期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Iterated Logarithm Laws on GLM Randomly Censored with Random Regressors and Incomplete Information
1
作者 Qiang Zhu Zhihong Xiao +1 位作者 Guanglian Qin Fang Ying 《Applied Mathematics》 2011年第3期363-368,共6页
In this paper, we define the generalized linear models (GLM) based on the observed data with incomplete information and random censorship under the case that the regressors are stochastic. Under the given conditions, ... In this paper, we define the generalized linear models (GLM) based on the observed data with incomplete information and random censorship under the case that the regressors are stochastic. Under the given conditions, we obtain a law of iterated logarithm and a Chung type law of iterated logarithm for the maximum likelihood estimator (MLE) in the present model. 展开更多
关键词 Generalized Linear Model INCOMPLETE Information Stochastic regressor ITERATED LOGARITHM LAWS
在线阅读 下载PDF
Application of optimized random forest regressors in predicting maximum principal stress of aseismic tunnel lining
2
作者 MEI Xian-cheng DING Chang-dong +4 位作者 ZHANG Jia-min LI Chuan-qi CUI Zhen SHENG Qian CHEN Jian 《Journal of Central South University》 CSCD 2024年第11期3900-3913,共14页
Using flexible damping technology to improve tunnel lining structure is an emerging method to resist earthquake disasters,and several methods have been explored to predict mechanical response of tunnel lining with dam... Using flexible damping technology to improve tunnel lining structure is an emerging method to resist earthquake disasters,and several methods have been explored to predict mechanical response of tunnel lining with damping layer.However,the traditional numerical methods suffer from the complex modelling and time-consuming problems.Therefore,a prediction model named the random forest regressor(RFR)is proposed based on 240 numerical simulation results of the mechanical response of tunnel lining.In addition,circle mapping(CM)is used to improve Archimedes optimization algorithm(AOA),reptile search algorithm(RSA),and Chernobyl disaster optimizer(CDO)to further improve the predictive performance of the RFR model.The performance evaluation results show that the CMRSA-RFR is the best prediction model.The damping layer thickness is the most important feature for predicting the maximum principal stress of tunnel lining containing damping layer.This study verifies the feasibility of combining numerical simulation with machine learning technology,and provides a new solution for predicting the mechanical response of aseismic tunnel with damping layer. 展开更多
关键词 maximum principal stress aseismic tunnel lining random forest regressor machine learning
在线阅读 下载PDF
Consistency and Asymptotic Normality of the Maximum Quasi-likelihood Estimator in Quasi-likelihood Nonlinear Models with Random Regressors 被引量:2
3
作者 Tian Xia Shun-fang Wang Xue-ren Wang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2010年第2期241-250,共10页
This paper proposes some regularity conditions, which result in the existence, strong consistency and asymptotic normality of maximum quasi-likelihood estimator (MQLE) in quasi-likelihood nonlinear models (QLNM) w... This paper proposes some regularity conditions, which result in the existence, strong consistency and asymptotic normality of maximum quasi-likelihood estimator (MQLE) in quasi-likelihood nonlinear models (QLNM) with random regressors. The asymptotic results of generalized linear models (GLM) with random regressors are generalized to QLNM with random regressors. 展开更多
关键词 Asymptotic normality CONSISTENCY maximum quasi-likelihood estimator quasi-likelihood nonlinear models with random regressors
原文传递
Predicting the performance of magnetocaloric systems using machine learning regressors
4
作者 D.J.Silva J.Ventura J.P.Araujo 《Energy and AI》 2020年第2期116-124,共9页
Since refrigeration,air-conditioning and heat pump systems account to 25–30%of all energy consumed in the world,there is a considerable potential to mitigate the Global Warming by increasing the efficiency of the rel... Since refrigeration,air-conditioning and heat pump systems account to 25–30%of all energy consumed in the world,there is a considerable potential to mitigate the Global Warming by increasing the efficiency of the related appliances.Magnetocaloric systems,i.e.refrigerators and heat pumps,are promising solutions due to their large theoretical Coefficient Of Performance(COP).However,there is still a long way to make such systems marketable.One barrier is the cost of the magnet and magnetocaloric materials,which can be overcome by decreasing the materials quantity,e.g.by optimizing the geometry with efficient dimensioning procedures.In this work,we have developed a machine learning method to predict the three most significant performance values of magnetocaloric heat pumps:temperature span,heating power and COP.We used 4 different regressors:ordinary least squares,ridge,lasso and K-Nearest Neighbors(KNN).By using a dataset generated by numerical calculations,we have arrived at minimum average relative errors of the temperature span,heating power and COP of 23%,29%and 31%,respectively.While the lasso regressor is more appropriate when using small datasets,the ordinary least squares regressor shows the best performance when using more samples.The best order of polynomials range between 3,for the heating power,to 5,for the COP.The worse performance in predicting the three performance values occurs when using the KNN regressor.Furthermore,the application of regressors to the dataset is more adequate to evaluate the temperature span rather than energetic performance values. 展开更多
关键词 Magnetic refrigeration Active magnetic regeneration Magnetocaloric effect regressors
在线阅读 下载PDF
On the application of machine learning algorithms in predicting the permeability of oil reservoirs
5
作者 Andrey V.Soromotin Dmitriy A.Martyushev Joao Luiz Junho Pereira 《Artificial Intelligence in Geosciences》 2025年第2期1-23,共23页
Permeability is one of the main oil reservoir characteristics.It affects potential oil production,well-completion technologies,the choice of enhanced oil recovery methods,and more.The methods used to determine and pre... Permeability is one of the main oil reservoir characteristics.It affects potential oil production,well-completion technologies,the choice of enhanced oil recovery methods,and more.The methods used to determine and predict reservoir permeability have serious shortcomings.This article aims to refine and adapt machine learning techniques using historical data from hydrocarbon field development to evaluate and predict parameters such as the skin factor and permeability of the remote reservoir zone.The article analyzes data from 4045 wells tests in oil fields in the Perm Krai(Russia).An evaluation of the performance of different Machine Learning(ML)al-gorithms in the prediction of the well permeability is performed.Three different real datasets are used to train more than 20 machine learning regressors,whose hyperparameters are optimized using Bayesian Optimization(BO).The resulting models demonstrate significantly better predictive performance compared to traditional methods and the best ML model found is one that never was applied before to this problem.The permeability prediction model is characterized by a high R^(2) adjusted value of 0.799.A promising approach is the integration of machine learning methods and the use of pressure recovery curves to estimate permeability in real-time.The work is unique for its approach to predicting pressure recovery curves during well operation without stopping wells,providing primary data for interpretation.These innovations are exclusive and can improve the accuracy of permeability forecasts.It also reduces well downtime associated with traditional well-testing procedures.The proposed methods pave the way for more efficient and cost-effective reservoir development,ultimately sup-porting better decision-making and resource optimization in oil production. 展开更多
关键词 Machine learning regressors PERMEABILITY Well tests Pressure recovery curve Skin factor
在线阅读 下载PDF
A Barrier-Based Machine Learning Approach for Intrusion Detection in Wireless Sensor Networks
6
作者 Haydar Abdulameer Marhoon Rafid Sagban +1 位作者 Atheer Y.Oudah Saadaldeen Rashid Ahmed 《Computers, Materials & Continua》 2025年第3期4181-4218,共38页
In order to address the critical security challenges inherent to Wireless Sensor Networks(WSNs),this paper presents a groundbreaking barrier-based machine learning technique.Vital applications like military operations... In order to address the critical security challenges inherent to Wireless Sensor Networks(WSNs),this paper presents a groundbreaking barrier-based machine learning technique.Vital applications like military operations,healthcare monitoring,and environmental surveillance increasingly deploy WSNs,recognizing the critical importance of effective intrusion detection in protecting sensitive data and maintaining operational integrity.The proposed method innovatively partitions the network into logical segments or virtual barriers,allowing for targeted monitoring and data collection that aligns with specific traffic patterns.This approach not only improves the diversit.There are more types of data in the training set,and this method uses more advanced machine learning models,like Convolutional Neural Networks(CNNs)and Long Short-Term Memory(LSTM)networks together,to see coIn our work,we used five different types of machine learning models.These are the forward artificial neural network(ANN),the CNN-LSTM hybrid models,the LR meta-model for linear regression,the Extreme Gradient Boosting(XGB)regression,and the ensemble model.We implemented Random Forest(RF),Gradient Boosting,and XGBoost as baseline models.To train and evaluate the five models,we used four possible features:the size of the circular area,the sensing range,the communication range,and the number of sensors for both Gaussian and uniform sensor distributions.We used Monte Carlo simulations to extract these traits.Based on the comparison,the CNN-LSTM model with Gaussian distribution performs best,with an R-squared value of 99%and Root mean square error(RMSE)of 6.36%,outperforming all the other models. 展开更多
关键词 Intrusion detection system(IDS) hybrid models of CNN-LSTM WSN extreme gradient boosting(XGBoost)regressor ensemble model
在线阅读 下载PDF
Designing of optimized microstrip fractal antenna using hybrid metaheuristic framework for IoT applications
7
作者 S KARUNAKAR Reddy ANITHA Guttavelli 《Journal of Systems Engineering and Electronics》 2025年第3期659-670,共12页
Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays... Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays an imperative role in receiving and transmitting the signals for any sensor network.Among varied antennas,micro strip fractal antenna(MFA)significantly contributes to increasing antenna gain.This study employs a hybrid optimization method known as the elephant clan updated grey wolf algorithm to introduce an optimized MFA design.This method optimizes antenna characteristics,including directivity and gain.Here,the factors,including length,width,ground plane length,height,and feed offset-X and feed offset-Y,are taken into account to achieve the best performance of gain and directivity.Ultimately,the superiority of the suggested technique over state-of-the-art strategies is calculated for various metrics such as cost and gain.The adopted model converges to a minimal value of 0.2872.Further,the spider monkey optimization(SMO)model accomplishes the worst performance over all other existing models like elephant herding optimization(EHO),grey wolf optimization(GWO),lion algorithm(LA),support vector regressor(SVR),bacterial foraging-particle swarm optimization(BF-PSO)and shark smell optimization(SSO).Effective MFA design is obtained using the suggested strategy regarding various parameters. 展开更多
关键词 micro strip fractal antenna(MFA)model gain DIRECTIVITY support vector regressor(SVR)approach elephant clan updated grey wolf algorithm(ECU-GWA)
在线阅读 下载PDF
基于贝叶斯优化的CatBoost模型在混凝土抗压强度预测中的研究
8
作者 曹源 《混凝土》 北大核心 2025年第7期87-94,共8页
混凝土抗压强度是建筑结构安全性与耐久性的关键性能指标,对工程设计与质量控制具有重要意义。由于混凝土性能受材料配合比与养护条件等多因素的非线性耦合作用影响,传统经验式在预测精度与适应性方面已难以满足智能建造的需求。为此,采... 混凝土抗压强度是建筑结构安全性与耐久性的关键性能指标,对工程设计与质量控制具有重要意义。由于混凝土性能受材料配合比与养护条件等多因素的非线性耦合作用影响,传统经验式在预测精度与适应性方面已难以满足智能建造的需求。为此,采用Min-Max归一化与二阶多项式特征扩展对原始数据进行处理,构建以CatBoost回归器为核心的预测模型,并通过贝叶斯优化方法实现超参数调优。基于1 030组混凝土配合比与强度数据进行建模与验证,所得模型在测试集上达到了RMSE为4.27 MPa、MAE为3.12 MPa、R^(2)为0.94的性能表现。为提升应用可行性,开发了基于Streamlit框架的在线预测平台,实现模型快速部署与混凝土强度的实时估算。研究结果表明:该方法在预测精度与模型鲁棒性方面显著优于传统回归模型,可为智能混凝土配合比设计与施工过程质量监测提供有效支撑。 展开更多
关键词 混凝土抗压强度 机器学习 CatBoost回归器 贝叶斯优化 智能建造
在线阅读 下载PDF
基于DREM技术的固定时间自适应模糊控制
9
作者 王亚辉 吴中华 《兵器装备工程学报》 北大核心 2025年第S1期205-212,共8页
提出一种基于动态回归扩展与混合技术的固定时间自适应模糊控制方法,旨在解决未知项估计精度不足、历史数据利用不充分以及传统固定时间反步控制方法中存在的“微分爆炸”和奇异性问题。利用动态回归扩展与混合技术,设计一种新型模糊逻... 提出一种基于动态回归扩展与混合技术的固定时间自适应模糊控制方法,旨在解决未知项估计精度不足、历史数据利用不充分以及传统固定时间反步控制方法中存在的“微分爆炸”和奇异性问题。利用动态回归扩展与混合技术,设计一种新型模糊逻辑系统权值估计器,确保权值向量逐元素单调,提升未知项的估计精度。通过引入遗忘因子,充分利用历史数据,使估计误差在非持续激励条件下仍能收敛。此外,采用分段连续函数构造固定时间控制器和滤波器,有效避免了潜在的奇异性和“微分爆炸”。通过稳定性分析和仿真验证,所提出的控制方法能够在固定时间内精确估计系统中的未知项,确保闭环系统中所有信号在固定时间内收敛。 展开更多
关键词 固定时间控制 自适应模糊控制 模糊逻辑系统 动态回归扩展与混合 动态面控制
在线阅读 下载PDF
基于出血性脑卒中的临床智能诊断和治疗模型
10
作者 江霞 赵斌 《湖北工业大学学报》 2025年第4期113-120,共8页
针对出血性脑卒中这一脑血管破裂引发的严重医疗事件,深入分析急性期患者神经功能损害与高死亡率的影响因素;通过收集和分析出血性脑卒中患者的临床数据,探讨了脑水肿变化、治疗条件与改良兰金量表(MRS)评分之间的相互关系,以提供更加... 针对出血性脑卒中这一脑血管破裂引发的严重医疗事件,深入分析急性期患者神经功能损害与高死亡率的影响因素;通过收集和分析出血性脑卒中患者的临床数据,探讨了脑水肿变化、治疗条件与改良兰金量表(MRS)评分之间的相互关系,以提供更加精准的临床建议。为了解决血肿扩张预测、水肿体积变化规律和患者预后轨迹预测这三个关键问题,创建了HemExPred、EdemaVolReg和PredictisPred三种模型。利用机器学习技术,确定了与血肿扩大事件紧密相关的特征,并通过弹性网络方法验证了这些特征的有效性;同时,应用多项式回归和层次聚类分析揭示了水肿体积变化的复杂动力学过程;最终,借助树外回归模型的先进分析能力,成功预测了患者的预后情况,并确认了血肿体积、水肿体积和年龄对患者预后的关键影响。 展开更多
关键词 出血性脑卒中 树外回归模型 弹性网络 多项式回归 血肿体积
在线阅读 下载PDF
基于随机森林的高速公路路面使用性能预测模型
11
作者 于明明 任仲山 于书恒 《黑龙江交通科技》 2025年第10期1-7,12,共8页
为建立可靠的路面性能预测模型,实现对高速公路路面使用性能的可靠预测,依托江苏省路面管理养护系统,在分析对比了各项路面性能评价指标之后,选择车辙深度指数、国际平整度指数、横向力系数以及路面破损状况指数作为路面性能预测指标。... 为建立可靠的路面性能预测模型,实现对高速公路路面使用性能的可靠预测,依托江苏省路面管理养护系统,在分析对比了各项路面性能评价指标之后,选择车辙深度指数、国际平整度指数、横向力系数以及路面破损状况指数作为路面性能预测指标。以最长单调子序列对路面性能数据中的异常值进行了识别与修正,使用随机森林回归模型建立了各项路面使用性能预测模型,并用外部验证集验证了模型的精度。结果表明,各性能预测模型均表现出较高的预测精度,所有模型在测试集上的R^(2)均>0.85,在外部验证集上的R^(2)基本>0.7,表明所建立的模型具有较高的预测精度以及较为优良的泛化能力。 展开更多
关键词 路面管理系统 性能预测 随机森林回归
在线阅读 下载PDF
An Ensemble Learning Method for SOC Estimation of Lithium-Ion Batteries Using Machine Learning
12
作者 Yirga Eyasu Tenawerk Linqing Xia +3 位作者 Jingfei Fu Wanwen Wu Zewei Quan Wu Zhen 《Journal of Electronic Research and Application》 2024年第6期136-144,共9页
Accurately assessing the State of Charge(SOC)is paramount for optimizing battery management systems,a cornerstone for ensuring peak battery performance and safety across diverse applications,encompassing vehicle power... Accurately assessing the State of Charge(SOC)is paramount for optimizing battery management systems,a cornerstone for ensuring peak battery performance and safety across diverse applications,encompassing vehicle powertrains and renewable energy storage systems.Confronted with the challenges of traditional SOC estimation methods,which often struggle with accuracy and cost-effectiveness,this research endeavors to elevate the precision of SOC estimation to a new level,thereby refining battery management strategies.Leveraging the power of integrated learning techniques,the study fuses Random Forest Regressor,Gradient Boosting Regressor,and Linear Regression into a comprehensive framework that substantially enhances the accuracy and overall performance of SOC predictions.By harnessing the publicly accessible National Aeronautics and Space Administration(NASA)Battery Cycle dataset,our analysis reveals that these integrated learning approaches significantly outperform traditional methods like Coulomb counting and electrochemical models,achieving remarkable improvements in SOC estimation accuracy,error reduction,and optimization of key metrics like R2 and Adjusted R2.This pioneering work propels the development of innovative battery management systems grounded in machine learning and deepens our comprehension of how this cutting-edge technology can revolutionize battery technology. 展开更多
关键词 SOC Lithium-ion batteries Random Forest regressor Gradient Boosting regressor Machine Learning
在线阅读 下载PDF
基于SURF的高密度人群计数方法 被引量:11
13
作者 梁荣华 刘向东 +2 位作者 马祥音 王子仁 宋明黎 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第12期1568-1575,共8页
为了解决在高密度人流或视场开阔环境下人群计数准确率低的问题,提出一种基于SURF的高密度人群计数方法.首先采用最小生成树改进了传统的基于密度的聚类算法,使其最小搜索域自适应聚类数据的分布;在此基础上实现运动人群的SURF特征点分... 为了解决在高密度人流或视场开阔环境下人群计数准确率低的问题,提出一种基于SURF的高密度人群计数方法.首先采用最小生成树改进了传统的基于密度的聚类算法,使其最小搜索域自适应聚类数据的分布;在此基础上实现运动人群的SURF特征点分类,并以此构建运动人群的特征向量,用支持向量回归机实现了对高密度人群的数量统计.实验结果表明,该方法对高密度人群的计数有较高的准确率和鲁棒性. 展开更多
关键词 高密度人群计数 SURF 最小生成树 基于密度的聚类算法 支持向量回归机
在线阅读 下载PDF
最优线性回归的计算方法 被引量:19
14
作者 李东风 郑忠国 《数理统计与管理》 CSSCI 北大核心 2008年第1期87-95,共9页
本文指出利用常用的逐步回归方法可以计算出回归分析中常用的5种准则下的局部最优回归子集,而模拟结果显示,在大部分情形下,局部最优回归子集是相重合的.这就为逐步回归方法在应用上的重要性提供了科学依据.最后作者对现今著名的几个数... 本文指出利用常用的逐步回归方法可以计算出回归分析中常用的5种准则下的局部最优回归子集,而模拟结果显示,在大部分情形下,局部最优回归子集是相重合的.这就为逐步回归方法在应用上的重要性提供了科学依据.最后作者对现今著名的几个数字例子进行计算,其效果也是十分满意的. 展开更多
关键词 回归分析 逐步回归 变量选择 局部最优回归子集 全局最优回归子集
在线阅读 下载PDF
基于粒子群优化的溶解氧质量浓度支持向量回归机 被引量:6
15
作者 安爱民 祁丽春 +2 位作者 丑永新 张浩琛 宋厚彬 《北京工业大学学报》 CAS CSCD 北大核心 2016年第9期1318-1323,共6页
针对污水处理中溶解氧质量浓度无法在线精确测量的问题,提出基于粒子群算法优化支持向量回归机(PSO-SVR)的溶解氧质量浓度软测量模型.为了提高溶解氧的预测精度和效率,采用粒子群算法对支持向量回归机的模型参数进行优化,并以自动获取... 针对污水处理中溶解氧质量浓度无法在线精确测量的问题,提出基于粒子群算法优化支持向量回归机(PSO-SVR)的溶解氧质量浓度软测量模型.为了提高溶解氧的预测精度和效率,采用粒子群算法对支持向量回归机的模型参数进行优化,并以自动获取的最佳参数组合构建溶解氧与其影响因子间的非线性软测量模型,利用该软测量模型对国际基准仿真模型BSM1的溶解氧质量浓度进行预测.仿真结果表明:该模型能得到较好的预测效果,与SVR、RBF神经网络相比,PSO-SVR模型不仅计算复杂度低,而且收敛速度快,预测精度高,泛化能力强. 展开更多
关键词 溶解氧质量浓度 粒子群算法 支持向量回归机 污水处理 软测量
在线阅读 下载PDF
多层次MSER自然场景文本检测 被引量:11
16
作者 唐有宝 卜巍 邬向前 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第6期1134-1140,共7页
提出一种新的基于多层次最大稳定极值区域(MSER)的自然场景文本检测方法,其由候选区域的提取和文本检测组成.在候选区域提取过程中,采用多层次MSER区域提取方法:通过对原始图像进行多个颜色空间变换和多尺度放缩得到多个变换后的图像,... 提出一种新的基于多层次最大稳定极值区域(MSER)的自然场景文本检测方法,其由候选区域的提取和文本检测组成.在候选区域提取过程中,采用多层次MSER区域提取方法:通过对原始图像进行多个颜色空间变换和多尺度放缩得到多个变换后的图像,采用多个阈值对其进行MSER区域检测,并将检测到的区域作为候选区域用于文本检测.检测过程中,对候选区域提取手工设计的底层特征和基于卷积神经网络(CNN)的深层特征,训练一个随机森林回归器对特征进行分类得到字符区域,再将其合并成单词区域,并进行相似的特征提取和分类,从而得到最终的文本检测结果.使用2个标准的数据库(ICDAR2011和ICDAR2013)对提出的方法进行性能评价,F指标在ICDAR2011和ICDAR2013上均为0.79,表明了所提出的自然场景文本检测方法的有效性. 展开更多
关键词 自然场景文本检测 多层次最大稳定极值区域(MSER) 卷积神经网络(CNN) 随机森林回归器
在线阅读 下载PDF
一种适用于水声信道的双模式盲均衡算法 被引量:3
17
作者 张艳萍 赵俊渭 李金明 《电子与信息学报》 EI CSCD 北大核心 2005年第10期1535-1538,共4页
针对常数模算法(CMA)和符号回归常数模算法(SR-CMA)存在的问题,提出了一种基于分数间隔的双模式常数模(DCMA)盲均衡算法。该算法将常规CMA算法和SR-CMA算法相结合,通过判决圆环完成两种算法之间的切换,根据信噪比确定判决圆环的边界。... 针对常数模算法(CMA)和符号回归常数模算法(SR-CMA)存在的问题,提出了一种基于分数间隔的双模式常数模(DCMA)盲均衡算法。该算法将常规CMA算法和SR-CMA算法相结合,通过判决圆环完成两种算法之间的切换,根据信噪比确定判决圆环的边界。仿真结果表明,DCMA的计算效率高于CMA,算法稳定性优于SR- CMA,而且可以获得较低的剩余均方误差。 展开更多
关键词 盲均衡 分数间隔 常数模 符号回归
在线阅读 下载PDF
一种改进的自适应格型陷波滤波器 被引量:1
18
作者 张世平 赵永平 +1 位作者 张绍卿 李德胜 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2003年第8期989-991,995,共4页
为解决自适应格型陷波器在迭代过程收敛后存在陷波频率偏移的问题,通过严格的理论分析,论述了陷波参数与引入算子的关系.在推导得出收敛公式的基础上,给出了采用全局输出误差信号作为引入算子的自适应算法.改进后的自适应格型陷波器在... 为解决自适应格型陷波器在迭代过程收敛后存在陷波频率偏移的问题,通过严格的理论分析,论述了陷波参数与引入算子的关系.在推导得出收敛公式的基础上,给出了采用全局输出误差信号作为引入算子的自适应算法.改进后的自适应格型陷波器在不增加计算量的前提下,消除了陷波频率的偏移.仿真结果与理论分析相一致. 展开更多
关键词 自适应格型陷波滤波器 陷波频率 引入算子 微弱信号检测 算法 仿真 误差信号
在线阅读 下载PDF
球磨机制粉过程煤粉粒度FCM-SVRs软测量建模 被引量:4
19
作者 王介生 高宪文 张立 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期613-616,共4页
根据多个模型相加可以提高整体预测精度和鲁棒性的思想,提出了一种基于模糊C均值聚类(FCM)算法的煤粉粒度多最小二乘支持向量机回归(MLS-SVRs)软测量模型.采用变长度染色体的遗传算法同时优化模糊聚类数和聚类中心,每种聚类子集用LS-SVR... 根据多个模型相加可以提高整体预测精度和鲁棒性的思想,提出了一种基于模糊C均值聚类(FCM)算法的煤粉粒度多最小二乘支持向量机回归(MLS-SVRs)软测量模型.采用变长度染色体的遗传算法同时优化模糊聚类数和聚类中心,每种聚类子集用LS-SVRs进行局部模型的建立和训练,再用模糊聚类后产生的隶属度将各子模型的输出加权求和得到最后软测量结果.仿真结果表明该软测量模型具有更好的泛化结果和预测精度,可以满足煤粉制备过程实时控制的在线软测量要求. 展开更多
关键词 煤粉粒度 模糊C均值聚类 最小二乘支持向量机回归 软测量 遗传算法 变长度染色体
在线阅读 下载PDF
Adaptive Tracking Control of an Autonomous Underwater Vehicle 被引量:6
20
作者 Basant Kumar Sahu Bidyadhar Subudhi 《International Journal of Automation and computing》 EI CSCD 2014年第3期299-307,共9页
This paper presents the trajectory tracking control of an autonomous underwater vehicle(AUV). To cope with parametric uncertainties owing to the hydrodynamic effect, an adaptive control law is developed for the AUV to... This paper presents the trajectory tracking control of an autonomous underwater vehicle(AUV). To cope with parametric uncertainties owing to the hydrodynamic effect, an adaptive control law is developed for the AUV to track the desired trajectory. This desired state-dependent regressor matrix-based controller provides consistent results under hydrodynamic parametric uncertainties.Stability of the developed controller is verified using the Lyapunov s direct method. Numerical simulations are carried out to study the efficacy of the proposed adaptive controller. 展开更多
关键词 Autonomous underwater vehicle(AUV) adaptive control law regressor matrix Lyapunovs stability path following
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部