Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often ...Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often posing diagnostic challenges.Dermoscopy and reflectance confocal microscopy(RCM)can aid in their differentiation,yet their specific features under these tools have not been systematically described.This study aims to summarize and analyze the dermoscopic and RCM features of VEN,SK,VP,VV,and NS.Methods:A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled.Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.Results:Under dermoscopy,the 5 diseases displayed distinct characteristics:VEN typically showed gyriform structures;SK was characterized by gyriform structures,comedo-like openings,and milia-like cysts;VP and VV featured dotted vessels and frogspawn-like structures;NS presented as brownish-yellow globules.RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases.Specific features included gyriform structures and elongated rete ridges in VEN;pseudocysts and gyriform structures in SK;evenly distributed ring-like structures in VP;vacuolated cells and papillomatous proliferation in VV;and frogspawn-like structures in NS.Conclusion:These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM.The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases.展开更多
Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fif...Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.展开更多
In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electrom...In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft.展开更多
The selection of an appropriate basic detonation wave flow field is crucial for improving the performance and geometric design of standing detonation vehicles.This paper employs a detailed chemical reaction model and ...The selection of an appropriate basic detonation wave flow field is crucial for improving the performance and geometric design of standing detonation vehicles.This paper employs a detailed chemical reaction model and solves the unsteady axisymmetric Euler equation to study the characteristics of the Axisymmetric Inward Turning Curved Detonation Wave(AIT-CDW)flow field and the parameters affecting the stability of the wave system structure of AIT-CDW flow field.The numerical results demonstrate a radial compression effect in the AIT-CDW flow field.This effect causes the detonation wave to have a shorter initiation length than oblique detonation wave flow field and the detonation wave angle to gradually increase with the flow direction postdetonation.The AIT-CDW flow field is confined space,making it prone to normal detonation waves when the detonation wave reflects from the wall.This phenomenon is detrimental to the stability of the wave system structure in the flow field.It has been observed that increasing the center body radius and decreasing the fuel equivalent ratio can effectively reduce the height of the normal detonation wave or even eliminate it.Additionally,a well-designed generatrix shape of the center body can enhance airflow,reduce choked flow,and promote the stability of the wave structure in the flow field.展开更多
The Global Precipitation Measurement(GPM)dual-frequency precipitation radar(DPR)products(Version 07A)are employed for a rigorous comparative analysis with ground-based operational weather radar(GR)networks.The reflect...The Global Precipitation Measurement(GPM)dual-frequency precipitation radar(DPR)products(Version 07A)are employed for a rigorous comparative analysis with ground-based operational weather radar(GR)networks.The reflectivity observed by GPM Ku PR is compared quantitatively against GR networks from CINRAD of China and NEXRAD of the United States,and the volume matching method is used for spatial matching.Additionally,a novel frequency correction method for all phases as well as precipitation types is used to correct the GPM Ku PR radar frequency to the GR frequency.A total of 20 GRs(including 10 from CINRAD and 10 from NEXRAD)are included in this comparative analysis.The results indicate that,compared with CINRAD matched data,NEXRAD exhibits larger biases in reflectivity when compared with the frequency-corrected Ku PR.The root-mean-square difference for CINRAD is calculated at 2.38 d B,whereas for NEXRAD it is 3.23 d B.The mean bias of CINRAD matched data is-0.16 d B,while the mean bias of NEXRAD is-2.10 d B.The mean standard deviation of bias for CINRAD is 2.15 d B,while for NEXRAD it is 2.29 d B.This study effectively assesses weather radar data in both the United States and China,which is crucial for improving the overall consistency of global precipitation estimates.展开更多
Oral expression skills play an essential role in the development of EFL students’language abilities,and how to improve EFL students’oral expression skills is an essential and challenging task.This study adopts a qua...Oral expression skills play an essential role in the development of EFL students’language abilities,and how to improve EFL students’oral expression skills is an essential and challenging task.This study adopts a quasi-experimental research method to carry out the research and proposes an AI-based reflective dialogue model.Based on this,an analysis of the impact brought by this model on EFL students’oral expression performance and learning anxiety levels.The results show that students in the experimental group have significantly higher oral expression performance than those in the control group in the three dimensions of grammatical accuracy,expressive fluency,and word accuracy.In addition,the students in the experimental group produced facilitated anxiety after using the AI-based reflective dialogue model for oral expression learning,which prompted the students to learn more diligently.展开更多
Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the...Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the inter-RIS links which also contribute to the performance of the whole system are usually neglected when multiple RISs are deployed.In this paper we investigate a general double-RIS assisted multiple-input multiple-output(MIMO)wireless communication system under spatially correlated non line-of-sight propagation channels,where the cooperation of the double RISs is also considered.The design objective is to maximize the achievable ergodic rate based on full statistical channel state information(CSI).Specifically,we firstly present a closedform asymptotic expression for the achievable ergodic rate by utilizing replica method from statistical physics.Then a full statistical CSI-enabled optimal design is proposed which avoids high pilot training overhead compared to instantaneous CSI-enabled design.To further reduce the signal processing overhead and lower the complexity for practical realization,a common-phase scheme is proposed to design the double RISs.Simulation results show that the derived asymptotic ergodic rate is quite accurate even for small-sized antenna arrays.And the proposed optimization algorithm can achieve substantial gain at the expense of a low overhead and complexity.Furthermore,the cooperative double-RIS assisted MIMO framework is proven to achieve superior ergodic rate performance and high communication reliability under harsh propagation environment.展开更多
This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with ...This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with 84 students from a middle school selected as the research subjects(44 in the experimental group and 40 in the control group).The experimental group used the reflective feedback model,while the control group used the factual feedback model.The results show that,compared with factual feedback,the reflective feedback model based on the pedagogical agent significantly improves students’problem-solving ability,especially at the action and thinking levels.In addition,this model effectively reduces students’cognitive load,especially in terms of internal and external load.展开更多
The unmanned aerial vehicle(UAV)images captured under low-light conditions are often suffering from noise and uneven illumination.To address these issues,we propose a low-light image enhancement algorithm for UAV imag...The unmanned aerial vehicle(UAV)images captured under low-light conditions are often suffering from noise and uneven illumination.To address these issues,we propose a low-light image enhancement algorithm for UAV images,which is inspired by the Retinex theory and guided by a light weighted map.Firstly,we propose a new network for reflectance component processing to suppress the noise in images.Secondly,we construct an illumination enhancement module that uses a light weighted map to guide the enhancement process.Finally,the processed reflectance and illumination components are recombined to obtain the enhancement results.Experimental results show that our method can suppress the noise in images while enhancing image brightness,and prevent over enhancement in bright regions.Code and data are available at https://gitee.com/baixiaotong2/uav-images.git.展开更多
Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due t...Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due to macro-phase separation.In this study,a novel polymer(denoted as PU-PDI)with intrinsic NIR reflective proper⁃ties was synthesized by covalent incorporation of PDI units into polyurethane chains.Its photophysical characteris⁃tics,mechanical property and NIR reflectance property are investigated in detail.The results show that covalent in⁃corporation reduces the severe aggregation of PDI units,thereby endows PU-PDI with excellent mechanical property.The elongation at break of PU-PDI can reach more than 700%,and the breaking strength is 34.11 MPa.Moreover,compared to the blending system,PU-PDI possesses enhanced NIR reflection ability due to the better dispersion of PDI units.展开更多
This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of...This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of constituents of thin films at electrode surfaces.PM IRRAS relies on the surface selection rules stating that the p-polarized IR beam is enhanced,while the s-polarized beam is attenuated at the metal surface.The difference between p-and s-polarized beams eliminates the background of the solvent and provides IR spectra at a single electrode potential.In contrast,two other popular in situ IR spectroscopic techniques,namely,subtractively normalized interfacial Fourier transform infrared spectroscopy(SNIFTIRS)and surface-enhanced infrared reflection absorption spectroscopy(SEIRAS),provide potential difference spectra to remove the signal from the bulk solution.In this feature article,we provide a brief tutorial on how to run the PM IRRAS experiment and describe the methods used for background elimination first.The application of the PM IRRAS in the biomimetic research is then illustrated by three examples:construction of a tethered bilayer,reconstitution of colicin into a phospholipid bilayer and determination of the orientation of nucleolipids in a monolayer assembled at a gold electrode surface.Finally,the structural changes of graphene oxide during its electrochemical reduction are described to highlight the promising application of PM IRRAS in materials science.展开更多
The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-inpu...The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems.展开更多
Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodi...Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodicity.Here,we provide both numerical and analytical evidence that a depth gradient metasurface can achieve discrete ultra-broadband perfect anomalous reflection in the microwave range in the absence of geometric periodicity.Remarkably,by adjusting the operating frequency of the incident wave,the same effect can be steadily obtained via a physically equivalent phase periodicity in the PGM.Based on this mechanism,a perfect retroreflector with a broadband response ranging from 1 GHz to 40 GHz is realized.Our work has promising applications in communication,source tracking,and military satellites.展开更多
1 In a town of fewer than 1,000 people,it can be hard to keep a secret.And yet no one in McBride,a mountain community in British Columbia,can figure out how a local deer came to be wearing a reflective jacket or why t...1 In a town of fewer than 1,000 people,it can be hard to keep a secret.And yet no one in McBride,a mountain community in British Columbia,can figure out how a local deer came to be wearing a reflective jacket or why the deer has been so hard to track down.展开更多
Designing and fabricating a compatible low-reflectivity electromagnetic interference(EMI)shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military.Hence,...Designing and fabricating a compatible low-reflectivity electromagnetic interference(EMI)shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military.Hence,a hierarchical polyimide(PI)nonwoven fabric is fabricated by alkali treatment,in-situ growth of magnetic particles and"self-activated"electroless Ag plating process.Especially,the hierarchical impedance matching can be constructed by systematically assembling Fe_(3)O_(4)/Ag-loaded PI nonwoven fabric(PFA)and pure Ag-coated PI nonwoven fabric(PA),endowing it with an ultralowreflectivity EMI shielding performance.In addition,thermal insulation of fluffy three-dimensional(3D)space structure in PFA and low infrared emissivity of PA originated from Ag plating bring an excellent infrared stealth performance.More importantly,the strong bonding interaction between Fe_(3)O_(4),Ag,and PI fiber improves thermal stability in EMI shielding and high-temperature resistant infrared stealth performance.Such excellent comprehensive performance makes it promising for military tents to protect internal equipment from electromagnetic interference stemmed from adjacent equipment and/or enemy,and inhibit external infrared detection.展开更多
The increasingly serious electromagnetic(EM)radiation and related pollution effects have gradually attracted people's attention in the information age.Hence,it's crucial to develop adaptive shielding materials...The increasingly serious electromagnetic(EM)radiation and related pollution effects have gradually attracted people's attention in the information age.Hence,it's crucial to develop adaptive shielding materials with minimum EM waves(EMW)reflection.In this paper,Ag nanoparticles loaded mesoporous carbon hollow spheres(MCHS@Ag)were synthesized by chemical reduction method,and cellulose nanofibers(CNF)/MXene/MCHS@Ag homogeneous composites were prepared.The total EM interference shielding efficiency(SET)of CNF/MXene/MCHS@Ag composite film was 32.83 dB(at 12.4 GHz),and the absorption effectiveness(SEA)was improved to 26.6 dB,which was 63.1%and 195.5%higher than that of CNF/MXene/MCHS composite film.The low dielectric property of MCHS effectively optimized the impedance matching between the composites and air.The hollow porous structure prolonged the transmission path of EMW and increased the absorption loss of the composites.At the same time,Ag nanoparticles located the MCHS were helpful to construct the internal conductive path overcoming the damage of the conductive property caused by the low dielectric of MCHS.This research adopts a straightforward method to construct a lightweight,pliable,and mesoporous composites for EMI shielding,which serves a crucial role in the current era of severe EM pollution.展开更多
The current work addresses the challenge of elucidating the performance of fluoroelastomers within the HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)based polymer-bonded explosives(PBXs).To simulate the confine...The current work addresses the challenge of elucidating the performance of fluoroelastomers within the HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)based polymer-bonded explosives(PBXs).To simulate the confined interface in PBXs,bilayer films of F2314/HMX and F2311/HMX were designed.Neutron reflectivity(NR),nanoindentation,and X-ray reflectivity(XRR)were employed to examine the layer thickness,interface characteristics,diffusion behavior,and surface morphology of the bilayers.NR measurements revealed interface thicknesses of 45Å and 98Å for F2314/HMX and F2311/HMX,respectively,indicating deeper penetration of F2311 into the HMX matrix.NR also suggested a denser polymer network with a higher scattering length density(SLD)near the HMX interface for both fluoroelastomers,while the bound layer of F2311 was notably thicker.Nanoindentation cross-checks and confirms the presence of a bound layer,highlighting the differences in stiffness and diffusion ability between the two polymers.The consistency between the NR and nanoindentation results suggests that F2311 demonstrates better flexibility and elasticity,whereas F2314 is stiffer and more plastic.Accordingly,the structures and performances of different fluoroelastomers at the HMX interface are discussed,which can provide valuable insights into the selection of binders for PBX formulations tailored to specific applications.展开更多
基金supported by the Project of Health Committee of Hunan Province(D202304128868),China.
文摘Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often posing diagnostic challenges.Dermoscopy and reflectance confocal microscopy(RCM)can aid in their differentiation,yet their specific features under these tools have not been systematically described.This study aims to summarize and analyze the dermoscopic and RCM features of VEN,SK,VP,VV,and NS.Methods:A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled.Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.Results:Under dermoscopy,the 5 diseases displayed distinct characteristics:VEN typically showed gyriform structures;SK was characterized by gyriform structures,comedo-like openings,and milia-like cysts;VP and VV featured dotted vessels and frogspawn-like structures;NS presented as brownish-yellow globules.RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases.Specific features included gyriform structures and elongated rete ridges in VEN;pseudocysts and gyriform structures in SK;evenly distributed ring-like structures in VP;vacuolated cells and papillomatous proliferation in VV;and frogspawn-like structures in NS.Conclusion:These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM.The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases.
基金supported by the Natural Science Foundation of Anhui Province(No.2308085QE146 and 2208085ME116)the National Natural Science Foundation of China(No.52173039)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210894)the Anhui Provincial Universities Outstanding Youth Research Project(No.2023AH020018).
文摘Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites.
基金supported by the Natural Science Foundation of Shanxi Province(Nos.20210302123015 and 20210302123035)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(No.sklpme2022-4-06)the Open Foundation of China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect(No.ZBKF2022030301).
文摘In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft.
基金supported by the National Natural Science Foundation of China(Nos.U20A2069,62376234 and 123B2037)the Advanced Aero-Power Innovation Workstation,China(No.HKCX2024-01-017)。
文摘The selection of an appropriate basic detonation wave flow field is crucial for improving the performance and geometric design of standing detonation vehicles.This paper employs a detailed chemical reaction model and solves the unsteady axisymmetric Euler equation to study the characteristics of the Axisymmetric Inward Turning Curved Detonation Wave(AIT-CDW)flow field and the parameters affecting the stability of the wave system structure of AIT-CDW flow field.The numerical results demonstrate a radial compression effect in the AIT-CDW flow field.This effect causes the detonation wave to have a shorter initiation length than oblique detonation wave flow field and the detonation wave angle to gradually increase with the flow direction postdetonation.The AIT-CDW flow field is confined space,making it prone to normal detonation waves when the detonation wave reflects from the wall.This phenomenon is detrimental to the stability of the wave system structure in the flow field.It has been observed that increasing the center body radius and decreasing the fuel equivalent ratio can effectively reduce the height of the normal detonation wave or even eliminate it.Additionally,a well-designed generatrix shape of the center body can enhance airflow,reduce choked flow,and promote the stability of the wave structure in the flow field.
基金funded by the National Key Research and Development Program of China(Grant No.2023YFB3907500)the National Natural Science Foundation(Grant No.42330602)the“Fengyun Satellite Remote Sensing Product Validation and Verification”Youth Innovation Team of the China Meteorological Administration(Grant No.CMA2023QN12)。
文摘The Global Precipitation Measurement(GPM)dual-frequency precipitation radar(DPR)products(Version 07A)are employed for a rigorous comparative analysis with ground-based operational weather radar(GR)networks.The reflectivity observed by GPM Ku PR is compared quantitatively against GR networks from CINRAD of China and NEXRAD of the United States,and the volume matching method is used for spatial matching.Additionally,a novel frequency correction method for all phases as well as precipitation types is used to correct the GPM Ku PR radar frequency to the GR frequency.A total of 20 GRs(including 10 from CINRAD and 10 from NEXRAD)are included in this comparative analysis.The results indicate that,compared with CINRAD matched data,NEXRAD exhibits larger biases in reflectivity when compared with the frequency-corrected Ku PR.The root-mean-square difference for CINRAD is calculated at 2.38 d B,whereas for NEXRAD it is 3.23 d B.The mean bias of CINRAD matched data is-0.16 d B,while the mean bias of NEXRAD is-2.10 d B.The mean standard deviation of bias for CINRAD is 2.15 d B,while for NEXRAD it is 2.29 d B.This study effectively assesses weather radar data in both the United States and China,which is crucial for improving the overall consistency of global precipitation estimates.
基金2024 Provincial Teaching Reform Program for Graduate Students in the Second Batch of the 14th Five-Year Plan of Zhejiang Provincial Office of Education:Innovation and Practice of“Six Synergistic”Graduate Teaching Guided by Educator’s Spirit(No.JGCG2024406)Key Project of Zhejiang Provincial Education Science Planning:Research on an interdisciplinary teaching model to promote students’computational thinking from multiple analytical perspectives[No.2025SB103].
文摘Oral expression skills play an essential role in the development of EFL students’language abilities,and how to improve EFL students’oral expression skills is an essential and challenging task.This study adopts a quasi-experimental research method to carry out the research and proposes an AI-based reflective dialogue model.Based on this,an analysis of the impact brought by this model on EFL students’oral expression performance and learning anxiety levels.The results show that students in the experimental group have significantly higher oral expression performance than those in the control group in the three dimensions of grammatical accuracy,expressive fluency,and word accuracy.In addition,the students in the experimental group produced facilitated anxiety after using the AI-based reflective dialogue model for oral expression learning,which prompted the students to learn more diligently.
基金supported in part by the Xi’an Jiaotong-Liverpool University(XJTLU)Research Development Fund(2024–2027)under Grant RDF-23-02-010supported in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2023A1515110732+5 种基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62071247supported in part by the Science and Technology Development Fund,Macao,China SAR under Grants 0087/2022/AFJ and 001/2024/SKLin part by the National Natural Science Foundation of China under Grant 62261160650in part by the Research Committee of University of Macao,Macao SAR,China under Grants MYRG-GRG2023-00116-FST-UMDF and MYRG2020-00095-FSTsupported in part by the NSFC under Grant 62261160576 and 62301148in part by the Fundamental Research Funds for the Central Universities under Grant 2242023K5003.
文摘Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the inter-RIS links which also contribute to the performance of the whole system are usually neglected when multiple RISs are deployed.In this paper we investigate a general double-RIS assisted multiple-input multiple-output(MIMO)wireless communication system under spatially correlated non line-of-sight propagation channels,where the cooperation of the double RISs is also considered.The design objective is to maximize the achievable ergodic rate based on full statistical channel state information(CSI).Specifically,we firstly present a closedform asymptotic expression for the achievable ergodic rate by utilizing replica method from statistical physics.Then a full statistical CSI-enabled optimal design is proposed which avoids high pilot training overhead compared to instantaneous CSI-enabled design.To further reduce the signal processing overhead and lower the complexity for practical realization,a common-phase scheme is proposed to design the double RISs.Simulation results show that the derived asymptotic ergodic rate is quite accurate even for small-sized antenna arrays.And the proposed optimization algorithm can achieve substantial gain at the expense of a low overhead and complexity.Furthermore,the cooperative double-RIS assisted MIMO framework is proven to achieve superior ergodic rate performance and high communication reliability under harsh propagation environment.
基金023 Zhejiang Provincial Department of Education General Project:Research on an interdisciplinary teaching model to promote the development of computational thinking in the context of the new curriculum standards[Grant NO:Y202351596]Key Project of Zhejiang Provincial Education Science Planning:Research on an interdisciplinary teaching model to promote students’computational thinking from multiple analytical perspectives[Grant NO:2025SB103].
文摘This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with 84 students from a middle school selected as the research subjects(44 in the experimental group and 40 in the control group).The experimental group used the reflective feedback model,while the control group used the factual feedback model.The results show that,compared with factual feedback,the reflective feedback model based on the pedagogical agent significantly improves students’problem-solving ability,especially at the action and thinking levels.In addition,this model effectively reduces students’cognitive load,especially in terms of internal and external load.
基金supported by the National Natural Science Foundation of China(Nos.62201454 and 62306235)the Xi’an Science and Technology Program of Xi’an Science and Technology Bureau(No.23SFSF0004)。
文摘The unmanned aerial vehicle(UAV)images captured under low-light conditions are often suffering from noise and uneven illumination.To address these issues,we propose a low-light image enhancement algorithm for UAV images,which is inspired by the Retinex theory and guided by a light weighted map.Firstly,we propose a new network for reflectance component processing to suppress the noise in images.Secondly,we construct an illumination enhancement module that uses a light weighted map to guide the enhancement process.Finally,the processed reflectance and illumination components are recombined to obtain the enhancement results.Experimental results show that our method can suppress the noise in images while enhancing image brightness,and prevent over enhancement in bright regions.Code and data are available at https://gitee.com/baixiaotong2/uav-images.git.
文摘Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due to macro-phase separation.In this study,a novel polymer(denoted as PU-PDI)with intrinsic NIR reflective proper⁃ties was synthesized by covalent incorporation of PDI units into polyurethane chains.Its photophysical characteris⁃tics,mechanical property and NIR reflectance property are investigated in detail.The results show that covalent in⁃corporation reduces the severe aggregation of PDI units,thereby endows PU-PDI with excellent mechanical property.The elongation at break of PU-PDI can reach more than 700%,and the breaking strength is 34.11 MPa.Moreover,compared to the blending system,PU-PDI possesses enhanced NIR reflection ability due to the better dispersion of PDI units.
基金This research was funded by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada(JL:RGPIN-2022-03958AC:RGPIN-2022-04238).
文摘This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy(PM IRRAS)to provide molecular-level information about the structure,orientation and conformation of constituents of thin films at electrode surfaces.PM IRRAS relies on the surface selection rules stating that the p-polarized IR beam is enhanced,while the s-polarized beam is attenuated at the metal surface.The difference between p-and s-polarized beams eliminates the background of the solvent and provides IR spectra at a single electrode potential.In contrast,two other popular in situ IR spectroscopic techniques,namely,subtractively normalized interfacial Fourier transform infrared spectroscopy(SNIFTIRS)and surface-enhanced infrared reflection absorption spectroscopy(SEIRAS),provide potential difference spectra to remove the signal from the bulk solution.In this feature article,we provide a brief tutorial on how to run the PM IRRAS experiment and describe the methods used for background elimination first.The application of the PM IRRAS in the biomimetic research is then illustrated by three examples:construction of a tethered bilayer,reconstitution of colicin into a phospholipid bilayer and determination of the orientation of nucleolipids in a monolayer assembled at a gold electrode surface.Finally,the structural changes of graphene oxide during its electrochemical reduction are described to highlight the promising application of PM IRRAS in materials science.
文摘The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274313,62275184,and 62411540033)Collaborative Innovation Center of Suzhou Nano Science and Technology,Suzhou Basic Research Project(Grant No.SJC2023003)+1 种基金the Gusu Leading Talent Plan for Scientific and Technological Innovation and Entrepreneurship(Grant No.ZXL2024400)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Perfect anomalous reflections have been demonstrated in optical phase gradient metasurfaces(PGMs),but they suffer from single-frequency(narrow-band)response due to the intrinsic limitation of natural geometric periodicity.Here,we provide both numerical and analytical evidence that a depth gradient metasurface can achieve discrete ultra-broadband perfect anomalous reflection in the microwave range in the absence of geometric periodicity.Remarkably,by adjusting the operating frequency of the incident wave,the same effect can be steadily obtained via a physically equivalent phase periodicity in the PGM.Based on this mechanism,a perfect retroreflector with a broadband response ranging from 1 GHz to 40 GHz is realized.Our work has promising applications in communication,source tracking,and military satellites.
文摘1 In a town of fewer than 1,000 people,it can be hard to keep a secret.And yet no one in McBride,a mountain community in British Columbia,can figure out how a local deer came to be wearing a reflective jacket or why the deer has been so hard to track down.
基金support from the National Natural Science Foundation of China(52373077,52003106,52103074,52233006,52161135302)the Research Foundation Flanders(G0F2322N)Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-03-E00108).
文摘Designing and fabricating a compatible low-reflectivity electromagnetic interference(EMI)shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military.Hence,a hierarchical polyimide(PI)nonwoven fabric is fabricated by alkali treatment,in-situ growth of magnetic particles and"self-activated"electroless Ag plating process.Especially,the hierarchical impedance matching can be constructed by systematically assembling Fe_(3)O_(4)/Ag-loaded PI nonwoven fabric(PFA)and pure Ag-coated PI nonwoven fabric(PA),endowing it with an ultralowreflectivity EMI shielding performance.In addition,thermal insulation of fluffy three-dimensional(3D)space structure in PFA and low infrared emissivity of PA originated from Ag plating bring an excellent infrared stealth performance.More importantly,the strong bonding interaction between Fe_(3)O_(4),Ag,and PI fiber improves thermal stability in EMI shielding and high-temperature resistant infrared stealth performance.Such excellent comprehensive performance makes it promising for military tents to protect internal equipment from electromagnetic interference stemmed from adjacent equipment and/or enemy,and inhibit external infrared detection.
基金supported by the National Natural Science Foundation of China(grant no.52273044,52373092)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(grant no.sklpme2023-3-4)+1 种基金the Key Research Program of Zhejiang Province(grant no.2023C01101,2023C01210,2022C01049,2022C01205)the Natural Science Foundation of Zhejiang Province(grant no.LY20E030008).
文摘The increasingly serious electromagnetic(EM)radiation and related pollution effects have gradually attracted people's attention in the information age.Hence,it's crucial to develop adaptive shielding materials with minimum EM waves(EMW)reflection.In this paper,Ag nanoparticles loaded mesoporous carbon hollow spheres(MCHS@Ag)were synthesized by chemical reduction method,and cellulose nanofibers(CNF)/MXene/MCHS@Ag homogeneous composites were prepared.The total EM interference shielding efficiency(SET)of CNF/MXene/MCHS@Ag composite film was 32.83 dB(at 12.4 GHz),and the absorption effectiveness(SEA)was improved to 26.6 dB,which was 63.1%and 195.5%higher than that of CNF/MXene/MCHS composite film.The low dielectric property of MCHS effectively optimized the impedance matching between the composites and air.The hollow porous structure prolonged the transmission path of EMW and increased the absorption loss of the composites.At the same time,Ag nanoparticles located the MCHS were helpful to construct the internal conductive path overcoming the damage of the conductive property caused by the low dielectric of MCHS.This research adopts a straightforward method to construct a lightweight,pliable,and mesoporous composites for EMI shielding,which serves a crucial role in the current era of severe EM pollution.
基金supported in part by the National Natural Science Foundation of China(Nos.12335018,12105264,and 12275248)NSAF Joint Fund Project(Nos.U2230107,U1730244,U2130207)+1 种基金Innovation and Development Fund of China Academy of Engineering Physics(No.CXKS20240052)Central Guidance for Local Science and Technology Development Fund Project(No.2023ZYDF075).
文摘The current work addresses the challenge of elucidating the performance of fluoroelastomers within the HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)based polymer-bonded explosives(PBXs).To simulate the confined interface in PBXs,bilayer films of F2314/HMX and F2311/HMX were designed.Neutron reflectivity(NR),nanoindentation,and X-ray reflectivity(XRR)were employed to examine the layer thickness,interface characteristics,diffusion behavior,and surface morphology of the bilayers.NR measurements revealed interface thicknesses of 45Å and 98Å for F2314/HMX and F2311/HMX,respectively,indicating deeper penetration of F2311 into the HMX matrix.NR also suggested a denser polymer network with a higher scattering length density(SLD)near the HMX interface for both fluoroelastomers,while the bound layer of F2311 was notably thicker.Nanoindentation cross-checks and confirms the presence of a bound layer,highlighting the differences in stiffness and diffusion ability between the two polymers.The consistency between the NR and nanoindentation results suggests that F2311 demonstrates better flexibility and elasticity,whereas F2314 is stiffer and more plastic.Accordingly,the structures and performances of different fluoroelastomers at the HMX interface are discussed,which can provide valuable insights into the selection of binders for PBX formulations tailored to specific applications.