogen on the β→α(α2) transformation temperature was evaluated.The calculated results were in a better consistence with the measured ones.