The linear weighted regression model is one of the models studied in many articles in recent years. Some further problems, such as disturbation, influence measure and estimate efficiency, have been discussed in this p...The linear weighted regression model is one of the models studied in many articles in recent years. Some further problems, such as disturbation, influence measure and estimate efficiency, have been discussed in this paper on the basis of the regression diagnosties. The partial conclusions of this paper are the extension of the familiar concepts in the regression diagnosties theory[2' 3,7] because they are representative of this kind of model.展开更多
There is a set of points in the plane whose elements correspond to the obser-vations that are used to generate a simple least-squares regression line.Each value of the independent variable in the observations matches ...There is a set of points in the plane whose elements correspond to the obser-vations that are used to generate a simple least-squares regression line.Each value of the independent variable in the observations matches up with one of these points,which are called pivot or fixed points.The coordinates of the fixed points are derived,and the properties of the points are explored.All points in the plane that yield each of the fixed points are found.The role that fixed points play in regression diagnostics is investigated.A new mechanical device that uses linkages to model the role of fixed points is described.A nu-merical example is presented.展开更多
文摘The linear weighted regression model is one of the models studied in many articles in recent years. Some further problems, such as disturbation, influence measure and estimate efficiency, have been discussed in this paper on the basis of the regression diagnosties. The partial conclusions of this paper are the extension of the familiar concepts in the regression diagnosties theory[2' 3,7] because they are representative of this kind of model.
文摘There is a set of points in the plane whose elements correspond to the obser-vations that are used to generate a simple least-squares regression line.Each value of the independent variable in the observations matches up with one of these points,which are called pivot or fixed points.The coordinates of the fixed points are derived,and the properties of the points are explored.All points in the plane that yield each of the fixed points are found.The role that fixed points play in regression diagnostics is investigated.A new mechanical device that uses linkages to model the role of fixed points is described.A nu-merical example is presented.