In studies of microwave absorption in the current literature,theories such as reflection loss,impedance matching,the delta function,and the quarter-wavelength model have been inappropriately applied.As shown in this c...In studies of microwave absorption in the current literature,theories such as reflection loss,impedance matching,the delta function,and the quarter-wavelength model have been inappropriately applied.As shown in this case study,these problems need to be corrected as they are representative of similar work in the literature.展开更多
A method for the inversion of the transmission losses for the bottom reflection loss is proposed on the basis of the theory of the smooth- averaged sound field. The procedure of the inversion is based on the criterion...A method for the inversion of the transmission losses for the bottom reflection loss is proposed on the basis of the theory of the smooth- averaged sound field. The procedure of the inversion is based on the criterion of the least square error in the transmission losses between calculation and measurement. By using the Gauss - Newton iterative approach, the non - linear least square aloqrithm is equivalent to solving a sequence of lineared least square problems. The physical causes of the instability of the inversion problem are discussed and the stability is improved by means of the Levenberg- Marquardt method. Both numerical simulations with noise and experimental results show that the inversion for the bottom reflection loss of small grazing angle has high precision and the certain perturbation in the measured transmission losses does not lead to serious deviation in the inversion result of the bottom reflection loss.展开更多
Due to advanced technology,electromagnet interference and dissipation problems in the electronic and portable devices at GHz range are increasing daily.Magnetic absorbing materials with outstanding electromagnetic pro...Due to advanced technology,electromagnet interference and dissipation problems in the electronic and portable devices at GHz range are increasing daily.Magnetic absorbing materials with outstanding electromagnetic properties,wide bandwidth,and strong absorption are highly desirable.The present investigation deals with the preparation of Ni-Mg-Cu-Zn(NMCZ)substituted nano ferrites with composition of Ni_(0.3)Mg_(0.2)Cu_(0.3)Zn_(0.2)X_(0.02)Fe_(1.98)O_(4)(X=Nd,Ho,Pr,Gd,Yb).X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),a vibratory sample magnetometer(VSM),and a Vector network analyzer(VNA)were used to investigate these rare earth-doped nanocrystalline ferrites'features.XRD reveals the single spinel phase structure in all Ni-Mg-Cu-Zn ferrites.FTIR spectroscopy shows the presence of tetrahedral and octahedral bands of spinel ferrites.FESEM images reveal the lowest agglomeration for the Ho-doped NMCZ nano-spinel ferrites sample.TEM images show the hexagon shapes of the Yb-and Nd-doped NMCZ ferrites.Pr-doped NMCZ ferrites show more coercivity than other rare earth metals substituted NMCZ nanocrystalline ferrites.VSM analysis was used to calculate the magnetic features like initial permeability,magnetic anisotropy constant,remanence,coercivity,and magnetic moment.High-frequency switching field distributions(SFD)analyses were also investigated.Magnetodielectric characteristics such as losses,permittivity,modulus,Q,ac conductivity,and impedance of the Nd^(-),Ho^(-),Pr^(-),Gd^(-),Yb-doped Ni-Mg-Cu-Zn ferrites were evaluated.The minimum reflection loss(-57.3 dB)is found at 1.4 GHz for Pr-doped Ni-Mg-Cu-Zn ferrite absorber.However,the reflection loss(RL)of-53.9 dB at 2.9 GHz is observed for Ho-doped Ni-Mg-Cu-Zn ferrite absorber.Soft magnetization,low coercivity,outstanding magnetodielectric,and absorption properties of theNd^(-),Ho^(-),Pr^(-),Gd^(-)and Yb^(-)doped Ni-Mg-Cu-Zn ferrites are suitable candidates for absorption in telecommunication,defense,and technological industries.展开更多
In this work,a novel microwave absorbing material(MAM)made of a pseudo-binary of Sr_(2)TiMoO_(6)-Al_(2)O_(3)(STM)is proposed first.The MAMs labeled as STM X(X=60,70,80 and 100,respectively),in which X is the initial w...In this work,a novel microwave absorbing material(MAM)made of a pseudo-binary of Sr_(2)TiMoO_(6)-Al_(2)O_(3)(STM)is proposed first.The MAMs labeled as STM X(X=60,70,80 and 100,respectively),in which X is the initial weight percent of Sr_(2)TiMoO_(6),were synthesized using the solid-state reaction method.Compared with STM100,some equilibrium phases,including SrTiO_(3),Mo,Sr_(8)(Al1_(2)O_(24))(MoO_(4))_(2)and a few undefined ones,are presented in the composites as evidenced by X-ray diffraction results and scanning electron microscopy due to the chemical reaction between Sr_(2)TiMoO_(6)and Al_(2)O_(3)component.Besides conductance loss,heterogeneous interfaces between various equilibrium phases introduce interfacial polarization,which causes an enhancement of dissipation for the incident electromagnetic wave.Among the synthesized samples,STM80 presents the best microwave absorbing properties.It has a minimum reflection loss(RLmin)of-26 dB and an effective absorbing bandwidth up to 2.7 GHz when the thickness is only 1 mm.This indicates that STM80 is a new type of microwave absorbing material with strong absorption and ultrathin thickness.展开更多
The effective energy loss functions for Al have been derived from differential i nverse inelastic mean free path based on the extended Landau approach. It has be en revealed that the effective energy loss function is ...The effective energy loss functions for Al have been derived from differential i nverse inelastic mean free path based on the extended Landau approach. It has be en revealed that the effective energy loss function is very close in value to th e theoretical surface energy loss function in the lower energy loss region but g radually approaches the theoretical bulk energy loss function in the higher ener gy loss region. Moreover, the intensity corresponding to surface excitation in e ffective energy loss functions decreases with the increase of primary electron e nergy. These facts show that the present effective energy loss function describe s not only surface excitation but also bulk excitation. At last, REELS spectra s imulated by Monte Carlo method based on use of the effective energy loss functio ns has reproduced the experimental REELS spectra with considerable success.展开更多
The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar st...The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.展开更多
Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applica...Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applications of common EM absorbing materials are encumbered by poor high-temperature stability, poor oxidation resistance, narrow absorption bandwidth or high density. Herein, the strong EM absorption capability and wide efficient absorption bandwidth of high entropy ceramics are reported for the first time, which are designed by a combination of the novel high entropy(HE) rare earth silicide carbides/rare earth oxides(RE3 Si2 C2/RE2 O3). Three HE powders, i.e., HERSC-1(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2),HERSC-2 HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3) and HERSC-3(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3), are synthesized. Although HERSC-1 exhibits a limited absorption effect(the minimum reflection loss(RLmin) is-11.6 d B at 3.4 mm) and a relatively narrow effective absorption bandwidth(EAB) of 1.7 GHz, the optimal absorption RLminvalue and EAB of HERSC-2 and HERSC-3 are-40.7 d B(at 2.9 mm), 3.4 GHz and-50.9 d B(at 2.0 mm), 4.5 GHz,respectively, demonstrating strong microwave absorption capability and wide absorption bandwidth.Considering the better stability, low density and strong EM absorption effect, HE ceramics are promising as a new type of EM absorbing materials.展开更多
Silicone rubber composites filled with FeSiAI alloys and multi-walled carbon nanotubes (MWCNT)/graphite have been prepared for the first time by a coating process. The complex permittivity and permeability of the co...Silicone rubber composites filled with FeSiAI alloys and multi-walled carbon nanotubes (MWCNT)/graphite have been prepared for the first time by a coating process. The complex permittivity and permeability of the composites were measured with a vector network analyzer in a 1-4 GHz frequency range, and the DC electric conductivity was measured by a standard four-point contact method. These parameters were then used to calculate the reflection loss (RL) and shielding effectiveness (SE) of the composites. The results showed that the added MWCNT increased the permittivity and permeability of composites in the L-band, while the added graphite increased only the permittivity. The variation lies in the interactions between two carbonous absorbents. Addition of 1 wt% MWCNT enhanced the RL in the L-band (minimum -5.7 dB at 1 ram, -7.3 dB at 1.5 ram), while the addition of graphite did not. Addition of MWCNT as well as graphite reinforced the shielding property of the composites (maximum SE 13.3 dB at 1 ram, 18.3 dB at 1.5 ram) owing to the increase of conductivity. The addition of these carbonous materials could hold the promise of enforcing the absorption and shielding property of the absorbers.展开更多
The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the en...The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.展开更多
The electromagnetic (EM) wave absorbing property of silicone rubber filled with carbonyl iron particles (CIPs) and multi-walled carbon nanotubes (MWCNTs) was examined. Absorbents including MWCNTs and spherical/ ...The electromagnetic (EM) wave absorbing property of silicone rubber filled with carbonyl iron particles (CIPs) and multi-walled carbon nanotubes (MWCNTs) was examined. Absorbents including MWCNTs and spherical/ flaky CIPs were added to silicone rubber using a two-roll mixer. The complex permittivity and complex permeability were measured over the frequency range of 1-18 GHz. The two EM parameters were verified and the uniform dispersion of MWCNTs and ClPs was confirmed by comparing the measured reflection loss (RL) with the calculated one. As the MWCNT weight percent increased, the RL of the spherical CIPs/silicone rubber composites changed insignificantly. It was attributed to the random distribution of spherical ClPs and less content of MWCNTs. On the contrary, for composites filled with flaky ClPs the absorption bandwidth increased at thickness 0.5 mm (RL value lower than -5 dB in 8-18 GHz) and the absorption ratio increased at lower frequency (minimum -35 dB at 3.5 GHz). This effect was attributed to the oriented distribution of flaky CIPs caused by interactions between the two absorbents. Therefore, mixing MWCNTs and flaky CIPs could achieve wider-band and higher-absorption ratio absorbing materials.展开更多
Si3N4-SiC composite ceramics were fabricated by chemical vapor infiltration using porous Si3Na ceramic as preform. The average grain size of SiC was 30 nm. Relationship between SiC content and relative complex permitt...Si3N4-SiC composite ceramics were fabricated by chemical vapor infiltration using porous Si3Na ceramic as preform. The average grain size of SiC was 30 nm. Relationship between SiC content and relative complex permittivity of Si3Na-SiC within the frequency range of 8.2-12.4 GHz (X-band) was investigated. The average real part of relative complex permittivity ε′ of Si3N4-SiC increased from 3.7 to 14.9 and the relative imaginary part ε″ increased from 0.017 to 13.4 when the content of SiC increased from 0 to 10 vol.%. The Si3N4-SiC ceramic with 3 vol.% SiC achieved a reflection loss below -10 dB (90% absorption) at 8.0-11.4 GHz, and the minimum value was -27.1 dB at 9.8 GHz when the sample thickness was 2.5 mm. The excellent microwave absorbing abilities of Si3N4-SiC ceramic were attributed to the interfacial polarization at interface between Si3N4 and SiC and at grain boundary between SiC nanocrystals.展开更多
In this paper,polycrystalline samples of Bi_(1-x)Sm_(x)FeO_(3)(x=0,0.05,0.1,0.15) were successfully synthesized by sol-gel method.The effects of Sm concentration on the crystal structure,morphology,chemical states,mag...In this paper,polycrystalline samples of Bi_(1-x)Sm_(x)FeO_(3)(x=0,0.05,0.1,0.15) were successfully synthesized by sol-gel method.The effects of Sm concentration on the crystal structure,morphology,chemical states,magnetic properties and microwave absorption performance were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),a vibrating sample magnetometer(VSM) and a Vector network analyzer(VNA),respectively.The results show that the rare earth Sm doping causes the crystal structure to change.When x≤0.1,Bi_(1-x)Sm_(x)FeO_(3) is the distorted rhombohedral structure with space group R3c.With the increase of Sm doping amount to x=0.15,the phase structure of Bi_(1-x)Sm_(x)FeO_(3) changes from rhombohedral structure to cubic structure with the space group Pm3 m.The particle size decreases with the increase of the Sm doping amount.The analysis results show that Sm doping can effectively reduce the oxygen vacancies and significantly improve its magnetic properties.The results exhibit that moderately doped rare earth Sm element can effectively improve microwave absorption properties of Bi_(1-x)Sm_(x)FeO_(3) powders.When Sm doping amount of x is 0.1,the Bi_(0.9)Sm_(0.1)FeO_(3) compound has good microwave absorption performance,and the minimum reflection loss value of Bi_(0.9)Sm_(0.1)FeO_(3) powder reaches about-32.9 dB at11.7 GHz,and its effective absorption bandwidth(RL <-10 dB) is 2.6 GHz with the optimal matching thickness of 2.0 mm.展开更多
The ErxHo(2-x)Fe(17)(x = 0.0, 0.1,0.2, 0.3, 0.4) powders were prepared by arc melting and high energy ball milling method. The influence of the Er substitution on phase structure, morphology, saturation magnetiz...The ErxHo(2-x)Fe(17)(x = 0.0, 0.1,0.2, 0.3, 0.4) powders were prepared by arc melting and high energy ball milling method. The influence of the Er substitution on phase structure, morphology, saturation magnetization,electromagnetic parameters was investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM), vibrating sample magnetometer(VSM) and vector network analyzer(VNA),respectively. The results show that the saturation magnetization increases and the average particle size increases with the increase of Er content. The minimum absorption peak frequency shifts towards a lower frequency region with the increase of Er content. The ErxHo2-xFe17 powder can achieve the minimum RL of-24.07 dB at 6.96 GHz with a thickness of 2.0 mm and the minimum RL is less than-20 dB at the thickness range from 2.0 to 3.0 mm. The minimum RL of ErxHo2-xFe17 is-37.26 dB at5.68 GHz and the frequency bandwidth of R〈-10 dB reaches about 1.2 GHz with a thickness of 2.4 mm.And the microwave absorbing properties of the composite with different weight ratios of Er0.3Ho1.7Fe17/graphene were researched. The microwave absorbing peaks of the composite shift to lower frequency with the increase of graphene content. The values of the minimum RL of ErxHo2-xFe17/graphene are close to-10 dB with absorbing coating thicknesses increased.展开更多
The composites of Ce-Co-based alloys doped with La content were fabricated via a vacuum arc melting method.The influences of La addition on microstructure,electromagnetic parameters,magnetic property and microwave abs...The composites of Ce-Co-based alloys doped with La content were fabricated via a vacuum arc melting method.The influences of La addition on microstructure,electromagnetic parameters,magnetic property and microwave absorbing property were measured by the corresponding equipment.The morphology characteristics manifest that all samples display sheet structure,and the average particle size of alloy powders increases with increasing La content The saturation magnetization(MS) decreases with increasing La addition as a whole.The minimum reflection loss(RL) of La0.4Ce1.6Co17 alloy powder about-42.29 dB can be obtained about-42.29 dB at 7.84 GHz with the matching thickness of 1.8 mm,and the corresponding effective bandwidth can achieve about 2.24 GHz.In addition,the minimum RL frequency moves towards a lower frequency region as the La content increases.The minimum RL of La0.3Ce1.7Co17alloy powder is less than-20 dB ranging from 1.2 to 2.4 mm in the whole 4-16 GHz.The maximum bandwidth can reach about 4.88 GHz at the given thickness of 1.2 mm.In general,these all indicate that the La addition is beneficial to improving the microwave absorbing performance in both effective bandwidth and absorption intensity.展开更多
Pyrolytic carbon (PyC) was infiltrated into silicon nitride (Si3N4) ceramics by precursor infiltration and pyrolysis (PIP) of phenolic resin, and Ni nanoparticles were added into the phenolic resin to change the...Pyrolytic carbon (PyC) was infiltrated into silicon nitride (Si3N4) ceramics by precursor infiltration and pyrolysis (PIP) of phenolic resin, and Ni nanoparticles were added into the phenolic resin to change the electric conductivity of Si3N4-PyC composite ceramics. Dielectric permittivity, electromagnetic interference (EMI) shielding and absorption properties of Si3N4-PyC composite ceramics were studied as a function of Ni content at 8.2-12.4 GHz (X-band). When Ni nanoparticles were added into phenolic resin, the electric conductivity of the prepared composite ceramics decreased with increasing Ni content, which was attributed to the decrease of graphitization degree of PyC. The decrease in electric conductivity led to the decrease in both permittivity and EMI shielding effectiveness. Since too high permittivity is harmful to the impendence match and results in the strong reflection, the electromagnetic wave absorption property of Si3N4-PyC composite ceramics increases with increasing Ni content. When the content of Ni nanoparticles added into phenolic resin was 2 wt%, the composite ceramics possessed the lowest electric conductivity and displayed the most excellent absorption property with a minimum reflection loss as low as -28.9 dB.展开更多
With the combination of the dielectric loss of the carbon layer with the magnetic loss of the ferromagnetic metal core, carbon-coated nickel (Ni(C)) nanoparticles are expected to be the promising microwave absorbe...With the combination of the dielectric loss of the carbon layer with the magnetic loss of the ferromagnetic metal core, carbon-coated nickel (Ni(C)) nanoparticles are expected to be the promising microwave absorbers. Microwave electromag- netic parameters and reflection loss in a frequency range of 2 GHz-18 GHz for paraffin-Ni(C) composites are investigated. The values of relative complex permittivity and permeability, the dielectric and magnetic loss tangent of paraffin-Ni(C) com- posites are measured, respectively, when the weight ratios of Ni(C) nanoparticles are equal to 10 wt%, 40 wt%, 50 wt%, 70 wt%, and 80 wt% in paraffin-Ni(C) composites. The results reveal that Ni(C) nanoparticles exhibit a peak of magnetic loss at about 13 GHz, suggesting that magnetic loss and a natural resonance could be found at that frequency. Based on the measured complex permittivity and permeability, the reflection losses of paraffin-Ni(C) composites with different weight ratios of Ni(C) nanoparticles and coating thickness values are simulated according to the transmission line theory. An ex- cellent microwave absorption is obtained. To be proved by the experimental results, the reflection loss of composite with a coating thickness of 2 mm is measured by the Arch method. The results indicate that the maximum reflection loss reaches -26.73 dB at 12.7 GHz, and below -10 dB, the bandwidth is about 4 GHz. The fact that the measured absorption position is consistent with the calculated results suggests that a good electromagnetic match and a strong microwave absorption can be established in Ni(C) nanoparticles. The excellent Ni(C) microwave absorber is prepared by choosing an optimum layer number and the weight ratio of Ni(C) nanoparticles in paraffin-Ni(C) composites.展开更多
In order to increase the absorbing ability and expand the absorbing bandwidth, ZnO and FeNiMo particles were established as absorbers, and wax as adhesive, and the electromagnetic parameters were tested using a vector...In order to increase the absorbing ability and expand the absorbing bandwidth, ZnO and FeNiMo particles were established as absorbers, and wax as adhesive, and the electromagnetic parameters were tested using a vector network analyzer, then the absorbing properties were calculated by means of transmission line theory. The ZnO/FeNiMo composite has excellent microwave absorption properties of a minimum reflection loss value-27.8 dB at 15.98 GHz for a thickness of 1.5 mm and a broad absorption bandwidth of 13.46–18 GHz(RL 〈-10 dB).展开更多
Nanosized Co_(0.5)Zn_(0.5)Fe_(2)O_(4) ferrite was prepared by chemical co-precipitation method.The samples were characterized by X-ray diffraction(XRD),field-emission transmission electron microscopy(FETEM),vibrating ...Nanosized Co_(0.5)Zn_(0.5)Fe_(2)O_(4) ferrite was prepared by chemical co-precipitation method.The samples were characterized by X-ray diffraction(XRD),field-emission transmission electron microscopy(FETEM),vibrating sample magnetometer(VSM)and network analyzer.TEM analysis indicates that the diameter of as-prepared powder is about 20-30 nm.The saturation magnetization of nanosized Co_(0.5)Zn_(0.5)Fe_(2)O_(4) ferrite is 74.01 mA·m^(2)·g^(−1).The complex permittivity and complex permeability of the Co-Zn ferrite were measured by vector network analyzer in the frequency range of 2.0-18.0 GHz,and the reflection loss(RL)was investigated according to the wave transmission theory.The results show that the maximum reflection loss reaches−13.7 dB at 6.8 GHz and the bandwidth of reflection loss less than−10 dB reaches 3.8 GHz.The as-prepared nanosized Co_(0.5)Zn_(0.5)Fe_(2)O_(4) ferrite can be potentially used as an excellent microwave absorber in the C-band.展开更多
Ni/Al2O3 nanocomposites were prepared by the mechanochemical synthesis method. The annealing process enlarges the grain size of both the metal Ni and insulating Al2O3 in the as-milled nanocomposite and leads to an inc...Ni/Al2O3 nanocomposites were prepared by the mechanochemical synthesis method. The annealing process enlarges the grain size of both the metal Ni and insulating Al2O3 in the as-milled nanocomposite and leads to an increase of the saturation magnetization and a decrease of the surface anisotropy. An optimal reflection loss (RL) of -23 dB is obtained in the as-milled nanocomposite at 17.8 GHz for an absorber thickness of 6.6 mm. The annealed sample exhibits a RL exceeding -20 dB in the whole Ku-band for an absorber thickness of 6.6-9.7 mm with an optimal RL of -54.7 dB at 13.2 GHz for a layer thickness of 9.3 mm. The excellent microwave-absorption properties are a consequence of a proper match of the dielectric and magnetic losses.展开更多
Spinel NiZn ferrite thin films were prepared on glass substrates by spray plating method. Adding cetyltrimethylammoniumchloride (CTAC), adsorptive energy of substrate surface increased, and smooth surface and unifor...Spinel NiZn ferrite thin films were prepared on glass substrates by spray plating method. Adding cetyltrimethylammoniumchloride (CTAC), adsorptive energy of substrate surface increased, and smooth surface and uniform columnar film structures were observed. The optimum reaction temperature up to 85℃ and pH up to 7.5 were obtained. As the solution pH value increases from 6.5 to 7.5, the film saturation magnetization increases to 36.1 and the imaginary part μ″ up to 53.2 for NiZn ferrite film at 500 MHz were achieved, and higher magnetic resonance at 508 MHz was observed. As the ferrite plate thickness is 50 μm, the attenuating characteristics for reflection loss ≤-0.8 dB can be obtained in the wide frequency ranging from 0.5 to 2.7 GHz. Theμ″ of thin film has values higher than 20 at the frequencies between 0.5 and 2 GHz, and the thin film can be applied as shielding material in GHz range.展开更多
基金the Foundation of Liaoning Province Education Administration[grant number LJKMZ20221477].
文摘In studies of microwave absorption in the current literature,theories such as reflection loss,impedance matching,the delta function,and the quarter-wavelength model have been inappropriately applied.As shown in this case study,these problems need to be corrected as they are representative of similar work in the literature.
基金The Project Supported by National Natural Science Fundation of China
文摘A method for the inversion of the transmission losses for the bottom reflection loss is proposed on the basis of the theory of the smooth- averaged sound field. The procedure of the inversion is based on the criterion of the least square error in the transmission losses between calculation and measurement. By using the Gauss - Newton iterative approach, the non - linear least square aloqrithm is equivalent to solving a sequence of lineared least square problems. The physical causes of the instability of the inversion problem are discussed and the stability is improved by means of the Levenberg- Marquardt method. Both numerical simulations with noise and experimental results show that the inversion for the bottom reflection loss of small grazing angle has high precision and the certain perturbation in the measured transmission losses does not lead to serious deviation in the inversion result of the bottom reflection loss.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R42),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project(RGP2/387/44)。
文摘Due to advanced technology,electromagnet interference and dissipation problems in the electronic and portable devices at GHz range are increasing daily.Magnetic absorbing materials with outstanding electromagnetic properties,wide bandwidth,and strong absorption are highly desirable.The present investigation deals with the preparation of Ni-Mg-Cu-Zn(NMCZ)substituted nano ferrites with composition of Ni_(0.3)Mg_(0.2)Cu_(0.3)Zn_(0.2)X_(0.02)Fe_(1.98)O_(4)(X=Nd,Ho,Pr,Gd,Yb).X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),a vibratory sample magnetometer(VSM),and a Vector network analyzer(VNA)were used to investigate these rare earth-doped nanocrystalline ferrites'features.XRD reveals the single spinel phase structure in all Ni-Mg-Cu-Zn ferrites.FTIR spectroscopy shows the presence of tetrahedral and octahedral bands of spinel ferrites.FESEM images reveal the lowest agglomeration for the Ho-doped NMCZ nano-spinel ferrites sample.TEM images show the hexagon shapes of the Yb-and Nd-doped NMCZ ferrites.Pr-doped NMCZ ferrites show more coercivity than other rare earth metals substituted NMCZ nanocrystalline ferrites.VSM analysis was used to calculate the magnetic features like initial permeability,magnetic anisotropy constant,remanence,coercivity,and magnetic moment.High-frequency switching field distributions(SFD)analyses were also investigated.Magnetodielectric characteristics such as losses,permittivity,modulus,Q,ac conductivity,and impedance of the Nd^(-),Ho^(-),Pr^(-),Gd^(-),Yb-doped Ni-Mg-Cu-Zn ferrites were evaluated.The minimum reflection loss(-57.3 dB)is found at 1.4 GHz for Pr-doped Ni-Mg-Cu-Zn ferrite absorber.However,the reflection loss(RL)of-53.9 dB at 2.9 GHz is observed for Ho-doped Ni-Mg-Cu-Zn ferrite absorber.Soft magnetization,low coercivity,outstanding magnetodielectric,and absorption properties of theNd^(-),Ho^(-),Pr^(-),Gd^(-)and Yb^(-)doped Ni-Mg-Cu-Zn ferrites are suitable candidates for absorption in telecommunication,defense,and technological industries.
基金supported by the National Natural Science Foundation of China(No.52402078)Yunnan Major Scientific and Technological Projects(No.202302AG050010)+1 种基金Yunnan Fundamental Research Projects(No.202201BE070001-008)the National Key Research and Development Program of China(No.2022YFB3708600)。
文摘In this work,a novel microwave absorbing material(MAM)made of a pseudo-binary of Sr_(2)TiMoO_(6)-Al_(2)O_(3)(STM)is proposed first.The MAMs labeled as STM X(X=60,70,80 and 100,respectively),in which X is the initial weight percent of Sr_(2)TiMoO_(6),were synthesized using the solid-state reaction method.Compared with STM100,some equilibrium phases,including SrTiO_(3),Mo,Sr_(8)(Al1_(2)O_(24))(MoO_(4))_(2)and a few undefined ones,are presented in the composites as evidenced by X-ray diffraction results and scanning electron microscopy due to the chemical reaction between Sr_(2)TiMoO_(6)and Al_(2)O_(3)component.Besides conductance loss,heterogeneous interfaces between various equilibrium phases introduce interfacial polarization,which causes an enhancement of dissipation for the incident electromagnetic wave.Among the synthesized samples,STM80 presents the best microwave absorbing properties.It has a minimum reflection loss(RLmin)of-26 dB and an effective absorbing bandwidth up to 2.7 GHz when the thickness is only 1 mm.This indicates that STM80 is a new type of microwave absorbing material with strong absorption and ultrathin thickness.
基金This work was supported by the National Natural Science Foundation of China(No.10025420,No.20075026,No.60306006 and No.90206009)the post-doctoral fellowship provided by a Grant-in-Aid for Creative Scientific Research of Japanese govermment(No.13GS0022).The authors would also like to thank Dr.H.Yoshikawa,National Institute for Materials Science of Japan,and Dr.T.Nagatomi,Osaka University,for their helpful comments.
文摘The effective energy loss functions for Al have been derived from differential i nverse inelastic mean free path based on the extended Landau approach. It has be en revealed that the effective energy loss function is very close in value to th e theoretical surface energy loss function in the lower energy loss region but g radually approaches the theoretical bulk energy loss function in the higher ener gy loss region. Moreover, the intensity corresponding to surface excitation in e ffective energy loss functions decreases with the increase of primary electron e nergy. These facts show that the present effective energy loss function describe s not only surface excitation but also bulk excitation. At last, REELS spectra s imulated by Monte Carlo method based on use of the effective energy loss functio ns has reproduced the experimental REELS spectra with considerable success.
基金financial support from Ministry of Science and Technology of China(MoST,2016YFA0200200)the National Natural Science Foundation of China(NSFC,21875114,51373078,and 51422304)NSF of Tianjin City(15JCYBJC17700)。
文摘The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.
基金financially supported by the National Natural Science Foundation of China(Nos.51672064 and 51972089)。
文摘Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applications of common EM absorbing materials are encumbered by poor high-temperature stability, poor oxidation resistance, narrow absorption bandwidth or high density. Herein, the strong EM absorption capability and wide efficient absorption bandwidth of high entropy ceramics are reported for the first time, which are designed by a combination of the novel high entropy(HE) rare earth silicide carbides/rare earth oxides(RE3 Si2 C2/RE2 O3). Three HE powders, i.e., HERSC-1(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2),HERSC-2 HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3) and HERSC-3(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3), are synthesized. Although HERSC-1 exhibits a limited absorption effect(the minimum reflection loss(RLmin) is-11.6 d B at 3.4 mm) and a relatively narrow effective absorption bandwidth(EAB) of 1.7 GHz, the optimal absorption RLminvalue and EAB of HERSC-2 and HERSC-3 are-40.7 d B(at 2.9 mm), 3.4 GHz and-50.9 d B(at 2.0 mm), 4.5 GHz,respectively, demonstrating strong microwave absorption capability and wide absorption bandwidth.Considering the better stability, low density and strong EM absorption effect, HE ceramics are promising as a new type of EM absorbing materials.
基金supported by the National Natural Science Foundation of China (No. 50805005)the National High Technology Research and Development Program of China ("863 Program", No. 2009AA043804)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 2007B32)the Innovation Foundation of BUAA for Ph.D. Graduates
文摘Silicone rubber composites filled with FeSiAI alloys and multi-walled carbon nanotubes (MWCNT)/graphite have been prepared for the first time by a coating process. The complex permittivity and permeability of the composites were measured with a vector network analyzer in a 1-4 GHz frequency range, and the DC electric conductivity was measured by a standard four-point contact method. These parameters were then used to calculate the reflection loss (RL) and shielding effectiveness (SE) of the composites. The results showed that the added MWCNT increased the permittivity and permeability of composites in the L-band, while the added graphite increased only the permittivity. The variation lies in the interactions between two carbonous absorbents. Addition of 1 wt% MWCNT enhanced the RL in the L-band (minimum -5.7 dB at 1 ram, -7.3 dB at 1.5 ram), while the addition of graphite did not. Addition of MWCNT as well as graphite reinforced the shielding property of the composites (maximum SE 13.3 dB at 1 ram, 18.3 dB at 1.5 ram) owing to the increase of conductivity. The addition of these carbonous materials could hold the promise of enforcing the absorption and shielding property of the absorbers.
基金financially supported by the National Key R&D Program of China (No.2018YFC1900500)the National Natural Science Foundation of China (No.51961020)+1 种基金the Key Technology Research and Industrialization Application Demonstration Project of the Renewable Multi-energy Complementary (No.2018IB020)the Academician Workstation of Kefa Cen (No.2018IC085)。
文摘The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.
基金supported by the National Natural Science Foundation of China (Grant No. 50805005)the National "863" Project of China (Grant No. 2009AA043804)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (Grant No. 2007B32)
文摘The electromagnetic (EM) wave absorbing property of silicone rubber filled with carbonyl iron particles (CIPs) and multi-walled carbon nanotubes (MWCNTs) was examined. Absorbents including MWCNTs and spherical/ flaky CIPs were added to silicone rubber using a two-roll mixer. The complex permittivity and complex permeability were measured over the frequency range of 1-18 GHz. The two EM parameters were verified and the uniform dispersion of MWCNTs and ClPs was confirmed by comparing the measured reflection loss (RL) with the calculated one. As the MWCNT weight percent increased, the RL of the spherical CIPs/silicone rubber composites changed insignificantly. It was attributed to the random distribution of spherical ClPs and less content of MWCNTs. On the contrary, for composites filled with flaky ClPs the absorption bandwidth increased at thickness 0.5 mm (RL value lower than -5 dB in 8-18 GHz) and the absorption ratio increased at lower frequency (minimum -35 dB at 3.5 GHz). This effect was attributed to the oriented distribution of flaky CIPs caused by interactions between the two absorbents. Therefore, mixing MWCNTs and flaky CIPs could achieve wider-band and higher-absorption ratio absorbing materials.
基金financial support from the National University Student Innovation Program fund (No. 101069911)supported by the Research Fund of State Key Laboratory of Solidification Processing in Northwestern Polytechnical University (No. KB200920)+1 种基金the China Postdoctoral Science Foundation (No. 20110491683)the 111 Project(B08040)
文摘Si3N4-SiC composite ceramics were fabricated by chemical vapor infiltration using porous Si3Na ceramic as preform. The average grain size of SiC was 30 nm. Relationship between SiC content and relative complex permittivity of Si3Na-SiC within the frequency range of 8.2-12.4 GHz (X-band) was investigated. The average real part of relative complex permittivity ε′ of Si3N4-SiC increased from 3.7 to 14.9 and the relative imaginary part ε″ increased from 0.017 to 13.4 when the content of SiC increased from 0 to 10 vol.%. The Si3N4-SiC ceramic with 3 vol.% SiC achieved a reflection loss below -10 dB (90% absorption) at 8.0-11.4 GHz, and the minimum value was -27.1 dB at 9.8 GHz when the sample thickness was 2.5 mm. The excellent microwave absorbing abilities of Si3N4-SiC ceramic were attributed to the interfacial polarization at interface between Si3N4 and SiC and at grain boundary between SiC nanocrystals.
基金Project supported by the National Natural Science Foundation of China(51871066,51761007)Technology Base and Special Talents at Guangxi(2018AD19088)。
文摘In this paper,polycrystalline samples of Bi_(1-x)Sm_(x)FeO_(3)(x=0,0.05,0.1,0.15) were successfully synthesized by sol-gel method.The effects of Sm concentration on the crystal structure,morphology,chemical states,magnetic properties and microwave absorption performance were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),a vibrating sample magnetometer(VSM) and a Vector network analyzer(VNA),respectively.The results show that the rare earth Sm doping causes the crystal structure to change.When x≤0.1,Bi_(1-x)Sm_(x)FeO_(3) is the distorted rhombohedral structure with space group R3c.With the increase of Sm doping amount to x=0.15,the phase structure of Bi_(1-x)Sm_(x)FeO_(3) changes from rhombohedral structure to cubic structure with the space group Pm3 m.The particle size decreases with the increase of the Sm doping amount.The analysis results show that Sm doping can effectively reduce the oxygen vacancies and significantly improve its magnetic properties.The results exhibit that moderately doped rare earth Sm element can effectively improve microwave absorption properties of Bi_(1-x)Sm_(x)FeO_(3) powders.When Sm doping amount of x is 0.1,the Bi_(0.9)Sm_(0.1)FeO_(3) compound has good microwave absorption performance,and the minimum reflection loss value of Bi_(0.9)Sm_(0.1)FeO_(3) powder reaches about-32.9 dB at11.7 GHz,and its effective absorption bandwidth(RL <-10 dB) is 2.6 GHz with the optimal matching thickness of 2.0 mm.
基金supported by the National Natural Science Foundation of China(51361007)Guangxi Natural Science Foundation(2014GXNSFAA118317)+2 种基金Scientific Research Project of Guangxi Education Department(YB2014139)Innovation Project of GUET Graduate Education(YJCXS 201566)Guangxi Key Laboratory of Information Materials(131010-Z)
文摘The ErxHo(2-x)Fe(17)(x = 0.0, 0.1,0.2, 0.3, 0.4) powders were prepared by arc melting and high energy ball milling method. The influence of the Er substitution on phase structure, morphology, saturation magnetization,electromagnetic parameters was investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM), vibrating sample magnetometer(VSM) and vector network analyzer(VNA),respectively. The results show that the saturation magnetization increases and the average particle size increases with the increase of Er content. The minimum absorption peak frequency shifts towards a lower frequency region with the increase of Er content. The ErxHo2-xFe17 powder can achieve the minimum RL of-24.07 dB at 6.96 GHz with a thickness of 2.0 mm and the minimum RL is less than-20 dB at the thickness range from 2.0 to 3.0 mm. The minimum RL of ErxHo2-xFe17 is-37.26 dB at5.68 GHz and the frequency bandwidth of R〈-10 dB reaches about 1.2 GHz with a thickness of 2.4 mm.And the microwave absorbing properties of the composite with different weight ratios of Er0.3Ho1.7Fe17/graphene were researched. The microwave absorbing peaks of the composite shift to lower frequency with the increase of graphene content. The values of the minimum RL of ErxHo2-xFe17/graphene are close to-10 dB with absorbing coating thicknesses increased.
基金Project supported by the National Natural Science Foundation of China (51361007)2017 Director Fund of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing (GXKL06170107)。
文摘The composites of Ce-Co-based alloys doped with La content were fabricated via a vacuum arc melting method.The influences of La addition on microstructure,electromagnetic parameters,magnetic property and microwave absorbing property were measured by the corresponding equipment.The morphology characteristics manifest that all samples display sheet structure,and the average particle size of alloy powders increases with increasing La content The saturation magnetization(MS) decreases with increasing La addition as a whole.The minimum reflection loss(RL) of La0.4Ce1.6Co17 alloy powder about-42.29 dB can be obtained about-42.29 dB at 7.84 GHz with the matching thickness of 1.8 mm,and the corresponding effective bandwidth can achieve about 2.24 GHz.In addition,the minimum RL frequency moves towards a lower frequency region as the La content increases.The minimum RL of La0.3Ce1.7Co17alloy powder is less than-20 dB ranging from 1.2 to 2.4 mm in the whole 4-16 GHz.The maximum bandwidth can reach about 4.88 GHz at the given thickness of 1.2 mm.In general,these all indicate that the La addition is beneficial to improving the microwave absorbing performance in both effective bandwidth and absorption intensity.
基金supported by the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China(No.KB200920)the Natural Science Foundation of China(No.50972119)the Programme of Introducing Talents of Discipline to Universities, China(No.B08040)
文摘Pyrolytic carbon (PyC) was infiltrated into silicon nitride (Si3N4) ceramics by precursor infiltration and pyrolysis (PIP) of phenolic resin, and Ni nanoparticles were added into the phenolic resin to change the electric conductivity of Si3N4-PyC composite ceramics. Dielectric permittivity, electromagnetic interference (EMI) shielding and absorption properties of Si3N4-PyC composite ceramics were studied as a function of Ni content at 8.2-12.4 GHz (X-band). When Ni nanoparticles were added into phenolic resin, the electric conductivity of the prepared composite ceramics decreased with increasing Ni content, which was attributed to the decrease of graphitization degree of PyC. The decrease in electric conductivity led to the decrease in both permittivity and EMI shielding effectiveness. Since too high permittivity is harmful to the impendence match and results in the strong reflection, the electromagnetic wave absorption property of Si3N4-PyC composite ceramics increases with increasing Ni content. When the content of Ni nanoparticles added into phenolic resin was 2 wt%, the composite ceramics possessed the lowest electric conductivity and displayed the most excellent absorption property with a minimum reflection loss as low as -28.9 dB.
基金supported by the Science and Technology Program of Guangdong Province,China(Grant Nos.2014B010106005,2013B051000077,and2015A050502047)the Science and Technology Program of Guangzhou City,China(Grant No.201508030018)
文摘With the combination of the dielectric loss of the carbon layer with the magnetic loss of the ferromagnetic metal core, carbon-coated nickel (Ni(C)) nanoparticles are expected to be the promising microwave absorbers. Microwave electromag- netic parameters and reflection loss in a frequency range of 2 GHz-18 GHz for paraffin-Ni(C) composites are investigated. The values of relative complex permittivity and permeability, the dielectric and magnetic loss tangent of paraffin-Ni(C) com- posites are measured, respectively, when the weight ratios of Ni(C) nanoparticles are equal to 10 wt%, 40 wt%, 50 wt%, 70 wt%, and 80 wt% in paraffin-Ni(C) composites. The results reveal that Ni(C) nanoparticles exhibit a peak of magnetic loss at about 13 GHz, suggesting that magnetic loss and a natural resonance could be found at that frequency. Based on the measured complex permittivity and permeability, the reflection losses of paraffin-Ni(C) composites with different weight ratios of Ni(C) nanoparticles and coating thickness values are simulated according to the transmission line theory. An ex- cellent microwave absorption is obtained. To be proved by the experimental results, the reflection loss of composite with a coating thickness of 2 mm is measured by the Arch method. The results indicate that the maximum reflection loss reaches -26.73 dB at 12.7 GHz, and below -10 dB, the bandwidth is about 4 GHz. The fact that the measured absorption position is consistent with the calculated results suggests that a good electromagnetic match and a strong microwave absorption can be established in Ni(C) nanoparticles. The excellent Ni(C) microwave absorber is prepared by choosing an optimum layer number and the weight ratio of Ni(C) nanoparticles in paraffin-Ni(C) composites.
基金financially supported by the National Natural Science Foundation of China (No. 60961001)the National Natural Science Fund Committee and the China Academy of Engineering Physics United Fund (No. 11076016)
文摘In order to increase the absorbing ability and expand the absorbing bandwidth, ZnO and FeNiMo particles were established as absorbers, and wax as adhesive, and the electromagnetic parameters were tested using a vector network analyzer, then the absorbing properties were calculated by means of transmission line theory. The ZnO/FeNiMo composite has excellent microwave absorption properties of a minimum reflection loss value-27.8 dB at 15.98 GHz for a thickness of 1.5 mm and a broad absorption bandwidth of 13.46–18 GHz(RL 〈-10 dB).
基金financially supported by the National Natural Science Foundation of China(Nos.51402154,51202111)the Natural Science Foundation of Jiangsu Province(No.BK20141000)+1 种基金the Natural Science Foundation of Jiangsu Provincial Universities(No.14KJB430019)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Nanosized Co_(0.5)Zn_(0.5)Fe_(2)O_(4) ferrite was prepared by chemical co-precipitation method.The samples were characterized by X-ray diffraction(XRD),field-emission transmission electron microscopy(FETEM),vibrating sample magnetometer(VSM)and network analyzer.TEM analysis indicates that the diameter of as-prepared powder is about 20-30 nm.The saturation magnetization of nanosized Co_(0.5)Zn_(0.5)Fe_(2)O_(4) ferrite is 74.01 mA·m^(2)·g^(−1).The complex permittivity and complex permeability of the Co-Zn ferrite were measured by vector network analyzer in the frequency range of 2.0-18.0 GHz,and the reflection loss(RL)was investigated according to the wave transmission theory.The results show that the maximum reflection loss reaches−13.7 dB at 6.8 GHz and the bandwidth of reflection loss less than−10 dB reaches 3.8 GHz.The as-prepared nanosized Co_(0.5)Zn_(0.5)Fe_(2)O_(4) ferrite can be potentially used as an excellent microwave absorber in the C-band.
基金financially supported by the Dr.Research Start-up Fund of Shenyang Ligong University(No.2008,(20))
文摘Ni/Al2O3 nanocomposites were prepared by the mechanochemical synthesis method. The annealing process enlarges the grain size of both the metal Ni and insulating Al2O3 in the as-milled nanocomposite and leads to an increase of the saturation magnetization and a decrease of the surface anisotropy. An optimal reflection loss (RL) of -23 dB is obtained in the as-milled nanocomposite at 17.8 GHz for an absorber thickness of 6.6 mm. The annealed sample exhibits a RL exceeding -20 dB in the whole Ku-band for an absorber thickness of 6.6-9.7 mm with an optimal RL of -54.7 dB at 13.2 GHz for a layer thickness of 9.3 mm. The excellent microwave-absorption properties are a consequence of a proper match of the dielectric and magnetic losses.
文摘Spinel NiZn ferrite thin films were prepared on glass substrates by spray plating method. Adding cetyltrimethylammoniumchloride (CTAC), adsorptive energy of substrate surface increased, and smooth surface and uniform columnar film structures were observed. The optimum reaction temperature up to 85℃ and pH up to 7.5 were obtained. As the solution pH value increases from 6.5 to 7.5, the film saturation magnetization increases to 36.1 and the imaginary part μ″ up to 53.2 for NiZn ferrite film at 500 MHz were achieved, and higher magnetic resonance at 508 MHz was observed. As the ferrite plate thickness is 50 μm, the attenuating characteristics for reflection loss ≤-0.8 dB can be obtained in the wide frequency ranging from 0.5 to 2.7 GHz. Theμ″ of thin film has values higher than 20 at the frequencies between 0.5 and 2 GHz, and the thin film can be applied as shielding material in GHz range.