Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in ter...Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in terms of r,the number of vertices of G for any positive integer r and x,y,z∈{ 0,1},and also for r = 2 and all x,y,z∈{0,1,+,-}. Some Laplacian equienergetic pairs of G^(xyz) for r = 2 and x,y,z∈{0,1, +,-} are obtained. This also provides several ways to construct infinitely many pairs of Laplacian equienergetic graphs.展开更多
This paper is concerned with the connection between the Volterra series and the regular perturbation method in nonlinear systems analyses. It is revealed for the first time that, for a forced polynomial nonlinear syst...This paper is concerned with the connection between the Volterra series and the regular perturbation method in nonlinear systems analyses. It is revealed for the first time that, for a forced polynomial nonlinear system, if its derived linear system is a damped dissipative system, the steady response obtained through the regular perturbation method is exactly identical to the response given by the Volterra series. On the other hand, if the derived linear system is an undamped conservative system, then the Volterra series is incapable of modeling the forced polynomial nonlinear system. Numerical examples are further presented to illustrate these points. The results provide a new criterion for quickly judging whether the Volterra series is applicable for modeling a given polynomial nonlinear system.展开更多
基金National Natural Science Foundation of China(No.11371086)the Fund of Science and Technology Commission of Shanghai Municipality,China(No.13ZR1400100)
文摘Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in terms of r,the number of vertices of G for any positive integer r and x,y,z∈{ 0,1},and also for r = 2 and all x,y,z∈{0,1,+,-}. Some Laplacian equienergetic pairs of G^(xyz) for r = 2 and x,y,z∈{0,1, +,-} are obtained. This also provides several ways to construct infinitely many pairs of Laplacian equienergetic graphs.
基金supported by the National Science Fund for Distinguished Young Scholars(11125209)the National Natural Science Foundation of China(51121063 and 10702039)
文摘This paper is concerned with the connection between the Volterra series and the regular perturbation method in nonlinear systems analyses. It is revealed for the first time that, for a forced polynomial nonlinear system, if its derived linear system is a damped dissipative system, the steady response obtained through the regular perturbation method is exactly identical to the response given by the Volterra series. On the other hand, if the derived linear system is an undamped conservative system, then the Volterra series is incapable of modeling the forced polynomial nonlinear system. Numerical examples are further presented to illustrate these points. The results provide a new criterion for quickly judging whether the Volterra series is applicable for modeling a given polynomial nonlinear system.