期刊文献+
共找到76,393篇文章
< 1 2 250 >
每页显示 20 50 100
Computer program of nonlinear, curved regression for ‘probacent’-probability equation in biomedicine
1
作者 Sung Jang Chung 《Journal of Biomedical Science and Engineering》 2011年第9期620-630,共11页
On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘prob... On the basis of experimental observations on animals, applications to clinical data on patients and theoretical statistical reasoning, the author developed a com-puter-assisted general mathematical model of the ‘probacent’-probability equation, Equation (1) and death rate (mortality probability) equation, Equation (2) derivable from Equation (1) that may be applica-ble as a general approximation method to make use-ful predictions of probable outcomes in a variety of biomedical phenomena [1-4]. Equations (1) and (2) contain a constant, γ and c, respectively. In the pre-vious studies, the author used the least maximum- difference principle to determine these constants that were expected to best fit reported data, minimizing the deviation. In this study, the author uses the method of computer-assisted least sum of squares to determine the constants, γ and c in constructing the ‘probacent’-related formulas best fitting the NCHS- reported data on survival probabilities and death rates in the US total adult population for 2001. The results of this study reveal that the method of com-puter-assisted mathematical analysis with the least sum of squares seems to be simple, more accurate, convenient and preferable than the previously used least maximum-difference principle, and better fit-ting the NCHS-reported data on survival probabili-ties and death rates in the US total adult population. The computer program of curved regression for the ‘probacent’-probability and death rate equations may be helpful in research in biomedicine. 展开更多
关键词 Linear regression Curved regression Least Sum of Squares Least Maximum-Difference 'Probacent-Probability EQUATION Computer Program of Curved regression Survival PROBABILITY EQUATION Death Rate EQUATION Mortality PROBABILITY Human Tolerance to Radiation
在线阅读 下载PDF
Incorporating the Multinomial Logistic Regression in Vehicle Crash Severity Modeling: A Detailed Overview
2
作者 Azad Abdulhafedh 《Journal of Transportation Technologies》 2017年第3期279-303,共25页
Multinomial logistic regression (MNL) is an attractive statistical approach in modeling the vehicle crash severity as it does not require the assumption of normality, linearity, or homoscedasticity compared to other a... Multinomial logistic regression (MNL) is an attractive statistical approach in modeling the vehicle crash severity as it does not require the assumption of normality, linearity, or homoscedasticity compared to other approaches, such as the discriminant analysis which requires these assumptions to be met. Moreover, it produces sound estimates by changing the probability range between 0.0 and 1.0 to log odds ranging from negative infinity to positive infinity, as it applies transformation of the dependent variable to a continuous variable. The estimates are asymptotically consistent with the requirements of the nonlinear regression process. The results of MNL can be interpreted by both the regression coefficient estimates and/or the odd ratios (the exponentiated coefficients) as well. In addition, the MNL can be used to improve the fitted model by comparing the full model that includes all predictors to a chosen restricted model by excluding the non-significant predictors. As such, this paper presents a detailed step by step overview of incorporating the MNL in crash severity modeling, using vehicle crash data of the Interstate I70 in the State of Missouri, USA for the years (2013-2015). 展开更多
关键词 MULTINOMIAL Logistic regression ODD Ratio The INDEPENDENCE of Irrelevant Alternatives The Hausman Specification TEST The Hosmer-Lemeshow TEST Pseudo R SQUARES Crash SEVERITY Models
在线阅读 下载PDF
CNN-based multi-output regression model to estimate infrastructural surface crack dimensions adopting a generalised patch size and FWHM-based width quantification
3
作者 Sudipta Debroy Arjun Sil 《Digital Twins and Applications》 2025年第1期75-102,共28页
To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks o... To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks obtained from a public dataset are cropped into patches of 256 square pixels that are classified with a pre-trained deep convolution neural network,the true positives are segmented,and crack properties are extracted using two different methods.The first method is primarily based on active contour models and level-set segmentation and the second method consists of the domain adaptation of a mathematical morphology-based method known as FIL-FINDER.A statistical test has been performed for the comparison of the stated methods and a database prepared with the more suitable method.An advanced convolution neural network-based multi-output regression model has been proposed which was trained with the prepared database and validated with the held-out dataset for the prediction of crack-length,crack-width,and width-uncertainty directly from input image patches.The pro-posed model has been tested on crack patches collected from different locations.Huber loss has been used to ensure the robustness of the proposed model selected from a set of 288 different variations of it.Additionally,an ablation study has been conducted on the top 3 models that demonstrated the influence of each network component on the pre-diction results.Finally,the best performing model HHc-X among the top 3 has been proposed that predicted crack properties which are in close agreement to the ground truths in the test data. 展开更多
关键词 ablation CNN convolution neural network CRACK crack patch estimation FWHM length multi-output regression segmentation uncertainty WIDTH
在线阅读 下载PDF
Spatial Downscaling of the Tropical Rainfall Measuring Mission Precipitation Using Geographically Weighted Regression Kriging over the Lancang River Basin, China 被引量:6
4
作者 LI Yungang ZHANG Yueyuan +2 位作者 HE Daming LUO Xian JI Xuan 《Chinese Geographical Science》 SCIE CSCD 2019年第3期446-462,共17页
Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their ... Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.67% for monthly precipitation. 展开更多
关键词 PRECIPITATION Tropical Rainfall Measuring Mission(TRMM) 3B43 Geographically Weighted regression Kriging(GWRK) SPATIAL DOWNSCALING the Lancang River Basin China
在线阅读 下载PDF
A Review of the Logistic Regression Model with Emphasis on Medical Research 被引量:9
5
作者 Ernest Yeboah Boateng Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2019年第4期190-207,共18页
This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on m... This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on medical research. Thirty seven research articles published between 2000 and 2018 which employed logistic regression as the main statistical tool as well as six text books on logistic regression were reviewed. Logistic regression concepts such as odds, odds ratio, logit transformation, logistic curve, assumption, selecting dependent and independent variables, model fitting, reporting and interpreting were presented. Upon perusing the literature, considerable deficiencies were found in both the use and reporting of LR. For many studies, the ratio of the number of outcome events to predictor variables (events per variable) was sufficiently small to call into question the accuracy of the regression model. Also, most studies did not report on validation analysis, regression diagnostics or goodness-of-fit measures;measures which authenticate the robustness of the LR model. Here, we demonstrate a good example of the application of the LR model using data obtained on a cohort of pregnant women and the factors that influence their decision to opt for caesarean delivery or vaginal birth. It is recommended that researchers should be more rigorous and pay greater attention to guidelines concerning the use and reporting of LR models. 展开更多
关键词 Logistic regression Model Validation Analysis GOODNESS-OF-FIT Measures Odds RATIO LIKELIHOOD RATIO TEST Hosmer-Lemeshow TEST Wald Statistic MEDICAL RESEARCH
在线阅读 下载PDF
Risk factors for paternal perinatal depression in Chinese advanced maternal age couples:A regression mixture model
6
作者 Xing Yin Juan Du +1 位作者 Shao-Lian Cai Xing-Qiang Chen 《World Journal of Psychiatry》 2026年第1期267-277,共11页
BACKGROUND Paternal perinatal depression(PPD)is closely associated with maternal mental health challenges,marital strain,and adverse child developmental outcomes.Despite its significant impact,PPD remains under-recogn... BACKGROUND Paternal perinatal depression(PPD)is closely associated with maternal mental health challenges,marital strain,and adverse child developmental outcomes.Despite its significant impact,PPD remains under-recognized in family-centered clinical practice.Concurrently,against the backdrop of rising rates of delayed marriage and China’s Maternity Incentive Policy,the proportion of women giving birth at an advanced maternal age is increasing.Nevertheless,research specifically examining PPD among spouses of older mothers remains critically scarce,both in China and globally.AIM To investigate PPD and its influencing factors in Chinese advanced maternal age families.METHODS This cross-sectional study included 358 participants;it was conducted among fathers of pregnant women of advanced maternal age at five hospitals in the Pearl River Delta region of China from September 2023 to June 2024.Data were collected via a general information questionnaire,the Social Support Rating Scale,and the Edinburgh Postnatal Depression Scale.Latent profile analysis and regression mixture models(RMMs)were adopted to analyze the latent PPD types and factors that influenced PPD.RESULTS The incidence of PPD was 16.48%,and three profiles were identified:Low-symptomatic(175 cases,48.89%),monophasic(140 cases,39.10%),and high-symptomatic(43 cases,12.01%).The RMM analysis revealed that first pregnancy,low income(<¥3000/month),part-time work,and a history of abnormal pregnancy were positively associated with the high-symptomatic type(P<0.05).Conversely,high subjective support and support utilization were negatively associated with the high-symptomatic type compared with the low-symptomatic type(P<0.05).Good couple relationships,high objective and subjective support,and high support utilization were negatively associated with monophasic disorder(P<0.05).CONCLUSION PPD incidence is high among Chinese fathers with advanced maternal age partners,and the characteristics of depression are varied.Healthcare practitioners should prioritize individuals with low levels of social support. 展开更多
关键词 Advanced maternal age Paternal perinatal depression Fathersmental health regression mixture model Advanced-age pregnancy Latent profile analysis
暂未订购
Identifying the dependency pattern of daily rainfall of Dhaka station in Bangladesh using Markov chain and logistic regression model
7
作者 Mina Mahbub Hossain Sayedul Anam 《Agricultural Sciences》 2012年第3期385-391,共7页
Bangladesh is a subtropical monsoon climate characterized by wide seasonal variations in rainfall, moderately warm temperatures, and high humidity. Rainfall is the main source of irrigation water everywhere in the Ban... Bangladesh is a subtropical monsoon climate characterized by wide seasonal variations in rainfall, moderately warm temperatures, and high humidity. Rainfall is the main source of irrigation water everywhere in the Bangladesh where the inhabitants derive their income primarily from farming. Stochastic rainfall models were concerned with the occurrence of wet day and depth of rainfall for different regions to model the daily occurrence of rainfall and achieved satisfactory results around the world. In connection to the Markov chain of different order, logistic regression is conducted to visualize the dependence of current rainfall upon the rainfall of previous two-time period. It had been shown that wet day of the previous two time period compared to the dry day of previous two time period influences positively the wet day of current time period, that is the dependency of dry-wet spell for the occurrence of rain in the rainy season from April to September in the study area. Daily data are collected from meteorological department of about 26 years on rainfall of Dhaka station during the period January 1985-August 2011 to conduct the study. The test result shows that the occurrence of rainfall follows a second order Markov chain and logistic regression also tells that dry followed by dry and wet followed by wet is more likely for the rainfall of Dhaka station and also the model could perform adequately for many applications of rainfall data satisfactorily. 展开更多
关键词 Characteristics of RAINFALL in BANGLADESH Stochastic Models MARKOV Chain Mode Logistic regression Model Akaikes Information Criterion (AIC)
暂未订购
Variable Selection via Biased Estimators in the Linear Regression Model 被引量:1
8
作者 Manickavasagar Kayanan Pushpakanthie Wijekoon 《Open Journal of Statistics》 2020年第1期113-126,共14页
Least Absolute Shrinkage and Selection Operator (LASSO) is used for variable selection as well as for handling the multicollinearity problem simultaneously in the linear regression model. LASSO produces estimates havi... Least Absolute Shrinkage and Selection Operator (LASSO) is used for variable selection as well as for handling the multicollinearity problem simultaneously in the linear regression model. LASSO produces estimates having high variance if the number of predictors is higher than the number of observations and if high multicollinearity exists among the predictor variables. To handle this problem, Elastic Net (ENet) estimator was introduced by combining LASSO and Ridge estimator (RE). The solutions of LASSO and ENet have been obtained using Least Angle Regression (LARS) and LARS-EN algorithms, respectively. In this article, we proposed an alternative algorithm to overcome the issues in LASSO that can be combined LASSO with other exiting biased estimators namely Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator and r-d class estimator. Further, we examine the performance of the proposed algorithm using a Monte-Carlo simulation study and real-world examples. The results showed that the LARS-rk and LARS-rd algorithms,?which are combined LASSO with r-k class estimator and r-d class estimator,?outperformed other algorithms under the moderated and severe multicollinearity. 展开更多
关键词 Variable SELECTION Least ABSOLUTE SHRINKAGE and SELECTION OPERATOR (LASSO) Least Angle regression (LARS) Elastic Net (ENet) Biased ESTIMATORS
在线阅读 下载PDF
Multi-Step Model Predictive Control Based on Online Support Vector Regression Optimized by Multi-Agent Particle Swarm Optimization Algorithm 被引量:2
9
作者 TANG Xianlun LIU Nianci +1 位作者 WAN Yali GUO Fei 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期607-612,共6页
As optimization of parameters affects prediction accuracy and generalization ability of support vector regression(SVR) greatly and the predictive model often mismatches nonlinear system model predictive control,a mult... As optimization of parameters affects prediction accuracy and generalization ability of support vector regression(SVR) greatly and the predictive model often mismatches nonlinear system model predictive control,a multi-step model predictive control based on online SVR(OSVR) optimized by multi-agent particle swarm optimization algorithm(MAPSO) is put forward. By integrating the online learning ability of OSVR, the predictive model can self-correct and adapt to the dynamic changes in nonlinear process well. 展开更多
关键词 online support VECTOR regression (OSVR) model PREDICTIVE CONTROLLER (MPC) MULTI-AGENT particleswarm optimization (MAPSO) nonlinear systems
原文传递
An Approach to Continuous Approximation of Pareto Front Using Geometric Support Vector Regression for Multi-objective Optimization of Fermentation Process 被引量:1
10
作者 吴佳欢 王建林 +1 位作者 于涛 赵利强 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第10期1131-1140,共10页
The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to ov... The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to overcome these problems, an approach to continuous approximation of Pareto front using geometric support vector regression is presented. The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front. In the process of geometric support vector regression modeling, considering the distribution characteristic of Pareto optimal points, the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes. Besides, an interactive decision-making(DM)procedure, in which the continuous approximation of Pareto front and decision-making is performed interactively, is designed for improving the accuracy of the preferred Pareto optimal point. The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition,combined with the interactive decision-making procedure, the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process. The experimental results show that the generated approximate continuous Pareto front has good accuracy and completeness. Compared with the multi-objective evolutionary algorithm with large size population, a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less computation and shorter running time. The operation strategy corresponding to the final preferred Pareto optimal point generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively. 展开更多
关键词 Continuous approximation of PARETO front GEOMETRIC support vector regression Interactive DECISION-MAKING procedure FED-BATCH FERMENTATION process
在线阅读 下载PDF
Probabilistic Fuzzy Regression Approach from the Point of View Risk
11
作者 Nana Gao Qiujun Lu 《Journal of Data Analysis and Information Processing》 2018年第4期156-167,共12页
Fuzzy regression analysis is an important regression analysis method to predict uncertain information in the real world. In this paper, the input data are crisp with randomness;the output data are trapezoid fuzzy numb... Fuzzy regression analysis is an important regression analysis method to predict uncertain information in the real world. In this paper, the input data are crisp with randomness;the output data are trapezoid fuzzy number, and three different risk preferences and chaos optimization algorithm are introduced to establish fuzzy regression model. On the basis of the principle of the minimum total spread between the observed and the estimated values, risk-neutral, risk-averse, and risk-seeking fuzzy regression model are developed to obtain the parameters of fuzzy linear regression model. Chaos optimization algorithm is used to determine the digital characteristic of random variables. The mean absolute percentage error and variance of errors are adopted to compare the modeling results. A stock rating case is used to evaluate the fuzzy regression models. The comparisons with five existing methods show that our proposed method has satisfactory performance. 展开更多
关键词 PROBABILISTIC Fuzzy regression Chaos Optimization Algorithm RISK PREFERENCES Models Mean ABSOLUTE PERCENTAGE Error Variance of ERRORS
在线阅读 下载PDF
Fuzzy Varying Coefficient Bilinear Regression of Yield Series
12
作者 Ting He Qiujun Lu 《Journal of Data Analysis and Information Processing》 2015年第3期43-54,共12页
We construct a fuzzy varying coefficient bilinear regression model to deal with the interval financial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, we propose a varying ... We construct a fuzzy varying coefficient bilinear regression model to deal with the interval financial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, we propose a varying coefficient model on the basis of the fuzzy bilinear regression model. Secondly, we develop the least-squares method according to the complete distance between fuzzy numbers to estimate the coefficients and test the adaptability of the proposed model by means of generalized likelihood ratio test with SSE composite index. Finally, mean square errors and mean absolutely errors are employed to evaluate and compare the fitting of fuzzy auto regression, fuzzy bilinear regression and fuzzy varying coefficient bilinear regression models, and also the forecasting of three models. Empirical analysis turns out that the proposed model has good fitting and forecasting accuracy with regard to other regression models for the capital market. 展开更多
关键词 FUZZY VARYING COEFFICIENT BILINEAR regression Model FUZZY Financial Assets YIELD LEAST-SQUARES Method Generalized Likelihood Ratio Test Forecast
在线阅读 下载PDF
Could Sequential Residual Centering Resolve Low Sensitivity in Moderated Regression? Simulations and Cancer Symptom Clusters
13
作者 Richard B. Francoeur 《Open Journal of Statistics》 2013年第6期24-44,共21页
Multicollinearity constitutes shared variation among predictors that inflates standard errors of regression coefficients. Several years ago, it was proven that the common practice of mean centering in moderated regres... Multicollinearity constitutes shared variation among predictors that inflates standard errors of regression coefficients. Several years ago, it was proven that the common practice of mean centering in moderated regression cannot alleviate multicollinearity among variables comprising an interaction, but merely masks it. Residual centering (orthogonalizing) is unacceptable because it biases parameters for predictors from which the interaction derives, thus precluding interpretation of moderator effects. I propose and validate residual centering in sequential re-estimations of a moderated regression—sequential residual centering (SRC)—by revealing unbiased multicollinearity conditioning across the interaction and its related terms. Across simulations, SRC reduces variance inflation factors (VIF) regardless of distribution shape or pattern of regression coefficients across predictors. For any predictor, the reduced VIF is used to derive a lower standard error of its regression coefficient. A cancer sample illustrates SRC, which allows unbiased interpretations of symptom clusters. SRC can be applied efficiently to alleviate multicollinearity after data collection and shows promise for advancing synergistic frontiers of research. 展开更多
关键词 Mean CENTERING MULTICOLLINEARITY Moderated regression Statistical Interaction Effect Modifier RESIDUAL CENTERING Symptom Cluster SICKNESS Behavior MALAISE CANCER
暂未订购
Short Term Electric Load Prediction by Incorporation of Kernel into Features Extraction Regression Technique
14
作者 Ruaa Mohamed-Rashad Ghandour Jun Li 《Smart Grid and Renewable Energy》 2017年第1期31-45,共15页
Accurate load prediction plays an important role in smart power management system, either for planning, facing the increasing of load demand, maintenance issues, or power distribution system. In order to achieve a rea... Accurate load prediction plays an important role in smart power management system, either for planning, facing the increasing of load demand, maintenance issues, or power distribution system. In order to achieve a reasonable prediction, authors have applied and compared two features extraction technique presented by kernel partial least square regression and kernel principal component regression, and both of them are carried out by polynomial and Gaussian kernels to map the original features’ to high dimension features’ space, and then draw new predictor variables known as scores and loadings, while kernel principal component regression draws the predictor features to construct new predictor variables without any consideration to response vector. In contrast, kernel partial least square regression does take the response vector into consideration. Models are simulated by three different cities’ electric load data, which used historical load data in addition to weekends and holidays as common predictor features for all models. On the other hand temperature has been used for only one data as a comparative study to measure its effect. Models’ results evaluated by three statistic measurements, show that Gaussian Kernel Partial Least Square Regression offers the more powerful features and significantly can improve the load prediction performance than other presented models. 展开更多
关键词 Short TERM Load PREDICTION Support Vector regression (SVR) KERNEL Principal Component regression (KPCR) KERNEL PARTIAL Least SQUARE regression (KPLSR)
暂未订购
Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting 被引量:11
15
作者 Hemant Agrawal A.K.Mishra 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期202-207,共6页
The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of m... The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%. 展开更多
关键词 Peak particle velocity(PPV) Blast-induced ground vibration Scaled distance regression analysis Wave SUPERIMPOSITION SINGLE-HOLE BLASTING
在线阅读 下载PDF
Evaluating effectiveness of frequency ratio, fuzzy logic and logistic regression models in assessing landslide susceptibility: a case from Rudraprayag district, India 被引量:8
16
作者 Mehebub SAHANA Haroon SAJJAD 《Journal of Mountain Science》 SCIE CSCD 2017年第11期2150-2167,共18页
Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides... Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides in the district. Therefore, specific assessment of landslide susceptibility and its accuracy at regional level is essential for disaster management and proper land use planning. The article evaluates effectiveness of frequency ratio, fuzzy logic and logistic regression models for assessing landslide susceptibility in Rudraprayag district of Uttarakhand state, India. A landslide inventory map was prepared and verified by field data. Fourteen landslide parameters and generated inventory map were utilized to prepare landslide susceptibility maps through frequency ratio, fuzzy logic and logistic regression models. Landslide susceptibility maps generated through these models were classified into very high, high, medium, low and very low categories using natural breaks classification. Receiver operating characteristics(ROC) curve, spatially agreed area approach and seed cell area index(SCAI) method were used to validate the landslide models. Validation results revealed that fuzzy logic model was found to be more effective in assessing landslide susceptibility in the study area. The landslide susceptibility map generated through fuzzy logic model can be best utilized for landslide disaster management and effective land use planning. 展开更多
关键词 LANDSLIDE SUSCEPTIBILITY Frequency ratio LOGISTIC regression Natural BREAKS classification Remote sensing GEOGRAPHIC information system
原文传递
Log-Link Regression Models for Ordinal Responses
17
作者 Christopher L. Blizzard Stephen J. Quinn +1 位作者 Jana D. Canary David W. Hosmer 《Open Journal of Statistics》 2013年第4期16-25,共10页
The adjacent-categories, continuation-ratio and proportional odds logit-link regression models provide useful extensions of the multinomial logistic model to ordinal response data. We propose fitting these models with... The adjacent-categories, continuation-ratio and proportional odds logit-link regression models provide useful extensions of the multinomial logistic model to ordinal response data. We propose fitting these models with a logarithmic link to allow estimation of different forms of the risk ratio. Each of the resulting ordinal response log-link models is a constrained version of the log multinomial model, the log-link counterpart of the multinomial logistic model. These models can be estimated using software that allows the user to specify the log likelihood as the objective function to be maximized and to impose constraints on the parameter estimates. In example data with a dichotomous covariate, the unconstrained models produced valid coefficient estimates and standard errors, and the constrained models produced plausible results. Models with a single continuous covariate performed well in data simulations, with low bias and mean squared error on average and appropriate confidence interval coverage in admissible solutions. In an application to real data, practical aspects of the fitting of the models are investigated. We conclude that it is feasible to obtain adjusted estimates of the risk ratio for ordinal outcome data. 展开更多
关键词 ORDINAL Risk RATIO MULTINOMIAL Likelihood Logarithmic LINK LOG MULTINOMIAL regression Adjacent Categories Continuation-Ratio Proportional Odds ORDINAL Logistic regression
暂未订购
A Regression Type Estimator with Two Auxiliary Variables for Two-Phase Sampling
18
作者 Naqvi Hamad Muhammad Hanif Najeeb Haider 《Open Journal of Statistics》 2013年第2期74-78,共5页
This paper is an extension of Hanif, Hamad and Shahbaz estimator [1] for two-phase sampling. The aim of this paper is to develop a regression type estimator with two auxiliary variables for two-phase sampling when we ... This paper is an extension of Hanif, Hamad and Shahbaz estimator [1] for two-phase sampling. The aim of this paper is to develop a regression type estimator with two auxiliary variables for two-phase sampling when we don’t have any type of information about auxiliary variables at population level. To avoid multi-collinearity, it is assumed that both auxiliary variables have minimum correlation. Mean square error and bias of proposed estimator in two-phase sampling is derived. Mean square error of proposed estimator shows an improvement over other well known estimators under the same case. 展开更多
关键词 Mean SQUARE Error Precision TWO-PHASE Sampling AUXILIARY Variable regression TYPE ESTIMATOR Simple Random Sampling without REPLACEMENT
暂未订购
Spatial Regression Analysis of Pedestrian Crashes Based on Point-of-Interest Data
19
作者 Yanyan Chen Jiajie Ma Shaohua Wang 《Journal of Data Analysis and Information Processing》 2020年第1期1-19,共19页
Pedestrian safety has recently been considered as one of the most serious issues in the research of traffic safety. This study aims at analyzing the spatial correlation between the frequency of pedestrian crashes and ... Pedestrian safety has recently been considered as one of the most serious issues in the research of traffic safety. This study aims at analyzing the spatial correlation between the frequency of pedestrian crashes and various predictor variables based on open source point-of-interest (POI) data which can provide specific land use features and user characteristics. Spatial regression models were developed at Traffic Analysis Zone (TAZ) level using 10,333 pedestrian crash records within the Fifth Ring of Beijing in 2015. Several spatial econometrics approaches were used to examine the spatial autocorrelation in crash count per TAZ, and the spatial heterogeneity was investigated by a geographically weighted regression model. The results showed that spatial error model performed better than other two spatial models and a traditional ordinary least squares model. Specifically, bus stops, hospitals, pharmacies, restaurants, and office buildings had positive impacts on pedestrian crashes, while hotels were negatively associated with the occurrence of pedestrian crashes. In addition, it was proven that there was a significant sign of localization effects for different POIs. Depending on these findings, lots of recommendations and countermeasures can be proposed to better improve the traffic safety for pedestrians. 展开更多
关键词 PEDESTRIAN Crashes Traffic ANALYSIS Zone (TAZ) Spatial ECONOMETRICS Approaches Geographically WEIGHTED regression Transportation Safety Planning
在线阅读 下载PDF
Parameters Optimization Using Genetic Algorithms in Support Vector Regression for Sales Volume Forecasting 被引量:1
20
作者 Fong-Ching Yuan 《Applied Mathematics》 2012年第10期1480-1486,共7页
Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are ... Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are dependent on the sales volume forecasting in some way. If the sales volume forecasting is sloppily done, then the rest of the budgeting process is largely a waste of time. Therefore, the sales volume forecasting process is a critical one for most businesses, and also a difficult area of management. Most of researches and companies use the statistical methods, regression analysis, or sophisticated computer simulations to analyze the sales volume forecasting. Recently, various prediction Artificial Intelligent (AI) techniques have been proposed in forecasting. Support Vector Regression (SVR) has been applied successfully to solve problems in numerous fields and proved to be a better prediction model. However, the select of appropriate SVR parameters is difficult. Therefore, to improve the accuracy of SVR, a hybrid intelligent support system based on evolutionary computation to solve the difficulties involved with the parameters selection is presented in this research. Genetic Algorithms (GAs) are used to optimize free parameters of SVR. The experimental results indicate that GA-SVR can achieve better forecasting accuracy and performance than traditional SVR and artificial neural network (ANN) prediction models in sales volume forecasting. 展开更多
关键词 BUDGETING Planning SALES Volume Forecasting Artificial Intelligent Support VECTOR regression GENETIC Algorithms Artificial NEURAL Network
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部