Combining ecological niche modeling with phylogeography has become a popular approach to understand how historical climate changes have created and maintained population structure. However, methodological choices in g...Combining ecological niche modeling with phylogeography has become a popular approach to understand how historical climate changes have created and maintained population structure. However, methodological choices in geographic extents and environmental layer sets employed in modeling may affect results and interpretations profoundly. Here, we infer range-wide phylogeographic structure and model ecological niches of Cyanoderrna ruficeps, and compare results to previous studies that examined this species across China's Mainland and Taiwan only. Use of dense taxon sampling of closely related species as outgroups question C. ruficeps monophyly. Furthermore, previously unsampled C. ruficeps populations from central Vietnam were closely related to disjunct western populations (Nepal, Tibet, Myanmar, Yunnan), rather than to geographically proximate populations in northern Vietnam and eastern China. Phylogeographic structure is more complex than previously appreciated; niche model projections to Last Glacial Maximum climate scenarios identified larger areas of suitable conditions than previous studies, but potential distributional limits differed markedly between climate models employed and were dependent upon interpretation of non-analogous historical climate scenarios. Previously identified population expansion across central China may result from colonization from refugial distributions during the Last Interglacial, rather than the Last Glacial Maximum, as previously understood [Current Zoology 61 (5): 901-909, 2015].展开更多
The impact of the Quaternary glaciation on eastern China’s local fauna and flora is a topic of considerable interest. We use mitochondrial DNA(mtDNA) sequences and coalescent simulations to test two general biogeogra...The impact of the Quaternary glaciation on eastern China’s local fauna and flora is a topic of considerable interest. We use mitochondrial DNA(mtDNA) sequences and coalescent simulations to test two general biogeographic hypotheses related to the effect of the Pleistocene climatic fluctuations on a widespread, eastern Chinese amphibian, Pseudepidalea raddei. Genealogical reconstructions are made and they detect major western and eastern lineages, which overlap in northwestern China, and possibly indicate the secondary contact of the populations that had entered the region from separate glacial refugia. Coalescent tests rejected alternative hypotheses of fragmentation of either a widespread ancestor or panmixia. The tests instead supported the hypothesis of geographic isolation and a remarkable dispersal pattern in one of the lineages. Though the Pleistocene climatic events are known to have affected the historical distributions and intra-specific divergence of Chinese squamates, coalescent and non-coalescent demographic analyses indicated that the toad P. raddei was not adversely affected by glacial cycling. Presumably, an increase in the amount of climatically mild habitats in East Asia is due to the development of monsoons since the Mid-late Pleistocene is responsible for the relatively mild effects.展开更多
Quaternary geological events,glacial cycles,and climate fluctuations have a profound influence on the evolutionary history and population dynamics of many species.Mountain ungulates offer an ideal model for researchin...Quaternary geological events,glacial cycles,and climate fluctuations have a profound influence on the evolutionary history and population dynamics of many species.Mountain ungulates offer an ideal model for researching these historical processes.In this study,three taxa of mountain ungulates(Capricornis,Naemorhedus,and Muntiacus),which share overlapping ecological niches and similar life-history strategies,were selected to analyze the impact of historical events on their evolution and population dynamics.Specimens were collected from naturally deceased individuals during multiple field expeditions,as well as from forest police seizures,and included skulls,skins,and dried meat.Mitochondrial genomes(mitogenomes)were used as molecular markers.Analyses indicated that the evolutionary divergence of these mountain ungulates was primarily driven by five major uplift phases of the Qinghai-Xizang Plateau and a series of glaciation events.Results also indicated the formation of multiple refugia in the East Himalaya-Hengduan Mountains(EHHM)during the Quaternary.Four species—C.sumatraensis,N.cranbrooki,N.evansi,and M.gongshanensis—were selected for detailed analyses of historical population dynamics.Notably,population expansions were detected for all species,with the expansions of N.cranbrooki,N.evansi,and M.gongshanensis occurring during the early to mid-Holocene,likely due to warmer and more humid climatic conditions.In contrast,the population expansion of C.sumatraensis occurred in the late Holocene,driven by forest retreat and increased human activities such as settlement and grazing.Additionally,and most importantly,we obtained molecular samples of N.cranbrooki in Xizang,China,for the first time,and also confirmed the distribution of N.cranbrooki in Xizang rather than being limited to northern Myanmar.Overall,these findings provide evidence that N.cranbrooki is distributed in Xizang,also offer novel insights into the connections between Quaternary environmental change and species differentiation,refugia formation and population dynamics of mountain ungulates in the EHHM region.展开更多
Climate refugia can serve as a remnant habitat or stepping stones for species dispersal under climate warming.The largest freshwater lake by surface area,Lake Superior,USA and Canada,serves as a model system for under...Climate refugia can serve as a remnant habitat or stepping stones for species dispersal under climate warming.The largest freshwater lake by surface area,Lake Superior,USA and Canada,serves as a model system for understanding cooling-mediated local refugia,as its cool water temperatures and wave action have maintained shoreline habitats suitable for southern disjunct populations of arctic-alpine plants since deglaciation.Here,we seek to explain spatial patterns and environmental drivers of arctic-alpine plant refugia along Lake Superior’s shores,and assess future risk to refugia under moderate(+3.5℃)and warmest(+5.7℃)climate warming scenarios.First,we examined how the interactive effects of summer surface water temperatures and wind affected onshore temperatures,resulting in areas of cooler refugia.Second,we developed an ecological niche model for the presence of disjunct arctic-alpine refugia(pooling 1253 occurrences from 58 species)along the lake’s shoreline.Third,we fit species distribution models for 20 of the most common arctic-alpine disjunct species and predicted presence to identify refugia hotspots.Finally,we used the two climate warming scenarios to predict changes in the presence of refugia and disjunct hotspots.Bedrock type,elevation above water,inland distance,July land surface temperature from MODIS/Terra satellite and near-shore depth of water were the best predictors of disjunct occurrences.Overall,we predicted 2236 km of the shoreline(51%)as disjunct refugia habitat for at least one species under current conditions,but this was reduced to 20% and 7% with moderate(894 km)and warmest(313 km)climate change projections.展开更多
Given the reality of climate-driven migration,the net effectiveness of existing spatially fixed protected areas(PAs)to biodiversity conservation is expected to decline,while the potential of non-PA habitats(non-PAs,i....Given the reality of climate-driven migration,the net effectiveness of existing spatially fixed protected areas(PAs)to biodiversity conservation is expected to decline,while the potential of non-PA habitats(non-PAs,i.e.,natural,altered,or artificial ecosystems that are not formally designated as PAs)for biodiversity conservation is gaining attention.However,the contribution of non-PAs to biodiversity conservation remains poorly understood.With the aim of comprehensively assessing the effectiveness of non-PAs as transient refugia and steppingstones during future climate-change-induced migration of species in China,a six-metric integrated framework was applied and statistics of these metrics for PAs and non-PAs are compared.Results reveal that,a greater area of non-PAs has a low velocity of climate change(VoCC)compared to that of PAs,and can therefore serve as temporary refugia for species.The disappearing climate index(DCI)and novel climate index(NCI)results show that some 17%of the subdivided climate classes within the PAs have changed.However,the displacement index(DI)results imply that nearly half(48.98%)of the PAs need non-PAs to provide transient refugia for climate-driven migration of species in PAs.The higher ratio of effective steppingstones measured using the climate corridor score(CCS)and landscape current flow(LCF)further emphasizes that non-PAs play a more significant role as steppingstones for climate driven migration than do PAs in terms of both their structural and functional connectivity.Our research further demonstrates that a conservation approach that improves connectivity among PAs and considers Other Effective area-based Conservation Measures(OECMs)is essential for long-term biodiversity adaptation to climate change.展开更多
Variations in the trnK region of chloroplast DNA were investigated in the present study using polymerase chain reactionrestriction fragment length polymorphism to detect the genetic structure and to infer the possible...Variations in the trnK region of chloroplast DNA were investigated in the present study using polymerase chain reactionrestriction fragment length polymorphism to detect the genetic structure and to infer the possible glacial refugia of Ginkgo biloba L. in China. In total, 220 individuals from 12 populations in China and three populations outside China were analyzed, representing the largest number of populations studied by molecular markers to date. Nineteen haplotypes were produced and haplotype A was found in all populations. Populations in south-western China, including WC, JF, PX, and SP, contained 14 of the 19 haplotypes and their genetic diversity ranged from 0.771 4 to 0.867 6. The TM population from China also showed a high genetic diversity (H = 0.848 5). Most of the genetic variation existed within populations and the differentiation among populations was low (GsT = 0.2). According to haplotype distribution and the historical record, we suggest that populations of G. biloba have been subjected to extensive human impact, which has compounded our attempt to infer glacial refugia for Ginkgo. Nevertheless, the present results suggest that the center of genetic diversity of Ginkgo is mainly in south-western China and in situ conservation is needed to protect and preserve the genetic resources.展开更多
Influenced by rapid changes in climate and landscape features since the Miocene,widely distributed species provide suitable models to study the environmental impact on their evolution and current genetic diversity.The...Influenced by rapid changes in climate and landscape features since the Miocene,widely distributed species provide suitable models to study the environmental impact on their evolution and current genetic diversity.The dice snake Natrix tessellata,widely distributed in the Western Palearctic is one such species.We aimed to resolve a detailed phylogeography of N.tessellata with a focus on the Central Asian clade with 4 and the Anatolia clade with 3 mitochondrial lineages,trace their origin,and correlate the environmental changes that affected their distribution through time.The expected time of divergence of both clades began at 3.7 Mya in the Pliocene,reaching lineage differentiation approximately 1 million years later.The genetic diversity in both clades is rich,suggesting different ancestral areas,glacial refugia,demographic changes,and colonization routes.The Caspian lineage is the most widespread lineage in Central Asia,distributed around the Caspian Sea and reaching the foothills of the Hindu Kush Mountains in Afghanistan,and Eastern European lowlands in the west.Its distribution is limited by deserts,moun-tains,and cold steppe environments.Similarly,Kazakhstan and Uzbekistan lineages followed the Amu Darya and the Syr Darya water systems in Central Asia,with ranges delimited by the large Kyzylkum and Karakum deserts.On the western side,there are several lineages within the Anatolia clade that converged in the central part of the peninsula with 2 being endemic to Western Asia.The distribution of both main clades was affected by expansion from their Pleistocene glacial refugia around the Caspian Sea and in the valleys of Central Asia as well as by environmental changes,mostly through aridification.展开更多
Under global warming,drought will reduce productivity of Pinus halepensis s.l.(subspecies halepensis and brutia)and cause a retreat from its rear edge distribu-tion(latitudinal/elevational)in the Mediterranean.To test...Under global warming,drought will reduce productivity of Pinus halepensis s.l.(subspecies halepensis and brutia)and cause a retreat from its rear edge distribu-tion(latitudinal/elevational)in the Mediterranean.To test whether topography can influence this scenario,we studied for approximately 40 years the growth of six natural pine stands in water-limited habitats on the islands of Zakinthos and Samos(eastern Mediterranean Greece),and determined the critical moisture sources that drove pine growth.Domi-nant pines were selected with no permanent water sources under contrasting moisture conditions created by topogra-phy(“wet”-gulley/valley vs.“dry”-upslope habitats).The responses of P.halepensis s.l.to drought under a moderate and a worst case scenario were tested,projected under global warming(approx.-25%and 40%in annual precipitation compared to 1961–1990 average).Our results show that“wet”habitat pines had higher productivity under normal to wet climate.However,the more precipitation declined,“wet”habitat tree growth was reduced at a significantly faster rate,but also showed a faster recovery,once rainfall returned.Thus,Pinus halepensis s.l.populations in gullies/valleys,may be more drought resilient and less likely to retreat towards higher elevation/latitudes under global warm-ing,compared to pines on dry upslope sites.Under moderate drought,both ecosystems relied on deeper moisture pools supplied by rainfall of the previous 3–6 years(including the year of growth).However,valley/gully habitat pines on significantly deeper soils(and probably on deeper heavily weathered bedrock),appeared to utilize surface moisture from winter/spring rainfall more efficiently for survival and recovery.Thus,deep soils may provide the key“buffer”for pine survival in such ecosystems that could act as potential refugia for P.halepensis s.l.under climate change.展开更多
Designation of critical habitat is an important conservation tool for species listed as threatened or endangered under the United States(U.S.)Endangered Species Act(ESA).While this is an important protective mechanism...Designation of critical habitat is an important conservation tool for species listed as threatened or endangered under the United States(U.S.)Endangered Species Act(ESA).While this is an important protective mechanism,lands designated as critical habitat could still be subject to degradation and fragmentation if they are not also in a protected status that prioritizes biodiversity conservation.Additionally,most designations of critical habitat do not explicitly take climate change into account.The objective of our study was to determine whether and to what extent critical habitats for species listed under the ESA are located within protected areas and areas previously identified as climate refugia or climate corridors,to inform management strategies to better conserve and recover these species.We mapped the designated critical habitats of 153 ESA-listed species and measured their overlap with previously-identified areas of climate refugia and corridors(CRC),and also with lands designated as nature-protected by U.S.Geological Survey’s Gap Analysis Project(GAP Status 1 or 2)and working lands with wildlife habitat potential(GAP Status 3).Only 18%of all designated critical habitat is located on lands that are both in CRC and nature-protected,and only 9%of species had over half of their designated critical habitats in such lands.84%of species had<25%overlap of their critical habitats with these areas.Critical habitats may therefore not fulfill their essential role of helping imperiled species persist and recover.展开更多
Changing climate will jeopardize biodiversity,particularly the geographic distribution of endemic species.One such species is the Javan Hawk-Eagle(JHE,Nisaetus bartelsi),a charismatic raptor found only on Java Island,...Changing climate will jeopardize biodiversity,particularly the geographic distribution of endemic species.One such species is the Javan Hawk-Eagle(JHE,Nisaetus bartelsi),a charismatic raptor found only on Java Island,Indonesia.Thus,it is crucial to develop an appropriate conservation strategy to preserve the species.Ecological niche modeling is considered a valuable tool for designing conservation plans for the JHE.We provide an ecological niche modeling approach and transfer its model to future climate scenarios for the JHE.We utilize various machine learning algorithms under sustainability and business-as-usual(BAU)scenarios for 2050.Additionally,we investigate the conservation vulnerability of the JHE,capturing multifaceted pressures on the species from climate dissimilarities and human disturbance variables.Our study reveals that the ensemble model performs exceptionally well,with temperature emerging as the most critical factor affecting the JHE distribution.This finding indicates that climate change will have a significant impact on the JHE species.Our results suggest that the JHE distribution will likely decrease by 28.41%and 40.16%from the current JHE distribution under sustainability and BAU scenarios,respectively.Furthermore,our study reveals high-potential refugia for future JHE,covering 7,596 km^(2)(61%)under the sustainability scenario and only 4,403 km^(2)(35%)under the BAU scenario.Therefore,effective management and planning,including habitat restoration,refugia preservation,habitat connectivity,and local community inclusivity,should be well-managed to achieve JHE conservation targets.展开更多
This study aims at identifying the microevolutionary processes responsible for the onset of the remarkable phylogeographic structure already recorded for the endangered giant clam Tridacna squamosa across its distribu...This study aims at identifying the microevolutionary processes responsible for the onset of the remarkable phylogeographic structure already recorded for the endangered giant clam Tridacna squamosa across its distribution range.For this purpose,the evolutionary,biogeographic and demographic histories of the species were comprehensively reconstructed in a mitochondrial dataset comprising nearly the whole available published cytochrome c oxidase 1 gene sequences of T.squamosa.Relatively higher level of genetic diversification was unveiled within T.squamosa,in comparison to earlier macro-geographic investigations,whereby five mitochondrial clusters were delineated.The resulting divergent gene pools in the Red Sea,western Indian Ocean,Indo-Malay Archipelago and western Pacific were found to be driven by Early Pleistocene glacial vicariance events among refugial lineages.Accentuated genetic diversification of the species across the Indo-Malay Archipelago was successively triggered by historical dispersal event during the Mid-Pleistocene MIS19c interglacial.This latter historical event might have also enabled genetically distinct giant clams from the Indo-Malay Archipelago to subsequently colonize the western Pacific,accounting for the genetic diversity hotspot detected within this region(comprising three divergent mitochondrial clusters).Late Pleistocene demographic expansion of T.squamosa,during the Last Interglacial period,could have contributed to forging spatial distribution of the so far delineated genetic entities across the Indo-Western Pacific.Overall,being resilient to major climate shifts during the Pleistocene through adaptation and consequent diversification,T.squamosa could be used as a model species to track the impact of climate change on genetic variability and structure of marine species.In particular,the new information,provided in this investigation,may help with understanding and/or predicting the consequences of ongoing global warming on genetic polymorphism of endangered coral reef species among which Tridacna sp.are listed as ecologically important.展开更多
第四纪气候波动以及地理和环境隔离深刻地影响了现代植物的遗传多样性、遗传结构和地理分布格局。该研究采用分子谱系地理学的研究方法对药用植物半夏19个居群共212个个体的3个叶绿体片段psb K-psb I、atp F-atp H和trn L-F进行分析,探...第四纪气候波动以及地理和环境隔离深刻地影响了现代植物的遗传多样性、遗传结构和地理分布格局。该研究采用分子谱系地理学的研究方法对药用植物半夏19个居群共212个个体的3个叶绿体片段psb K-psb I、atp F-atp H和trn L-F进行分析,探究半夏的遗传多样性、遗传结构、地理分布格局模式及成因,并探讨其居群历史动态。结果表明:(1)半夏总单倍型多样性H d为0.882,总核苷酸多样性π为1.23×10-3,在物种水平上表现出较高的遗传多样性。(2)分子方差分析(AMOVA)结果显示,半夏遗传变异主要发生在居群间,显著的遗传分化(F ST=0.909,P<0.001)和较低的种群内遗传多样性(H S=0.134);种群间遗传分化系数N ST=0.913>G ST=0.855(0.01<P<0.05),表明叶绿体单倍型具有明显的谱系地理结构。(3)中性检验结果显示,Tajima s D值、Fu and Li s D值以及Fu and Li s F值均为不显著正值,Fu s Fs值为不显著负值且失配分析曲线呈双峰,表明半夏居群整体没有经历过扩张事件。(4)单倍型地理分布显示,西南地区和中-东部地区具有单倍型多样性较高,并存在特有单倍型,故推测第四纪冰期时在这两个区域存在冰期避难所。总之,通过3个叶绿体基因对不同区域半夏的分析,阐明了其遗传多样性、遗传结构和地理分布格局,为半夏优良种源的分子筛选和保护提出了科学的建议和保护策略。展开更多
基金We thank Nikki Boggess, who assisted in labwork. Fieldwork in Vietnam was facilitated by Dr. Le Mahn Hung, and supported by the National Geographic Committee for Research and Exploration. Fieldwork in China was supported by the National Science Foundation (DEB-0344430 to ATP). The laboratory portions of this work were supported by the National Science Foundation (DEB-0743576 to RGM). We thank recordists who shared their Stachyris/Cyanoderma recordings on Xeno-canto.
文摘Combining ecological niche modeling with phylogeography has become a popular approach to understand how historical climate changes have created and maintained population structure. However, methodological choices in geographic extents and environmental layer sets employed in modeling may affect results and interpretations profoundly. Here, we infer range-wide phylogeographic structure and model ecological niches of Cyanoderrna ruficeps, and compare results to previous studies that examined this species across China's Mainland and Taiwan only. Use of dense taxon sampling of closely related species as outgroups question C. ruficeps monophyly. Furthermore, previously unsampled C. ruficeps populations from central Vietnam were closely related to disjunct western populations (Nepal, Tibet, Myanmar, Yunnan), rather than to geographically proximate populations in northern Vietnam and eastern China. Phylogeographic structure is more complex than previously appreciated; niche model projections to Last Glacial Maximum climate scenarios identified larger areas of suitable conditions than previous studies, but potential distributional limits differed markedly between climate models employed and were dependent upon interpretation of non-analogous historical climate scenarios. Previously identified population expansion across central China may result from colonization from refugial distributions during the Last Interglacial, rather than the Last Glacial Maximum, as previously understood [Current Zoology 61 (5): 901-909, 2015].
基金supported by the Director Foundation of Experimental Centre, Shenyang Normal University (Syzx1104)a Visiting Professorship for Senior International Scientists from the Chinese Academy of Sciences to Robert W. MURPHYsupported by a Discovery Grant of the Natural Sciences and Engineering Research Council of Canada (A3148)
文摘The impact of the Quaternary glaciation on eastern China’s local fauna and flora is a topic of considerable interest. We use mitochondrial DNA(mtDNA) sequences and coalescent simulations to test two general biogeographic hypotheses related to the effect of the Pleistocene climatic fluctuations on a widespread, eastern Chinese amphibian, Pseudepidalea raddei. Genealogical reconstructions are made and they detect major western and eastern lineages, which overlap in northwestern China, and possibly indicate the secondary contact of the populations that had entered the region from separate glacial refugia. Coalescent tests rejected alternative hypotheses of fragmentation of either a widespread ancestor or panmixia. The tests instead supported the hypothesis of geographic isolation and a remarkable dispersal pattern in one of the lineages. Though the Pleistocene climatic events are known to have affected the historical distributions and intra-specific divergence of Chinese squamates, coalescent and non-coalescent demographic analyses indicated that the toad P. raddei was not adversely affected by glacial cycling. Presumably, an increase in the amount of climatically mild habitats in East Asia is due to the development of monsoons since the Mid-late Pleistocene is responsible for the relatively mild effects.
基金supported by the National Natural Science Foundation of China(32360133,31901080)Transboundary Cooperation on Biodiversity Research and Conservation in Gaoligong Mountains(No.E1ZK251)Major Science and Technique Programs in Yunnan Province(Grant No.202102AA310055)。
文摘Quaternary geological events,glacial cycles,and climate fluctuations have a profound influence on the evolutionary history and population dynamics of many species.Mountain ungulates offer an ideal model for researching these historical processes.In this study,three taxa of mountain ungulates(Capricornis,Naemorhedus,and Muntiacus),which share overlapping ecological niches and similar life-history strategies,were selected to analyze the impact of historical events on their evolution and population dynamics.Specimens were collected from naturally deceased individuals during multiple field expeditions,as well as from forest police seizures,and included skulls,skins,and dried meat.Mitochondrial genomes(mitogenomes)were used as molecular markers.Analyses indicated that the evolutionary divergence of these mountain ungulates was primarily driven by five major uplift phases of the Qinghai-Xizang Plateau and a series of glaciation events.Results also indicated the formation of multiple refugia in the East Himalaya-Hengduan Mountains(EHHM)during the Quaternary.Four species—C.sumatraensis,N.cranbrooki,N.evansi,and M.gongshanensis—were selected for detailed analyses of historical population dynamics.Notably,population expansions were detected for all species,with the expansions of N.cranbrooki,N.evansi,and M.gongshanensis occurring during the early to mid-Holocene,likely due to warmer and more humid climatic conditions.In contrast,the population expansion of C.sumatraensis occurred in the late Holocene,driven by forest retreat and increased human activities such as settlement and grazing.Additionally,and most importantly,we obtained molecular samples of N.cranbrooki in Xizang,China,for the first time,and also confirmed the distribution of N.cranbrooki in Xizang rather than being limited to northern Myanmar.Overall,these findings provide evidence that N.cranbrooki is distributed in Xizang,also offer novel insights into the connections between Quaternary environmental change and species differentiation,refugia formation and population dynamics of mountain ungulates in the EHHM region.
基金supported by the Natural Sciences and Engineering Research Council of Canada(RGPIN-2019-06040).
文摘Climate refugia can serve as a remnant habitat or stepping stones for species dispersal under climate warming.The largest freshwater lake by surface area,Lake Superior,USA and Canada,serves as a model system for understanding cooling-mediated local refugia,as its cool water temperatures and wave action have maintained shoreline habitats suitable for southern disjunct populations of arctic-alpine plants since deglaciation.Here,we seek to explain spatial patterns and environmental drivers of arctic-alpine plant refugia along Lake Superior’s shores,and assess future risk to refugia under moderate(+3.5℃)and warmest(+5.7℃)climate warming scenarios.First,we examined how the interactive effects of summer surface water temperatures and wind affected onshore temperatures,resulting in areas of cooler refugia.Second,we developed an ecological niche model for the presence of disjunct arctic-alpine refugia(pooling 1253 occurrences from 58 species)along the lake’s shoreline.Third,we fit species distribution models for 20 of the most common arctic-alpine disjunct species and predicted presence to identify refugia hotspots.Finally,we used the two climate warming scenarios to predict changes in the presence of refugia and disjunct hotspots.Bedrock type,elevation above water,inland distance,July land surface temperature from MODIS/Terra satellite and near-shore depth of water were the best predictors of disjunct occurrences.Overall,we predicted 2236 km of the shoreline(51%)as disjunct refugia habitat for at least one species under current conditions,but this was reduced to 20% and 7% with moderate(894 km)and warmest(313 km)climate change projections.
基金financially supported by the National Key R&D Program of China(Grants No.2022YFC3802604,2022YFF1303102)the Global Engagement for Strategic Partnership project of Nanjing University.
文摘Given the reality of climate-driven migration,the net effectiveness of existing spatially fixed protected areas(PAs)to biodiversity conservation is expected to decline,while the potential of non-PA habitats(non-PAs,i.e.,natural,altered,or artificial ecosystems that are not formally designated as PAs)for biodiversity conservation is gaining attention.However,the contribution of non-PAs to biodiversity conservation remains poorly understood.With the aim of comprehensively assessing the effectiveness of non-PAs as transient refugia and steppingstones during future climate-change-induced migration of species in China,a six-metric integrated framework was applied and statistics of these metrics for PAs and non-PAs are compared.Results reveal that,a greater area of non-PAs has a low velocity of climate change(VoCC)compared to that of PAs,and can therefore serve as temporary refugia for species.The disappearing climate index(DCI)and novel climate index(NCI)results show that some 17%of the subdivided climate classes within the PAs have changed.However,the displacement index(DI)results imply that nearly half(48.98%)of the PAs need non-PAs to provide transient refugia for climate-driven migration of species in PAs.The higher ratio of effective steppingstones measured using the climate corridor score(CCS)and landscape current flow(LCF)further emphasizes that non-PAs play a more significant role as steppingstones for climate driven migration than do PAs in terms of both their structural and functional connectivity.Our research further demonstrates that a conservation approach that improves connectivity among PAs and considers Other Effective area-based Conservation Measures(OECMs)is essential for long-term biodiversity adaptation to climate change.
基金the National Basic Research Program of China (973 Program2007CB411605)the National Natural Science Foundation of China(30670139, 30300020).
文摘Variations in the trnK region of chloroplast DNA were investigated in the present study using polymerase chain reactionrestriction fragment length polymorphism to detect the genetic structure and to infer the possible glacial refugia of Ginkgo biloba L. in China. In total, 220 individuals from 12 populations in China and three populations outside China were analyzed, representing the largest number of populations studied by molecular markers to date. Nineteen haplotypes were produced and haplotype A was found in all populations. Populations in south-western China, including WC, JF, PX, and SP, contained 14 of the 19 haplotypes and their genetic diversity ranged from 0.771 4 to 0.867 6. The TM population from China also showed a high genetic diversity (H = 0.848 5). Most of the genetic variation existed within populations and the differentiation among populations was low (GsT = 0.2). According to haplotype distribution and the historical record, we suggest that populations of G. biloba have been subjected to extensive human impact, which has compounded our attempt to infer glacial refugia for Ginkgo. Nevertheless, the present results suggest that the center of genetic diversity of Ginkgo is mainly in south-western China and in situ conservation is needed to protect and preserve the genetic resources.
基金supported by the Slovak Research and Development Agency under the contract APVV-19-0076 and by the grant VEGA 1/0242/21 of the Scientific Grant Agency of the Slovak RepublicSH was supported by the German Research Foundation(DFG,grant no.HO 3792/8-1)The work of OK was carried out within the framework of research topics of the state assignments nos.121032300023-7 and 122031100282-2.The research of DJ in Afghanistan has been approved by the National Environmental Protection Agency of the Islamic Emirate of Afghanistan(permits for access to genetic resources nos.12429 and 12455).
文摘Influenced by rapid changes in climate and landscape features since the Miocene,widely distributed species provide suitable models to study the environmental impact on their evolution and current genetic diversity.The dice snake Natrix tessellata,widely distributed in the Western Palearctic is one such species.We aimed to resolve a detailed phylogeography of N.tessellata with a focus on the Central Asian clade with 4 and the Anatolia clade with 3 mitochondrial lineages,trace their origin,and correlate the environmental changes that affected their distribution through time.The expected time of divergence of both clades began at 3.7 Mya in the Pliocene,reaching lineage differentiation approximately 1 million years later.The genetic diversity in both clades is rich,suggesting different ancestral areas,glacial refugia,demographic changes,and colonization routes.The Caspian lineage is the most widespread lineage in Central Asia,distributed around the Caspian Sea and reaching the foothills of the Hindu Kush Mountains in Afghanistan,and Eastern European lowlands in the west.Its distribution is limited by deserts,moun-tains,and cold steppe environments.Similarly,Kazakhstan and Uzbekistan lineages followed the Amu Darya and the Syr Darya water systems in Central Asia,with ranges delimited by the large Kyzylkum and Karakum deserts.On the western side,there are several lineages within the Anatolia clade that converged in the central part of the peninsula with 2 being endemic to Western Asia.The distribution of both main clades was affected by expansion from their Pleistocene glacial refugia around the Caspian Sea and in the valleys of Central Asia as well as by environmental changes,mostly through aridification.
基金supported by the Research Committee of the University of Patras(“Karatheodori”research program code:Β.090)the COST Action ES1308-Climate Change Manipulation Experiments in Terrestrial Ecosystems-Networking and Outreach(ClimMani)and Exchange Grant(reference number 2850).
文摘Under global warming,drought will reduce productivity of Pinus halepensis s.l.(subspecies halepensis and brutia)and cause a retreat from its rear edge distribu-tion(latitudinal/elevational)in the Mediterranean.To test whether topography can influence this scenario,we studied for approximately 40 years the growth of six natural pine stands in water-limited habitats on the islands of Zakinthos and Samos(eastern Mediterranean Greece),and determined the critical moisture sources that drove pine growth.Domi-nant pines were selected with no permanent water sources under contrasting moisture conditions created by topogra-phy(“wet”-gulley/valley vs.“dry”-upslope habitats).The responses of P.halepensis s.l.to drought under a moderate and a worst case scenario were tested,projected under global warming(approx.-25%and 40%in annual precipitation compared to 1961–1990 average).Our results show that“wet”habitat pines had higher productivity under normal to wet climate.However,the more precipitation declined,“wet”habitat tree growth was reduced at a significantly faster rate,but also showed a faster recovery,once rainfall returned.Thus,Pinus halepensis s.l.populations in gullies/valleys,may be more drought resilient and less likely to retreat towards higher elevation/latitudes under global warm-ing,compared to pines on dry upslope sites.Under moderate drought,both ecosystems relied on deeper moisture pools supplied by rainfall of the previous 3–6 years(including the year of growth).However,valley/gully habitat pines on significantly deeper soils(and probably on deeper heavily weathered bedrock),appeared to utilize surface moisture from winter/spring rainfall more efficiently for survival and recovery.Thus,deep soils may provide the key“buffer”for pine survival in such ecosystems that could act as potential refugia for P.halepensis s.l.under climate change.
文摘Designation of critical habitat is an important conservation tool for species listed as threatened or endangered under the United States(U.S.)Endangered Species Act(ESA).While this is an important protective mechanism,lands designated as critical habitat could still be subject to degradation and fragmentation if they are not also in a protected status that prioritizes biodiversity conservation.Additionally,most designations of critical habitat do not explicitly take climate change into account.The objective of our study was to determine whether and to what extent critical habitats for species listed under the ESA are located within protected areas and areas previously identified as climate refugia or climate corridors,to inform management strategies to better conserve and recover these species.We mapped the designated critical habitats of 153 ESA-listed species and measured their overlap with previously-identified areas of climate refugia and corridors(CRC),and also with lands designated as nature-protected by U.S.Geological Survey’s Gap Analysis Project(GAP Status 1 or 2)and working lands with wildlife habitat potential(GAP Status 3).Only 18%of all designated critical habitat is located on lands that are both in CRC and nature-protected,and only 9%of species had over half of their designated critical habitats in such lands.84%of species had<25%overlap of their critical habitats with these areas.Critical habitats may therefore not fulfill their essential role of helping imperiled species persist and recover.
文摘Changing climate will jeopardize biodiversity,particularly the geographic distribution of endemic species.One such species is the Javan Hawk-Eagle(JHE,Nisaetus bartelsi),a charismatic raptor found only on Java Island,Indonesia.Thus,it is crucial to develop an appropriate conservation strategy to preserve the species.Ecological niche modeling is considered a valuable tool for designing conservation plans for the JHE.We provide an ecological niche modeling approach and transfer its model to future climate scenarios for the JHE.We utilize various machine learning algorithms under sustainability and business-as-usual(BAU)scenarios for 2050.Additionally,we investigate the conservation vulnerability of the JHE,capturing multifaceted pressures on the species from climate dissimilarities and human disturbance variables.Our study reveals that the ensemble model performs exceptionally well,with temperature emerging as the most critical factor affecting the JHE distribution.This finding indicates that climate change will have a significant impact on the JHE species.Our results suggest that the JHE distribution will likely decrease by 28.41%and 40.16%from the current JHE distribution under sustainability and BAU scenarios,respectively.Furthermore,our study reveals high-potential refugia for future JHE,covering 7,596 km^(2)(61%)under the sustainability scenario and only 4,403 km^(2)(35%)under the BAU scenario.Therefore,effective management and planning,including habitat restoration,refugia preservation,habitat connectivity,and local community inclusivity,should be well-managed to achieve JHE conservation targets.
文摘This study aims at identifying the microevolutionary processes responsible for the onset of the remarkable phylogeographic structure already recorded for the endangered giant clam Tridacna squamosa across its distribution range.For this purpose,the evolutionary,biogeographic and demographic histories of the species were comprehensively reconstructed in a mitochondrial dataset comprising nearly the whole available published cytochrome c oxidase 1 gene sequences of T.squamosa.Relatively higher level of genetic diversification was unveiled within T.squamosa,in comparison to earlier macro-geographic investigations,whereby five mitochondrial clusters were delineated.The resulting divergent gene pools in the Red Sea,western Indian Ocean,Indo-Malay Archipelago and western Pacific were found to be driven by Early Pleistocene glacial vicariance events among refugial lineages.Accentuated genetic diversification of the species across the Indo-Malay Archipelago was successively triggered by historical dispersal event during the Mid-Pleistocene MIS19c interglacial.This latter historical event might have also enabled genetically distinct giant clams from the Indo-Malay Archipelago to subsequently colonize the western Pacific,accounting for the genetic diversity hotspot detected within this region(comprising three divergent mitochondrial clusters).Late Pleistocene demographic expansion of T.squamosa,during the Last Interglacial period,could have contributed to forging spatial distribution of the so far delineated genetic entities across the Indo-Western Pacific.Overall,being resilient to major climate shifts during the Pleistocene through adaptation and consequent diversification,T.squamosa could be used as a model species to track the impact of climate change on genetic variability and structure of marine species.In particular,the new information,provided in this investigation,may help with understanding and/or predicting the consequences of ongoing global warming on genetic polymorphism of endangered coral reef species among which Tridacna sp.are listed as ecologically important.
文摘第四纪气候波动以及地理和环境隔离深刻地影响了现代植物的遗传多样性、遗传结构和地理分布格局。该研究采用分子谱系地理学的研究方法对药用植物半夏19个居群共212个个体的3个叶绿体片段psb K-psb I、atp F-atp H和trn L-F进行分析,探究半夏的遗传多样性、遗传结构、地理分布格局模式及成因,并探讨其居群历史动态。结果表明:(1)半夏总单倍型多样性H d为0.882,总核苷酸多样性π为1.23×10-3,在物种水平上表现出较高的遗传多样性。(2)分子方差分析(AMOVA)结果显示,半夏遗传变异主要发生在居群间,显著的遗传分化(F ST=0.909,P<0.001)和较低的种群内遗传多样性(H S=0.134);种群间遗传分化系数N ST=0.913>G ST=0.855(0.01<P<0.05),表明叶绿体单倍型具有明显的谱系地理结构。(3)中性检验结果显示,Tajima s D值、Fu and Li s D值以及Fu and Li s F值均为不显著正值,Fu s Fs值为不显著负值且失配分析曲线呈双峰,表明半夏居群整体没有经历过扩张事件。(4)单倍型地理分布显示,西南地区和中-东部地区具有单倍型多样性较高,并存在特有单倍型,故推测第四纪冰期时在这两个区域存在冰期避难所。总之,通过3个叶绿体基因对不同区域半夏的分析,阐明了其遗传多样性、遗传结构和地理分布格局,为半夏优良种源的分子筛选和保护提出了科学的建议和保护策略。