If the upstream boundary conditions are prescribed based on the incident wave only, the time-dependent numerical models cannot effectively simulate the wave field when the physical or spurious reflected waves become s...If the upstream boundary conditions are prescribed based on the incident wave only, the time-dependent numerical models cannot effectively simulate the wave field when the physical or spurious reflected waves become significant. This paper describes carefully an approach to specifying the incident wave boundary conditions combined with a set sponge layer to absorb the reflected waves towards the incident boundary. Incorporated into a time-dependent numerical model, whose governing equations are the Boussinesq-type ones, the effectiveness of the approach is studied in detail. The general boundary conditions, describing the down-wave boundary conditions are also generalized to the case of random waves. The numerical model is in detail examined. The test cases include both the normal one-dimensional incident regular or random waves and the two-dimensional oblique incident regular waves. The calculated results show that the present approach is effective on damping the reflected waves towards the incident wave boundary.展开更多
This study presents a three-point method for separating incident and reflected waves to explain normally incident waves' propagating over a sloping bed. linear wave shoaling is used to determine changes in wave am...This study presents a three-point method for separating incident and reflected waves to explain normally incident waves' propagating over a sloping bed. linear wave shoaling is used to determine changes in wave amplitude and phase in response to variations of bathymetry. The wave reflection coefficient and incident amplitude are estimated from wave heights measured at three fixed wave gauges with unequal spacing. Sensitivity analysis demonstrates that the proposed method can predict the reflection and amplitude of waves over a sloping bed more accurately than the two-point method.展开更多
In the nearshore, the wave field contains reflected and incident waves in which there is correlation between their phases due to the effect of reflection by some obstacles. Based on the extended eigenvector method (EE...In the nearshore, the wave field contains reflected and incident waves in which there is correlation between their phases due to the effect of reflection by some obstacles. Based on the extended eigenvector method (EEV) derived by Guan et al., a modified method (MEEV) is proposed as a general and practical approach to estimating directional spectra for the co-existent field of incident and reflected waves and a formula is given for direct calculation of the reflection coefficient. The results of numerical simulations show that MEEV is superior to EEV in resolution power, and the computed reflection coefficient agrees well with the real value within a certain range of incident angle.展开更多
Femtosecond pump-terahertz probe studies of carrier dynamics in semi-insulating CaAs have been investigated in detail for various pump powers. It is observed that, at high pump powers, the reflection peaks flip to the...Femtosecond pump-terahertz probe studies of carrier dynamics in semi-insulating CaAs have been investigated in detail for various pump powers. It is observed that, at high pump powers, the reflection peaks flip to the opposite polarity and dramatically enhance as the pump arrival time approaches the reflected wave of the terahertz pulse. The abnormal polarity-flip and enhancement can be interpreted by the pump-induced enhancement in the photoconductivity of GaAs and half-wave loss. Moreover, the carrier relaxation processes and surface states filling in GaAs are also studied in these measurements.展开更多
Wave reflection is one of the key problems affecting wave simulation quality in ocean engineering basin. The deep ocean engineering basin is equipped with two-sided segmented wavemakers and two wave absorbing beaches,...Wave reflection is one of the key problems affecting wave simulation quality in ocean engineering basin. The deep ocean engineering basin is equipped with two-sided segmented wavemakers and two wave absorbing beaches, which are located opposite to wave generators to reduce wave reflection effects. When an oblique longcrested wave is made by two-sided segmented wavemakers in a wave basin, two bi-directional reflected waves with the same azimuth but opposite propagation directions are generated. According to this feature, based on the two-point approach developed by Goda, a method to separate an incident regular wave from two bi-directional reflected waves using three wave gauges is proposed. The validity of this method is proved by numerical composite waves. The results indicate that the method can separate incident wave from reflected waves effectively. The method can be used to determine the reflection coefficient and verify the capacity of wave absorbing beaches in deep ocean engineering basin.展开更多
The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is ...The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.展开更多
In channel reservoirs,a quantitative characterization of landslide-generated impulse wave-structure interactions is essential for evaluating potential damage to infrastructure and dams.In this study,the problem of lan...In channel reservoirs,a quantitative characterization of landslide-generated impulse wave-structure interactions is essential for evaluating potential damage to infrastructure and dams.In this study,the problem of landslide-generated impulse waves that attack a vertical wall was investigated in a wave channel via a smooth particle hydrodynamics(SPH)method coupled with a Chrono model.The results indicated that the longitudinal velocity beneath the leading wave crest of an incident impulse wave deviated significantly from solitary wave theory.Moreover,the variation rate in the vertical velocity along the water column coincided with the theoretical prediction only for small wave amplitudes.Nevertheless,the maximum run-up height of an impulse wave can be accurately predicted via the solitary wave theory.Moreover,the maximum wall force during impulse wave-wall interaction was significantly larger than that during solitary wave reflection,particularly for high incident wave amplitudes.Overall,the present study demonstrated some striking differences in the interactions of landslide-generated impulse waves and solitary waves with a vertical wall.展开更多
The selection of an appropriate basic detonation wave flow field is crucial for improving the performance and geometric design of standing detonation vehicles.This paper employs a detailed chemical reaction model and ...The selection of an appropriate basic detonation wave flow field is crucial for improving the performance and geometric design of standing detonation vehicles.This paper employs a detailed chemical reaction model and solves the unsteady axisymmetric Euler equation to study the characteristics of the Axisymmetric Inward Turning Curved Detonation Wave(AIT-CDW)flow field and the parameters affecting the stability of the wave system structure of AIT-CDW flow field.The numerical results demonstrate a radial compression effect in the AIT-CDW flow field.This effect causes the detonation wave to have a shorter initiation length than oblique detonation wave flow field and the detonation wave angle to gradually increase with the flow direction postdetonation.The AIT-CDW flow field is confined space,making it prone to normal detonation waves when the detonation wave reflects from the wall.This phenomenon is detrimental to the stability of the wave system structure in the flow field.It has been observed that increasing the center body radius and decreasing the fuel equivalent ratio can effectively reduce the height of the normal detonation wave or even eliminate it.Additionally,a well-designed generatrix shape of the center body can enhance airflow,reduce choked flow,and promote the stability of the wave structure in the flow field.展开更多
The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse colu...The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse column on the outside of working face has been a difficult problem. Based on this, numerical simulation and imaging research were carried out in this paper. The results indicate that when a seismic source near the roadway is excited, a part of seismic wave propagates along the roadway direction, namely direct P-wave, direct S-wave and direct Love channel wave.<span style="font-family:;" "=""> <span style="font-family:Verdana;">When the body waves and Love channel wave propagating to the outside<span style="font-family:;" "=""> <span style="font-family:Verdana;">of working face meet the interface of collapse column, the reflected Love channel wave and reflected body waves are generated.<span style="font-family:;" "=""> <span style="font-family:Verdana;">Reflection <span style="font-family:Verdana;">body <span style="font-family:Verdana;">waves and direct waves are mixed in time domain, which is difficult to identify in seismic records, while reflected Love channel wave whose amplitude is relatively strong. The <span style="font-family:Verdana;">reflected <span style="font-family:Verdana;">Love channel wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record,<span style="font-family:;" "=""> <span style="font-family:Verdana;">which<span style="font-family:;" "=""> <span style="font-family:Verdana;">makes it suitable for advanced detection of collapse column. The signal-to-noise ratio of X component is higher than that of Y component and Z component. According to the seismic records, polarization filtering was carried out to enhance the effective wave, which removed the interference waves, and the signal was migrated to get the position parameters of collapse column interface, which was basically consistent with the model position.展开更多
Detecting subsurface fault structure is important for evaluating potential earthquake risks associated with active faults.In this study,we propose a new method to detect faults using reflected surface waves observed i...Detecting subsurface fault structure is important for evaluating potential earthquake risks associated with active faults.In this study,we propose a new method to detect faults using reflected surface waves observed in ambient noise cross correlation functions.Ambient noise tomography using direct surface waves obtained from ambient noise interferometry has been widely used to characterize active fault zones.In cases where a strong velocity contrast exists across the fault interface,fault-reflected surface waves are expected.We test this idea using a linear array deployed in the Suqian segment of Tanlu fault zone in Eastern China.The fault-reflected surface waves can be clearly seen in the cross-correlation functions of the ambient noise data,and the spatial position of the fault on the surface is close to the stations where the reflected signals first appear.Potentially reflected surface waves could also be used to infer the dip angle,fault zone thickness and the degree of velocity contrast across the fault by comparing synthetic and observed waveforms.展开更多
The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature an...The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature and the Mach number profiles in the boundary layer in reflected shock fixed coordinates has been obtained. To account for equilibrium real gas effects of nitrogen, the numerical results show that the minimum Mach number in the boundary layer has been moved from the wall into the boundary layer with the increasing of the incident shock Mach number. The minimum Mach number, the shock angle in the bifurcated foot and the jet velocity along the wall to the end plate are reduced owing to the Increasing of the area of nozzle throat. The numerical results are in good agreement with measurements.展开更多
Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones.However,the energy of diffracted waves is weaker than that of reflections.Therefore,the extraction of diffract...Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones.However,the energy of diffracted waves is weaker than that of reflections.Therefore,the extraction of diffracted waves is the basis for the effective utilization of diffracted waves.Based on the difference in travel times between diffracted and reflected waves,we developed a method for separating the diffracted waves via singular value decomposition filters and presented an effective processing flowchart for diffracted wave separation and imaging.The research results show that the horizontally coherent difference between the reflected and diffracted waves can be further improved using normal move-out(NMO) correction.Then,a band-rank or high-rank approximation is used to suppress the reflected waves with better transverse coherence.Following,separation of reflected and diffracted waves is achieved after the filtered data are transformed into the original data domain by inverse NMO.Synthetic and field examples show that our proposed method has the advantages of fewer constraints,fast processing speed and complete extraction of diffracted waves.And the diffracted wave imaging results can effectively improve the identification accuracy of geological heterogeneous bodies or zones.展开更多
Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged st...Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged structures include a submerged horizontal plate, submerged breakwa ters (rectangular and trapezoidal) and a step-type structure (topography). First, the BFC method is ver ified by comparing the computed results with the experimental data, including wave surface elevations, reflected and transmitted wave heights, and amplitudes of higher harmonics, showing that the method is a reasonable one to predict wave deformations due to the submerged structures. Secondly, the wave sur face elevations and the higher harmonics over different submerged structures are compared. Thirdly, re flected and transmitted waves due to different submerged structures are investigated.展开更多
According to the; energy equation, the relation between reflection and energy losses for short waves from mild beaches is established and analysed. A reflection coefficient varying with position and energy losses is p...According to the; energy equation, the relation between reflection and energy losses for short waves from mild beaches is established and analysed. A reflection coefficient varying with position and energy losses is proposed. Different reflection tests are conducted to check the theoretical analysis. A modified method to estimate the reflection coefficient at varied water depths is suggested based on the linear wave theory. The study indicates that the reflection coefficient from mild beaches has a changing trend for short waves approaching shoreline.展开更多
Wave simulation performance and its quality are key factors to reflect the overall capacity and level of an ocean engineering basin. They include wave simulating and absorbing capacity of reflected waves. In order to ...Wave simulation performance and its quality are key factors to reflect the overall capacity and level of an ocean engineering basin. They include wave simulating and absorbing capacity of reflected waves. In order to reduce the influence of reflected waves, various wave absorbing devices are equipped in ocean engineering basins across the world. The experimental investigation into the performance of combined cambered-type wave absorbing beach(CCTWAB) with damping bars equipped in Deepwater Offshore Basin is conducted. The experiment adopts the two-point method. The reflection coefficients are calculated by the method, in which the incident and reflected waves can be separated from the physically simulated composite waves with different periods and wave heights in the time domain. The experimental results indicate that in the range of normal wave heights and periods for model tests, the CCTWAB with damping bars is excellent in eliminating the reflected waves.展开更多
The transient Rayleigh wave exploration has high detection accuracy in shallow exploration. The effect of detection array is comprehensive reflection of the velocity of rock and soil mass. Therefore, the roiling multi...The transient Rayleigh wave exploration has high detection accuracy in shallow exploration. The effect of detection array is comprehensive reflection of the velocity of rock and soil mass. Therefore, the roiling multi-channel transient acquisition system has been adopted in this study, which turns one dimensional transient Rayleigh wave exploration into two dimensions, consequently, the two-dimensional velocity distribution of rock and soil mass under the survey line has been achieved. Through comparing with the shallow seismic reflected wave exploration, the result indicates that the rolling multi-channel transient acquisition system has accurate resolution. Thus, in the process of the shallow reflected wave exploration, if the surface wave has developed, the coalition between the reflected wave exploration and the two-dimensional transient Rayleigh wave exploration should actualize the accuracy of exploration.展开更多
When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation ref...When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H2/O2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.展开更多
The reflection of oblique incident waves from breakwaters with a partially-perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigenfunction expansion method is applied to e...The reflection of oblique incident waves from breakwaters with a partially-perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigenfunction expansion method is applied to expand velocity potentials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with experimental data. The effect of porosity, the relative chamber width, the relative water depth in the wave absorbing chamber and the water depth in front of the structure are discussed.展开更多
In this study examined is the wave interaction with a new modified perforated breakwater, consisting of a perforated front wall, a solid back wall and a wave absorbing chamber between them with a two-layer rock-filled...In this study examined is the wave interaction with a new modified perforated breakwater, consisting of a perforated front wall, a solid back wall and a wave absorbing chamber between them with a two-layer rock-filled core. The fluid domain is divided into three sub-domains according to the components of the breakwater. Then by means of the matched eigenfunction expansion method, an analytical solution is obtained to assess the hydrodynamic performance of the new structure. An approach based on a step approach method is introduced to solve the complex dispersion equations for water wave motions within two-layer porous media. Numerical results of the present model are compared with previous limiting cases. The effects of rock fill on the reflec- tion coefficient and the horizontal wave force are discussed.展开更多
Reflection of stratospheric planetary waves and its impact on tropospheric cold weather over Asia during January 2008 were investigated by applying two dimensional Eliassen-Palm (EP) flux and three-dimensional Plumb...Reflection of stratospheric planetary waves and its impact on tropospheric cold weather over Asia during January 2008 were investigated by applying two dimensional Eliassen-Palm (EP) flux and three-dimensional Plumb wave activity fluxes.The planetary wave propagation can clearly be seen in the longitude-height and latitude-height sections of the Plumb wave activity flux and EP flux,respectively,when the stratospheric basic state is partially reflective.Primarily,a wave packet emanating from Baffin Island/coast of Labrador propagated eastward,equatorward and was reflected over Central Eurasia and parts of China,which in turn triggered the advection of cold wind from the northern part of the boreal forest regions and Siberia to the subtropics.The wide region of Central Eurasia and China experienced extreme cold weather during the second ten days of January 2008,whereas the extraordinary persistence of the event might have occurred due to an anomalous blocking high in the Urals-Siberia region.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51079082 and 40676053)the LRET through the joint centre involving University College London,Shanghai JiaoTong University and Harbin Engineering University
文摘If the upstream boundary conditions are prescribed based on the incident wave only, the time-dependent numerical models cannot effectively simulate the wave field when the physical or spurious reflected waves become significant. This paper describes carefully an approach to specifying the incident wave boundary conditions combined with a set sponge layer to absorb the reflected waves towards the incident boundary. Incorporated into a time-dependent numerical model, whose governing equations are the Boussinesq-type ones, the effectiveness of the approach is studied in detail. The general boundary conditions, describing the down-wave boundary conditions are also generalized to the case of random waves. The numerical model is in detail examined. The test cases include both the normal one-dimensional incident regular or random waves and the two-dimensional oblique incident regular waves. The calculated results show that the present approach is effective on damping the reflected waves towards the incident wave boundary.
文摘This study presents a three-point method for separating incident and reflected waves to explain normally incident waves' propagating over a sloping bed. linear wave shoaling is used to determine changes in wave amplitude and phase in response to variations of bathymetry. The wave reflection coefficient and incident amplitude are estimated from wave heights measured at three fixed wave gauges with unequal spacing. Sensitivity analysis demonstrates that the proposed method can predict the reflection and amplitude of waves over a sloping bed more accurately than the two-point method.
文摘In the nearshore, the wave field contains reflected and incident waves in which there is correlation between their phases due to the effect of reflection by some obstacles. Based on the extended eigenvector method (EEV) derived by Guan et al., a modified method (MEEV) is proposed as a general and practical approach to estimating directional spectra for the co-existent field of incident and reflected waves and a formula is given for direct calculation of the reflection coefficient. The results of numerical simulations show that MEEV is superior to EEV in resolution power, and the computed reflection coefficient agrees well with the real value within a certain range of incident angle.
基金Project supported by the National Basic Research Program of China (973 Program) (Grant Nos 2007CB310408 and2006CB302901)the National Natural Science Foundation of China (Grant No 10804077)+2 种基金Science Foundation of Beijing Municipal Commission of Education (Grant No KM200910028006)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipalitysupported by State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,the Chinese Academy of Sciences
文摘Femtosecond pump-terahertz probe studies of carrier dynamics in semi-insulating CaAs have been investigated in detail for various pump powers. It is observed that, at high pump powers, the reflection peaks flip to the opposite polarity and dramatically enhance as the pump arrival time approaches the reflected wave of the terahertz pulse. The abnormal polarity-flip and enhancement can be interpreted by the pump-induced enhancement in the photoconductivity of GaAs and half-wave loss. Moreover, the carrier relaxation processes and surface states filling in GaAs are also studied in these measurements.
基金the National Natural Science Foundation of China(No.51239007)
文摘Wave reflection is one of the key problems affecting wave simulation quality in ocean engineering basin. The deep ocean engineering basin is equipped with two-sided segmented wavemakers and two wave absorbing beaches, which are located opposite to wave generators to reduce wave reflection effects. When an oblique longcrested wave is made by two-sided segmented wavemakers in a wave basin, two bi-directional reflected waves with the same azimuth but opposite propagation directions are generated. According to this feature, based on the two-point approach developed by Goda, a method to separate an incident regular wave from two bi-directional reflected waves using three wave gauges is proposed. The validity of this method is proved by numerical composite waves. The results indicate that the method can separate incident wave from reflected waves effectively. The method can be used to determine the reflection coefficient and verify the capacity of wave absorbing beaches in deep ocean engineering basin.
基金supported by the National Natural Science Foundation of China(Grant No.42174157)the CAGS Research Fund(Grant No.JKY202216)the Chinese Geological Survey Project(Grant Nos.DD20230008,DD20233002).
文摘The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.
基金financially supported by the Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyj-bshX0043)POWERCHINA Science and Technology Project(Grant No.DJ-ZDXM-2022-28)Yunnan Fundamental Research Projects(Grant No.202401CF070042).
文摘In channel reservoirs,a quantitative characterization of landslide-generated impulse wave-structure interactions is essential for evaluating potential damage to infrastructure and dams.In this study,the problem of landslide-generated impulse waves that attack a vertical wall was investigated in a wave channel via a smooth particle hydrodynamics(SPH)method coupled with a Chrono model.The results indicated that the longitudinal velocity beneath the leading wave crest of an incident impulse wave deviated significantly from solitary wave theory.Moreover,the variation rate in the vertical velocity along the water column coincided with the theoretical prediction only for small wave amplitudes.Nevertheless,the maximum run-up height of an impulse wave can be accurately predicted via the solitary wave theory.Moreover,the maximum wall force during impulse wave-wall interaction was significantly larger than that during solitary wave reflection,particularly for high incident wave amplitudes.Overall,the present study demonstrated some striking differences in the interactions of landslide-generated impulse waves and solitary waves with a vertical wall.
基金supported by the National Natural Science Foundation of China(Nos.U20A2069,62376234 and 123B2037)the Advanced Aero-Power Innovation Workstation,China(No.HKCX2024-01-017)。
文摘The selection of an appropriate basic detonation wave flow field is crucial for improving the performance and geometric design of standing detonation vehicles.This paper employs a detailed chemical reaction model and solves the unsteady axisymmetric Euler equation to study the characteristics of the Axisymmetric Inward Turning Curved Detonation Wave(AIT-CDW)flow field and the parameters affecting the stability of the wave system structure of AIT-CDW flow field.The numerical results demonstrate a radial compression effect in the AIT-CDW flow field.This effect causes the detonation wave to have a shorter initiation length than oblique detonation wave flow field and the detonation wave angle to gradually increase with the flow direction postdetonation.The AIT-CDW flow field is confined space,making it prone to normal detonation waves when the detonation wave reflects from the wall.This phenomenon is detrimental to the stability of the wave system structure in the flow field.It has been observed that increasing the center body radius and decreasing the fuel equivalent ratio can effectively reduce the height of the normal detonation wave or even eliminate it.Additionally,a well-designed generatrix shape of the center body can enhance airflow,reduce choked flow,and promote the stability of the wave structure in the flow field.
文摘The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse column on the outside of working face has been a difficult problem. Based on this, numerical simulation and imaging research were carried out in this paper. The results indicate that when a seismic source near the roadway is excited, a part of seismic wave propagates along the roadway direction, namely direct P-wave, direct S-wave and direct Love channel wave.<span style="font-family:;" "=""> <span style="font-family:Verdana;">When the body waves and Love channel wave propagating to the outside<span style="font-family:;" "=""> <span style="font-family:Verdana;">of working face meet the interface of collapse column, the reflected Love channel wave and reflected body waves are generated.<span style="font-family:;" "=""> <span style="font-family:Verdana;">Reflection <span style="font-family:Verdana;">body <span style="font-family:Verdana;">waves and direct waves are mixed in time domain, which is difficult to identify in seismic records, while reflected Love channel wave whose amplitude is relatively strong. The <span style="font-family:Verdana;">reflected <span style="font-family:Verdana;">Love channel wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record,<span style="font-family:;" "=""> <span style="font-family:Verdana;">which<span style="font-family:;" "=""> <span style="font-family:Verdana;">makes it suitable for advanced detection of collapse column. The signal-to-noise ratio of X component is higher than that of Y component and Z component. According to the seismic records, polarization filtering was carried out to enhance the effective wave, which removed the interference waves, and the signal was migrated to get the position parameters of collapse column interface, which was basically consistent with the model position.
基金supported by the National Key R&D Program of China(2018YFC1504102)National Natural Science Foundation of China(41961134001).
文摘Detecting subsurface fault structure is important for evaluating potential earthquake risks associated with active faults.In this study,we propose a new method to detect faults using reflected surface waves observed in ambient noise cross correlation functions.Ambient noise tomography using direct surface waves obtained from ambient noise interferometry has been widely used to characterize active fault zones.In cases where a strong velocity contrast exists across the fault interface,fault-reflected surface waves are expected.We test this idea using a linear array deployed in the Suqian segment of Tanlu fault zone in Eastern China.The fault-reflected surface waves can be clearly seen in the cross-correlation functions of the ambient noise data,and the spatial position of the fault on the surface is close to the stations where the reflected signals first appear.Potentially reflected surface waves could also be used to infer the dip angle,fault zone thickness and the degree of velocity contrast across the fault by comparing synthetic and observed waveforms.
文摘The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature and the Mach number profiles in the boundary layer in reflected shock fixed coordinates has been obtained. To account for equilibrium real gas effects of nitrogen, the numerical results show that the minimum Mach number in the boundary layer has been moved from the wall into the boundary layer with the increasing of the incident shock Mach number. The minimum Mach number, the shock angle in the bifurcated foot and the jet velocity along the wall to the end plate are reduced owing to the Increasing of the area of nozzle throat. The numerical results are in good agreement with measurements.
基金supported by the National Natural Science Foundation of China(41874123)Shaanxi Province Natural Science Basic Research Project(2017JZ007)PetroChina Innovation Foundation(2014D-5006-0303)。
文摘Diffracted seismic waves may be used to help identify and track geologically heterogeneous bodies or zones.However,the energy of diffracted waves is weaker than that of reflections.Therefore,the extraction of diffracted waves is the basis for the effective utilization of diffracted waves.Based on the difference in travel times between diffracted and reflected waves,we developed a method for separating the diffracted waves via singular value decomposition filters and presented an effective processing flowchart for diffracted wave separation and imaging.The research results show that the horizontally coherent difference between the reflected and diffracted waves can be further improved using normal move-out(NMO) correction.Then,a band-rank or high-rank approximation is used to suppress the reflected waves with better transverse coherence.Following,separation of reflected and diffracted waves is achieved after the filtered data are transformed into the original data domain by inverse NMO.Synthetic and field examples show that our proposed method has the advantages of fewer constraints,fast processing speed and complete extraction of diffracted waves.And the diffracted wave imaging results can effectively improve the identification accuracy of geological heterogeneous bodies or zones.
文摘Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged structures include a submerged horizontal plate, submerged breakwa ters (rectangular and trapezoidal) and a step-type structure (topography). First, the BFC method is ver ified by comparing the computed results with the experimental data, including wave surface elevations, reflected and transmitted wave heights, and amplitudes of higher harmonics, showing that the method is a reasonable one to predict wave deformations due to the submerged structures. Secondly, the wave sur face elevations and the higher harmonics over different submerged structures are compared. Thirdly, re flected and transmitted waves due to different submerged structures are investigated.
文摘According to the; energy equation, the relation between reflection and energy losses for short waves from mild beaches is established and analysed. A reflection coefficient varying with position and energy losses is proposed. Different reflection tests are conducted to check the theoretical analysis. A modified method to estimate the reflection coefficient at varied water depths is suggested based on the linear wave theory. The study indicates that the reflection coefficient from mild beaches has a changing trend for short waves approaching shoreline.
基金the National Natural Science Foundation of China(No.51239007)the SMC Morningstar Young Scholars Award Scheme of Shanghai Jiao Tong University
文摘Wave simulation performance and its quality are key factors to reflect the overall capacity and level of an ocean engineering basin. They include wave simulating and absorbing capacity of reflected waves. In order to reduce the influence of reflected waves, various wave absorbing devices are equipped in ocean engineering basins across the world. The experimental investigation into the performance of combined cambered-type wave absorbing beach(CCTWAB) with damping bars equipped in Deepwater Offshore Basin is conducted. The experiment adopts the two-point method. The reflection coefficients are calculated by the method, in which the incident and reflected waves can be separated from the physically simulated composite waves with different periods and wave heights in the time domain. The experimental results indicate that in the range of normal wave heights and periods for model tests, the CCTWAB with damping bars is excellent in eliminating the reflected waves.
文摘The transient Rayleigh wave exploration has high detection accuracy in shallow exploration. The effect of detection array is comprehensive reflection of the velocity of rock and soil mass. Therefore, the roiling multi-channel transient acquisition system has been adopted in this study, which turns one dimensional transient Rayleigh wave exploration into two dimensions, consequently, the two-dimensional velocity distribution of rock and soil mass under the survey line has been achieved. Through comparing with the shallow seismic reflected wave exploration, the result indicates that the rolling multi-channel transient acquisition system has accurate resolution. Thus, in the process of the shallow reflected wave exploration, if the surface wave has developed, the coalition between the reflected wave exploration and the two-dimensional transient Rayleigh wave exploration should actualize the accuracy of exploration.
文摘When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H2/O2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.
基金by Joint Fund of the National Natural Science Foundation of China the Hong Kong Science Research Bureau (49910161985)+1 种基金the National Natural Science Foundation of China (50025924,50179004)the Research Fund for the Development of harbor engineeri
文摘The reflection of oblique incident waves from breakwaters with a partially-perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigenfunction expansion method is applied to expand velocity potentials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with experimental data. The effect of porosity, the relative chamber width, the relative water depth in the wave absorbing chamber and the water depth in front of the structure are discussed.
基金The project supported by the Program for Changjiang ScholarsInnovative Research Teams in Universities(IRT0420)
文摘In this study examined is the wave interaction with a new modified perforated breakwater, consisting of a perforated front wall, a solid back wall and a wave absorbing chamber between them with a two-layer rock-filled core. The fluid domain is divided into three sub-domains according to the components of the breakwater. Then by means of the matched eigenfunction expansion method, an analytical solution is obtained to assess the hydrodynamic performance of the new structure. An approach based on a step approach method is introduced to solve the complex dispersion equations for water wave motions within two-layer porous media. Numerical results of the present model are compared with previous limiting cases. The effects of rock fill on the reflec- tion coefficient and the horizontal wave force are discussed.
基金supported jointly by the National Basic Research Program of China (Grant No. 2010CB 428603)the National Natural Science Foundation of China (Grants Nos. 41250110073, 41350110331 and 41025017)+1 种基金the Chinese Academy of Sciences fellowship for young international scientists (Grant No. 2011Y2ZZB05)a China postdoctoral science foundation grant (Grant No. 2013M541010)
文摘Reflection of stratospheric planetary waves and its impact on tropospheric cold weather over Asia during January 2008 were investigated by applying two dimensional Eliassen-Palm (EP) flux and three-dimensional Plumb wave activity fluxes.The planetary wave propagation can clearly be seen in the longitude-height and latitude-height sections of the Plumb wave activity flux and EP flux,respectively,when the stratospheric basic state is partially reflective.Primarily,a wave packet emanating from Baffin Island/coast of Labrador propagated eastward,equatorward and was reflected over Central Eurasia and parts of China,which in turn triggered the advection of cold wind from the northern part of the boreal forest regions and Siberia to the subtropics.The wide region of Central Eurasia and China experienced extreme cold weather during the second ten days of January 2008,whereas the extraordinary persistence of the event might have occurred due to an anomalous blocking high in the Urals-Siberia region.