期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterizations of Dynamic Strain-induced Transformation in Low Carbon Steel 被引量:2
1
作者 Luhan Hao Mingyue Sun +1 位作者 Namin Xiao Dianzhong Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第12期1095-1101,共7页
Dynamic strain-induced transformation of the low carbon steel Q(235) at 770℃ and 850℃ leads to fine ferrite grains. The microstructure characterization and mechanism of the fine ferrite grain were studied by scann... Dynamic strain-induced transformation of the low carbon steel Q(235) at 770℃ and 850℃ leads to fine ferrite grains. The microstructure characterization and mechanism of the fine ferrite grain were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) technique. The results show that strain-induced microstructure is the mixed microstructure of ferrite and pearlite, with cementite randomly distributed on ferrite grain boundaries and the grains interiors. EBSD images of grain boundaries demonstrate that high angle grain boundaries (HAGBs) are dominant in both of the deformation induced microstructures occurring below and above A(e3) , with only a few low angle grain boundaries (LAGBs) existing in the grain interiors. It implies that the dynamic strain-induced transformation (DSIT) happens above and below A(e3) temperature and has the same phase transition mechanisms. The refinement of ferrite is the cooperative effect of DSIT and continuous dynamic recrystallization (CDRX) of ferrite. Besides, DSIT is deemed as an incomplete carbon diffusion phase transition through the analysis of microstructure and the previous simulated results. The strengths of the Q(235) steel with refined ferrite and pearlite structure get doubled than the initial state without treated by DSIT and the residual stress in the refined structure is partly responsible for the ductility loss. 展开更多
关键词 Dynamic strain-induced transformation Grain refinement Grain boundary misorientation Low carbon steel
原文传递
Precipitation and decomposition behaviors of carbides in AISI M2 high-speed steel with nitrogen and mischmetal 被引量:5
2
作者 LIU Bao-long Lü Zhi-qing +2 位作者 FENG Wei-wei REN Ting-zhi FU Wan-tang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期782-788,共7页
The behaviors of the precipitation and decomposition of carbides in AISI M2 high-speed steel modified by nitrogen and mischmetal were investigated using DSC, XRD, SEM and TEM. The as-cast microstructure of the experim... The behaviors of the precipitation and decomposition of carbides in AISI M2 high-speed steel modified by nitrogen and mischmetal were investigated using DSC, XRD, SEM and TEM. The as-cast microstructure of the experimental steel consists of dendrites of iron matrix, networks of eutectic carbides and secondary carbides. The average distance between networks is about 34 μm. The carbides mainly include M_2C, M(C,N) and M_6C, and their relative contents are 58.5%, 30.3% and 11.2%, respectively. The average spacing between the M_2C fibers is 1.5 μm. The decomposition of M_2C occurs from 897.2 to 1221.5 ℃(heating rate of 200 ℃/h). Some precipitated carbide particles occur in the M_2C matrix after holding for 15 min at 1100 ℃. With increasing holding time, the carbide fibers neck down more and more obviously until they are broken down. The spectral peaks of M_2C almost disappear after holding for 60 min. The spectral peaks of M_6C gradually strengthen with the holding time, and the relative content of M_6C increases to 79.8% after holding for 60 min. After holding for 180 min, the carbide fibers disappear, and the decomposition products consist of fine carbide particles(about 300 nm) and short rod-like carbides(about 3.5 μm). 展开更多
关键词 high-speed steel metastable carbides decomposition phase transformation refinement
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部