Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as...Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.展开更多
Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can res...Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can result in solidification defects and reduced mechanical properties.In this work,a novel welding wire containing MgO particles has been developed to promote columnar-to-equiaxed transition(CET)in the FZ of TIG-welded AZ31 alloy.The results show the achievement of a fully equiaxed grain structure in the FZ,with a significant 71.9%reduction in grain size to 41 μm from the original coarse columnar dendrites.Furthermore,the combination of using MgO-containing welding wire and pulse current can further refine the grain size to 25.6 μm.Microstructural analyses reveal the homogeneous distribution of MgO particles in the FZ.The application of pulse current results in an increase in the number density of MgO(1-2 μm)from 5.16 × 10^(4) m^(-3) to 6.18 × 10^(4) m^(-3).The good crystallographic matching relationship between MgO and α-Mg matrix,characterized by the orientation relationship of[11(2)0]α-Mg//[0(1)1]MgO and(0002)_(α-Mg)//(111)_(MgO),indicates that the MgO particles can act as effective nucleation sites for α-Mg to reduce nucleation undercooling.According to the Hunt criteria,the critical temperature gradient for CET is greatly enhanced due to the significantly increased number density of MgO nucleation sites.In addition,the correlation with the thermal simulation results reveals a transition in the solidification conditions within the welding pool from the columnar grain zone to the equiaxed grain zone in the CET map,leading to the realization of CET.The exceptional grain refinement has contributed to a simultaneous improvement in the strength and plasticity of welded joints.This study presents a novel strategy for controlling equiaxed microstructure and optimizing mechanical properties in fusion welding or wire and arc additive manufacturing of Mg alloy components.展开更多
Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material stru...Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material structure simulation has become more and more perfect.This study employs numerical simulation to investigate the microstructure evolution of Al-Cu-Mg-Ag alloys during solidification with the aim of controlling its structure.The size distribution of Ti-containing particles in an Al-Ti-B master alloy was characterized via microstructure observation,serving as a basis for optimizing the nucleation density parameters for particles of varying radii in the phase field model.The addition of refiner inhibited the growth of dendrites and no longer produced coarse dendrites.With the increase of refiner,the grains gradually tended to form cellular morphology.The refined grains were about 100μm in size.Experimental validation of the simulated as-cast grain morphology was conducted.The samples were observed by metallographic microscope and scanning electron microscope.The addition of refiner had a significant effect on the refinement of the alloy,and the average grain size after refinement was also about 100μm.At the same time,the XRD phase identification of the alloy was carried out.The observation of the microstructure morphology under the scanning electron microscope showed that the precipitated phase was mainly concentrated on the grain boundary.The Al_(2)Cu accounted for about 5%,and the matrix phase FCC accounted for about 95%,which also corresponded well with the simulation results.展开更多
The phase field model can coherently address the relatively complex fracture phenomenon,such as crack nucleation,branching,deflection,etc.The model has been extensively implemented in the finite element package Abaqus...The phase field model can coherently address the relatively complex fracture phenomenon,such as crack nucleation,branching,deflection,etc.The model has been extensively implemented in the finite element package Abaqus to solve brittle fracture problems in recent studies.However,accurate numerical analysis typically requires fine meshes to model the evolving crack path effectively.A broad region must be discretized without prior knowledge of the crack path,further augmenting the computational expenses.In this proposed work,we present an automated framework utilizing a posteriori error-indicator(MISESERI)to demarcate and sufficiently refine the mesh along the anticipated crack path.This eliminates the need for manual mesh refinement based on previous experimental/computational results or heuristic judgment.The proposed Python-based framework integrates the preanalysis,sufficient mesh refinement,and subsequent phase-field model-based numerical analysis with user-defined subroutines in a single streamlined pass.The novelty of the proposed work lies in integrating Abaqus’s native error estimation and mesh refinement capability,tailored explicitly for phase-field simulations.The proposed methodology aims to reduce the computational resource requirement,thereby enhancing the efficiency of the phase-field simulations while preserving the solution accuracy,making the framework particularly advantageous for complex fracture problems where the computational/experimental results are limited or unavailable.Several benchmark numerical problems are solved to showcase the effectiveness and accuracy of the proposed approach.The numerical examples present the proposed approach’s efficacy in the case of a complex mixed-mode fracture problem.The results show significant reductions in computational resources compared to traditional phase-field methods,which is promising.展开更多
The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε...The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε-martensite introduction.The yield strength can be greatly raised to around 700 MPa by refining grain size from 88.4 to 1.8μm.Although there exist numerous stacking faults in the fine-grained alloy,the damping capacity is strongly deteriorated due to the suppression of thermally activated ε-martensite.We demonstrate that the stacking faults cannot provide effective contribution to damping capacity and hence introduce a considerable volume fraction of stress/strain-induced ε-martensite to raise damping sources,including ε-martensite and γ/ε interfaces,etc.,by a small pre-strain.From this,the damping capacity can be improved,and the yield strength can be further enhanced from nearly 700 MPa to around 800 MPa.Thus,the combination of high yield strength and good damping capacity is realized.展开更多
This study investigated the effect of Si addition on the microstructure and the silicide precipitation behavior in a novel near-βtitanium alloy.The results show that coarse and continuous silicides were preferentiall...This study investigated the effect of Si addition on the microstructure and the silicide precipitation behavior in a novel near-βtitanium alloy.The results show that coarse and continuous silicides were preferentially precipitated at the grain boundary during the solidification process,and theβgrain size of the as-cast alloy was refined.Dynamic recrystallization occurs under isothermal compression,and the silicide could inhibit the growth of recrystallized grains.The element redistribution and dislocation accumulation during hot deformation promote the dynamic precipitation of silicide,resulting in a discontinuous distribution of silicides at the grain boundaries.This work provides insight into how silicide dynamic precipitation will affect the microstructure and plastic deformation behavior of metal alloys.展开更多
Depth maps play a crucial role in various practical applications such as computer vision,augmented reality,and autonomous driving.How to obtain clear and accurate depth information in video depth estimation is a signi...Depth maps play a crucial role in various practical applications such as computer vision,augmented reality,and autonomous driving.How to obtain clear and accurate depth information in video depth estimation is a significant challenge faced in the field of computer vision.However,existing monocular video depth estimation models tend to produce blurred or inaccurate depth information in regions with object edges and low texture.To address this issue,we propose a monocular depth estimation model architecture guided by semantic segmentation masks,which introduces semantic information into the model to correct the ambiguous depth regions.We have evaluated the proposed method,and experimental results show that our method improves the accuracy of edge depth,demonstrating the effectiveness of our approach.展开更多
The fatigue life of components can be significantly enhanced by the formation of the surface hardness layer through surface strengthening technology.To avoid the geometric distortion of thin-walled com-ponents caused ...The fatigue life of components can be significantly enhanced by the formation of the surface hardness layer through surface strengthening technology.To avoid the geometric distortion of thin-walled com-ponents caused by strengthening,the strengthening energy is limited and the ideal strengthening effect cannot be obtained.This work aims to propose a novel approach to address this issue effectively.The surface layer with high-density dislocations was obtained by a low-energy surface strengthening method(shot peening)at first.Then the surface strengthening mechanism changes from dislocation strengthen-ing to grain boundary strengthening after electropulsing treatment(EPT).The evolution of residual stress and microstructure was analyzed using multi-scale characterization techniques.The results demonstrate that EPT followed by surface strengthening makes a remarkable 304%increase in fatigue life of TC11 titanium alloy.The enhancement of fatigue life can be attributed to the grain refinement accompanied by the formation of nanotwins and sub-grains in the surface-strengthened layer,as well as the reduction in dislocation density within the substrate after EPT.This study demonstrates the significant potential of EPT in further enhancing the fatigue life of surface pre-strengthened thin-walled components.展开更多
This study investigates zinc’s(Zn)key role in enhancing the precipitation kinetics and refinement of Mg_(17)Al_(12)and Mg_(2)Sn phases in magnesium alloys through trace sodium(Na)additions.Magnesium alloys with varyi...This study investigates zinc’s(Zn)key role in enhancing the precipitation kinetics and refinement of Mg_(17)Al_(12)and Mg_(2)Sn phases in magnesium alloys through trace sodium(Na)additions.Magnesium alloys with varying compositions of aluminum(Al),tin(Sn),Zn,and Na were prepared and aged at 453 K.Microstructural analyses were conducted using transmission electron microscopy(TEM),scanning transmission electron microscopy(STEM),and atom probe tomography(APT).Trace additions of Na significantly enhanced the precipitation responses of both Mg_(17)Al_(12)and Mg_(2)Sn phases.When Zn was co-added with Na,as in the ATZ641N3 alloy(Mg–6Al–4Sn–1Zn–0.3Na),there was a pronounced refinement in precipitate morphology and acceleration of precipitation kinetics.The ATZ641N3 alloy achieved a peak hardness of 103 Hv at 36 hours,compared to 91 Hv at 72 hours for the ATZ641 alloy without Na.The simultaneous addition of Zn and Na led to the formation of Sn–Na–Zn particles that acted as effective nucleation sites for Mg_(2)Sn,promoting aluminum partitioning and accelerating the precipitation of Mg_(17)Al_(12)through Al-rich regions.Additionally,Zn and Na co-segregated within the Mg_(17)Al_(12)phase,reducing misfit strain caused by Zn substitution and improving precipitate stability and refinement.These findings highlight Zn’s critical role,alongside trace Na additions,in refining and accelerating the precipitation of Mg_(17)Al_(12)and Mg_(2)Sn phases,thereby enhancing the age-hardening response of magnesium alloys.展开更多
Based on thermodynamic calculations and continuous rheological extrusion(CRE)technology,Al-Ti-V-B master alloys were designed and prepared.The morphology and the distribution of the refined phases in the master alloys...Based on thermodynamic calculations and continuous rheological extrusion(CRE)technology,Al-Ti-V-B master alloys were designed and prepared.The morphology and the distribution of the refined phases in the master alloys were analyzed by XRD,SEM,and TEM.The effects of master alloy addition and holding time on the microstructure and mechanical properties of A356 alloy were investigated.Under the optimum refiner addition of 0.3wt.%and the holding time of 20 min,the average grain size of the refined A356 alloy is 151.8±9.11μm,89.62%lower than that of original A356 alloy.The tensile strength and elongation of as-cast A356refined alloy are 196.11 MPa and 5.75%,respectively.After T6 treatment,the tensile strength and elongation of A356 refined alloy are 290.1 MPa and 3.09%,respectively.The fracture morphology is characterized by a predominance of along-crystal fracture with a small amount of through-crystal fracture,attributed to the refined grains.Finer grains promote crack path deflection and localized plastic deformation,enhancing energy dissipation and reducing the tendency for brittle fracture.This study provides a novel approach to improving the mechanical properties of A356 alloy through grain refinement using CRE Al-Ti-V-B master alloy.展开更多
In a world where supply chains are increasingly complex and unpredictable,finding the optimal way to move goods through transshipment networks is more important and challenging than ever.In addition to addressing the ...In a world where supply chains are increasingly complex and unpredictable,finding the optimal way to move goods through transshipment networks is more important and challenging than ever.In addition to addressing the complexity of transportation costs and demand,this study presents a novel method that offers flexible routing alternatives to manage these complexities.When real-world variables such as fluctuating costs,variable capacity,and unpredictable demand are considered,traditional transshipment models often prove inadequate.To overcome these challenges,we propose an innovative fully fuzzy-based framework using LR flat fuzzy numbers.This framework allows for more adaptable and flexible decision-making in multi-objective transshipment situations by effectively capturing uncertain parameters.To overcome these challenges,we develop an innovative,fully fuzzy-based framework using LR flat fuzzy numbers to effectively capture uncertainty in key parameters,offering more flexible and adaptive decision-making in multi-objective transshipment problems.The proposed model also presents alternative route options,giving decisionmakers a range of choices to satisfy multiple requirements,including reducing costs,improving service quality,and expediting delivery.Through extensive numerical experiments,we demonstrate that the model can achieve greater adaptability,efficiency,and flexibility than standard approaches.This multi-path structure provides additional flexibility to adapt to dynamic network conditions.Using ranking strategies,we compared our multi-objective transshipment model with existing methods.The results indicate that,while traditional methods such as goal and fuzzy programming generate results close to the anti-ideal value,thus reducing their efficiency,our model produces solutions close to the ideal value,thereby facilitating better decision making.By combining dynamic routing alternatives with a fully fuzzybased approach,this study offers an effective tool to improve decision-making and optimize complex networks under real-world conditions in practical settings.In this paper,we utilize LINGO 18 software to solve the provided numerical example,demonstrating the effectiveness of the proposed method.展开更多
基金financially supported by the National Natural Science Foundation of China(No.21675131)the Volkswagen Foundation(Freigeist Fellowship No.89592)+1 种基金the Natural Science Foundation of Chongqing(No.2020jcyj-zdxmX0003,CSTB2023NSCQ-MSX0924)the National Research Foundation,Singapore,and A*STAR(Agency for Science Technology and Research)under its LCER Phase 2 Programme Hydrogen&Emerging Technologies FI,Directed Hydrogen Programme(Award No.U2305D4003).
文摘Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.
基金supported by the National Natural Science Foundation of China(No.51871155).
文摘Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can result in solidification defects and reduced mechanical properties.In this work,a novel welding wire containing MgO particles has been developed to promote columnar-to-equiaxed transition(CET)in the FZ of TIG-welded AZ31 alloy.The results show the achievement of a fully equiaxed grain structure in the FZ,with a significant 71.9%reduction in grain size to 41 μm from the original coarse columnar dendrites.Furthermore,the combination of using MgO-containing welding wire and pulse current can further refine the grain size to 25.6 μm.Microstructural analyses reveal the homogeneous distribution of MgO particles in the FZ.The application of pulse current results in an increase in the number density of MgO(1-2 μm)from 5.16 × 10^(4) m^(-3) to 6.18 × 10^(4) m^(-3).The good crystallographic matching relationship between MgO and α-Mg matrix,characterized by the orientation relationship of[11(2)0]α-Mg//[0(1)1]MgO and(0002)_(α-Mg)//(111)_(MgO),indicates that the MgO particles can act as effective nucleation sites for α-Mg to reduce nucleation undercooling.According to the Hunt criteria,the critical temperature gradient for CET is greatly enhanced due to the significantly increased number density of MgO nucleation sites.In addition,the correlation with the thermal simulation results reveals a transition in the solidification conditions within the welding pool from the columnar grain zone to the equiaxed grain zone in the CET map,leading to the realization of CET.The exceptional grain refinement has contributed to a simultaneous improvement in the strength and plasticity of welded joints.This study presents a novel strategy for controlling equiaxed microstructure and optimizing mechanical properties in fusion welding or wire and arc additive manufacturing of Mg alloy components.
文摘Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material structure simulation has become more and more perfect.This study employs numerical simulation to investigate the microstructure evolution of Al-Cu-Mg-Ag alloys during solidification with the aim of controlling its structure.The size distribution of Ti-containing particles in an Al-Ti-B master alloy was characterized via microstructure observation,serving as a basis for optimizing the nucleation density parameters for particles of varying radii in the phase field model.The addition of refiner inhibited the growth of dendrites and no longer produced coarse dendrites.With the increase of refiner,the grains gradually tended to form cellular morphology.The refined grains were about 100μm in size.Experimental validation of the simulated as-cast grain morphology was conducted.The samples were observed by metallographic microscope and scanning electron microscope.The addition of refiner had a significant effect on the refinement of the alloy,and the average grain size after refinement was also about 100μm.At the same time,the XRD phase identification of the alloy was carried out.The observation of the microstructure morphology under the scanning electron microscope showed that the precipitated phase was mainly concentrated on the grain boundary.The Al_(2)Cu accounted for about 5%,and the matrix phase FCC accounted for about 95%,which also corresponded well with the simulation results.
文摘The phase field model can coherently address the relatively complex fracture phenomenon,such as crack nucleation,branching,deflection,etc.The model has been extensively implemented in the finite element package Abaqus to solve brittle fracture problems in recent studies.However,accurate numerical analysis typically requires fine meshes to model the evolving crack path effectively.A broad region must be discretized without prior knowledge of the crack path,further augmenting the computational expenses.In this proposed work,we present an automated framework utilizing a posteriori error-indicator(MISESERI)to demarcate and sufficiently refine the mesh along the anticipated crack path.This eliminates the need for manual mesh refinement based on previous experimental/computational results or heuristic judgment.The proposed Python-based framework integrates the preanalysis,sufficient mesh refinement,and subsequent phase-field model-based numerical analysis with user-defined subroutines in a single streamlined pass.The novelty of the proposed work lies in integrating Abaqus’s native error estimation and mesh refinement capability,tailored explicitly for phase-field simulations.The proposed methodology aims to reduce the computational resource requirement,thereby enhancing the efficiency of the phase-field simulations while preserving the solution accuracy,making the framework particularly advantageous for complex fracture problems where the computational/experimental results are limited or unavailable.Several benchmark numerical problems are solved to showcase the effectiveness and accuracy of the proposed approach.The numerical examples present the proposed approach’s efficacy in the case of a complex mixed-mode fracture problem.The results show significant reductions in computational resources compared to traditional phase-field methods,which is promising.
基金supported by Fundamental Research Funds for Central Universities(Grant No.N2107009)Reviving-Liaoning Excellence Plan(Grant No.XLYC2203186).
文摘The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε-martensite introduction.The yield strength can be greatly raised to around 700 MPa by refining grain size from 88.4 to 1.8μm.Although there exist numerous stacking faults in the fine-grained alloy,the damping capacity is strongly deteriorated due to the suppression of thermally activated ε-martensite.We demonstrate that the stacking faults cannot provide effective contribution to damping capacity and hence introduce a considerable volume fraction of stress/strain-induced ε-martensite to raise damping sources,including ε-martensite and γ/ε interfaces,etc.,by a small pre-strain.From this,the damping capacity can be improved,and the yield strength can be further enhanced from nearly 700 MPa to around 800 MPa.Thus,the combination of high yield strength and good damping capacity is realized.
基金funded by the National Natural Science Foundation of China(Nos.52371117,52171122,52275362)the Central Government Guides the Special Fund Projects of Local Scientific and Technological Development,China(Nos.YDZJSX2021A016,YDZX-20191400002149)+1 种基金the Key Project of Natural Science Foundation of Ningxia,China(No.2022AAC02077)the Natural Science Foundation of Shanxi Province,China(No.20210302124077)。
文摘This study investigated the effect of Si addition on the microstructure and the silicide precipitation behavior in a novel near-βtitanium alloy.The results show that coarse and continuous silicides were preferentially precipitated at the grain boundary during the solidification process,and theβgrain size of the as-cast alloy was refined.Dynamic recrystallization occurs under isothermal compression,and the silicide could inhibit the growth of recrystallized grains.The element redistribution and dislocation accumulation during hot deformation promote the dynamic precipitation of silicide,resulting in a discontinuous distribution of silicides at the grain boundaries.This work provides insight into how silicide dynamic precipitation will affect the microstructure and plastic deformation behavior of metal alloys.
文摘Depth maps play a crucial role in various practical applications such as computer vision,augmented reality,and autonomous driving.How to obtain clear and accurate depth information in video depth estimation is a significant challenge faced in the field of computer vision.However,existing monocular video depth estimation models tend to produce blurred or inaccurate depth information in regions with object edges and low texture.To address this issue,we propose a monocular depth estimation model architecture guided by semantic segmentation masks,which introduces semantic information into the model to correct the ambiguous depth regions.We have evaluated the proposed method,and experimental results show that our method improves the accuracy of edge depth,demonstrating the effectiveness of our approach.
基金supported by the National Nature Science Foun-dation of China(Grant No.50875061).
文摘The fatigue life of components can be significantly enhanced by the formation of the surface hardness layer through surface strengthening technology.To avoid the geometric distortion of thin-walled com-ponents caused by strengthening,the strengthening energy is limited and the ideal strengthening effect cannot be obtained.This work aims to propose a novel approach to address this issue effectively.The surface layer with high-density dislocations was obtained by a low-energy surface strengthening method(shot peening)at first.Then the surface strengthening mechanism changes from dislocation strengthen-ing to grain boundary strengthening after electropulsing treatment(EPT).The evolution of residual stress and microstructure was analyzed using multi-scale characterization techniques.The results demonstrate that EPT followed by surface strengthening makes a remarkable 304%increase in fatigue life of TC11 titanium alloy.The enhancement of fatigue life can be attributed to the grain refinement accompanied by the formation of nanotwins and sub-grains in the surface-strengthened layer,as well as the reduction in dislocation density within the substrate after EPT.This study demonstrates the significant potential of EPT in further enhancing the fatigue life of surface pre-strengthened thin-walled components.
基金supported by the Fundamental Research Program(PNKA130)of the Korea Institute of Materials Science,Republic of Korea。
文摘This study investigates zinc’s(Zn)key role in enhancing the precipitation kinetics and refinement of Mg_(17)Al_(12)and Mg_(2)Sn phases in magnesium alloys through trace sodium(Na)additions.Magnesium alloys with varying compositions of aluminum(Al),tin(Sn),Zn,and Na were prepared and aged at 453 K.Microstructural analyses were conducted using transmission electron microscopy(TEM),scanning transmission electron microscopy(STEM),and atom probe tomography(APT).Trace additions of Na significantly enhanced the precipitation responses of both Mg_(17)Al_(12)and Mg_(2)Sn phases.When Zn was co-added with Na,as in the ATZ641N3 alloy(Mg–6Al–4Sn–1Zn–0.3Na),there was a pronounced refinement in precipitate morphology and acceleration of precipitation kinetics.The ATZ641N3 alloy achieved a peak hardness of 103 Hv at 36 hours,compared to 91 Hv at 72 hours for the ATZ641 alloy without Na.The simultaneous addition of Zn and Na led to the formation of Sn–Na–Zn particles that acted as effective nucleation sites for Mg_(2)Sn,promoting aluminum partitioning and accelerating the precipitation of Mg_(17)Al_(12)through Al-rich regions.Additionally,Zn and Na co-segregated within the Mg_(17)Al_(12)phase,reducing misfit strain caused by Zn substitution and improving precipitate stability and refinement.These findings highlight Zn’s critical role,alongside trace Na additions,in refining and accelerating the precipitation of Mg_(17)Al_(12)and Mg_(2)Sn phases,thereby enhancing the age-hardening response of magnesium alloys.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFB3706801)the National Natural Science Foundation of China (Grant Nos.U2341253,52371019,U2241232)+2 种基金the Dalian High-level Talents Innovation Support Program (Grant No.2021RD06)the Applied Basic Research Program of Liaoning Province (Grant No.2022JH2/101300003)the Natural Science Foundation of Liaoning Province (Grant Nos.2022-BS-262,JYTMS20230031)。
文摘Based on thermodynamic calculations and continuous rheological extrusion(CRE)technology,Al-Ti-V-B master alloys were designed and prepared.The morphology and the distribution of the refined phases in the master alloys were analyzed by XRD,SEM,and TEM.The effects of master alloy addition and holding time on the microstructure and mechanical properties of A356 alloy were investigated.Under the optimum refiner addition of 0.3wt.%and the holding time of 20 min,the average grain size of the refined A356 alloy is 151.8±9.11μm,89.62%lower than that of original A356 alloy.The tensile strength and elongation of as-cast A356refined alloy are 196.11 MPa and 5.75%,respectively.After T6 treatment,the tensile strength and elongation of A356 refined alloy are 290.1 MPa and 3.09%,respectively.The fracture morphology is characterized by a predominance of along-crystal fracture with a small amount of through-crystal fracture,attributed to the refined grains.Finer grains promote crack path deflection and localized plastic deformation,enhancing energy dissipation and reducing the tendency for brittle fracture.This study provides a novel approach to improving the mechanical properties of A356 alloy through grain refinement using CRE Al-Ti-V-B master alloy.
基金the financial support of the European Union under the REFRESH-Research Excellence for Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition and has been done in connection with project Students Grant Competition SP2025/062"specific research on progressive and sustainable production technologies"and SP2025/063"specific research on innovative and progressive manufacturing technologies"financed by the Ministry of Education,Youth and Sports and Faculty of Mechanical Engineering VSB-TUOThe authors would like to extend their sincere appreciation to Researchers Supporting Project number(RSP2025R472)King Saud University,Riyadh,Saudi Arabia.
文摘In a world where supply chains are increasingly complex and unpredictable,finding the optimal way to move goods through transshipment networks is more important and challenging than ever.In addition to addressing the complexity of transportation costs and demand,this study presents a novel method that offers flexible routing alternatives to manage these complexities.When real-world variables such as fluctuating costs,variable capacity,and unpredictable demand are considered,traditional transshipment models often prove inadequate.To overcome these challenges,we propose an innovative fully fuzzy-based framework using LR flat fuzzy numbers.This framework allows for more adaptable and flexible decision-making in multi-objective transshipment situations by effectively capturing uncertain parameters.To overcome these challenges,we develop an innovative,fully fuzzy-based framework using LR flat fuzzy numbers to effectively capture uncertainty in key parameters,offering more flexible and adaptive decision-making in multi-objective transshipment problems.The proposed model also presents alternative route options,giving decisionmakers a range of choices to satisfy multiple requirements,including reducing costs,improving service quality,and expediting delivery.Through extensive numerical experiments,we demonstrate that the model can achieve greater adaptability,efficiency,and flexibility than standard approaches.This multi-path structure provides additional flexibility to adapt to dynamic network conditions.Using ranking strategies,we compared our multi-objective transshipment model with existing methods.The results indicate that,while traditional methods such as goal and fuzzy programming generate results close to the anti-ideal value,thus reducing their efficiency,our model produces solutions close to the ideal value,thereby facilitating better decision making.By combining dynamic routing alternatives with a fully fuzzybased approach,this study offers an effective tool to improve decision-making and optimize complex networks under real-world conditions in practical settings.In this paper,we utilize LINGO 18 software to solve the provided numerical example,demonstrating the effectiveness of the proposed method.