期刊文献+
共找到131,315篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical simulation of the deformation risk in thin slab continuous casting process with liquid core reduction 被引量:1
1
作者 Zhida Zhang Jize Chen +3 位作者 Cheng Ji Yutang Ma Miaoyong Zhu Wenxue Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1114-1127,共14页
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de... The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively. 展开更多
关键词 thin slab continuous casting liquid core reduction three-dimensional thermal-mechanical critical strain crack risk maxim-um theoretical reduction amount
在线阅读 下载PDF
Design Refinement of Catalytic System for Scale-Up Mild Nitrogen Photo-Fixation 被引量:1
2
作者 Xiao Hu Wang Bin Wu +4 位作者 Yongfa Zhu Dingsheng Wang Nian Bing Li Zhichuan J.Xu Hong Qun Luo 《Nano-Micro Letters》 2025年第8期111-170,共60页
Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as... Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems. 展开更多
关键词 Scale-up Mild nitrogen photo-fixation Design refinements Catalyst system Environmental sustainability
在线阅读 下载PDF
Exceptional grain refinement induced by dispersed MgO particles in TIG-welded AZ31 alloy 被引量:1
3
作者 Le Zai Xin Tong +2 位作者 Yun Wang Hao Zhang Xiaohuai Xue 《Journal of Materials Science & Technology》 2025年第2期1-13,共13页
Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can res... Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can result in solidification defects and reduced mechanical properties.In this work,a novel welding wire containing MgO particles has been developed to promote columnar-to-equiaxed transition(CET)in the FZ of TIG-welded AZ31 alloy.The results show the achievement of a fully equiaxed grain structure in the FZ,with a significant 71.9%reduction in grain size to 41 μm from the original coarse columnar dendrites.Furthermore,the combination of using MgO-containing welding wire and pulse current can further refine the grain size to 25.6 μm.Microstructural analyses reveal the homogeneous distribution of MgO particles in the FZ.The application of pulse current results in an increase in the number density of MgO(1-2 μm)from 5.16 × 10^(4) m^(-3) to 6.18 × 10^(4) m^(-3).The good crystallographic matching relationship between MgO and α-Mg matrix,characterized by the orientation relationship of[11(2)0]α-Mg//[0(1)1]MgO and(0002)_(α-Mg)//(111)_(MgO),indicates that the MgO particles can act as effective nucleation sites for α-Mg to reduce nucleation undercooling.According to the Hunt criteria,the critical temperature gradient for CET is greatly enhanced due to the significantly increased number density of MgO nucleation sites.In addition,the correlation with the thermal simulation results reveals a transition in the solidification conditions within the welding pool from the columnar grain zone to the equiaxed grain zone in the CET map,leading to the realization of CET.The exceptional grain refinement has contributed to a simultaneous improvement in the strength and plasticity of welded joints.This study presents a novel strategy for controlling equiaxed microstructure and optimizing mechanical properties in fusion welding or wire and arc additive manufacturing of Mg alloy components. 展开更多
关键词 AZ31 alloy TIG welding Columnar-to-equiaxed transition Grain refinement Heterogeneous nucleation
原文传递
Nitrogen-cycling processes under long-term compound heavy metal(loids)pressure around a gold mine:Stimulation of nitrite reduction 被引量:1
4
作者 Xuesong Hu Xiaoxia Liu +1 位作者 Shuo Zhang Caihong Yu 《Journal of Environmental Sciences》 2025年第1期571-581,共11页
Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This ... Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids)exposure.The results showed that the diversity and abundance of nitrogen-cyclingmicroorganisms showed negative feedback to heavy metal(loids)concentrations.Denitrifying microorganisms were shown to be the dominant microorganisms with over 60%of relative abundance and a complex community structure including 27 phyla.Further,the key bacterial species in the denitrification process were calculated using a random forest model,where the top three key species(Pseudomonas stutzei,Sphingobium japonicum and Leifsonia rubra)were found to play a prominent role in nitrite reduction.Functional gene analysis and qPCR revealed that nirK,which is involved in nitrite reduction,significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%.The experimental results confirmed that the activity of nitrite reductase(Nir)encoded by nirK in the soil was increased at high concentrations of heavy metal(loids).Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids),the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species.The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids). 展开更多
关键词 N cycle Nitrite reduction Nitrite reductase METAGENOME Key species
原文传递
Interfacial Pt-N coordination for promoting oxygen reduction reaction 被引量:1
5
作者 Jialin Cai Yizhe Chen +5 位作者 Ruiwen Zhang Cheng Yuan Zeyu Jin Yongting Chen Shiming Zhang Jiujun Zhang 《Chinese Chemical Letters》 2025年第2期481-485,共5页
Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange... Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells.For fundamental understanding,clearly identifying the metalsupport effect on enhancement mechanisms of ORR electrocatalysis is definitely needed.In this work,the impact of Pt-support interaction via interfacial Pt-N coordination on electrocatalytic ORR activity and stability in Pt/N-C catalyst is deeply studied through structural/compositional characterizations,electrochemical measurements and theoretical DFT-calculations/AIMD-simulations.The resulting Pt/N-C catalyst exhibits a superior electrocatalytic performance compared to the commercial Pt/C catalyst in both half-cell and H_(2)-O_(2)fuel cell.Experimental and theoretical results reveal that the interfacial Pt-N coordination enables electron transfer from N-C support to Pt nanoparticles,which can weaken the adsorption strength of oxygen intermediates on Pt surface to improve ORR activity and induce the strong Pt-support interaction to enhance electrochemical stability. 展开更多
关键词 Oxygen reduction reaction N-doped carbon PLATINUM Pt-N Theoretical calculations
原文传递
Understanding amorphous PrO_(x)-based N-doped carbon catalyst as an efficient electrocatalyst for oxygen reduction reaction 被引量:1
6
作者 Xiao Man Ying Chang +2 位作者 Shaohong Guo Meilin Jia Jingchun Jia 《Journal of Rare Earths》 2025年第1期73-80,I0003,共9页
The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-bas... The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-based catalyst PrO_(x)-NC,and optimized the calcination temperature and proportion.The PrO_(x)-NC-900 catalyst has high durability and activity and exhibits superior ORR performance in alkaline electrolytes with an onset potential(E_(0))of 0.96 V and a half-wave potential(E_(1/2))of 0.85 V.The research results indicate that the ORR performance of rare earth oxide composite carbon catalysts can be improved by adjusting oxygen vacancies(Ov).In addition,high specific surface area,N rich defect carbon.increased oxygen vacancies,and the synergistic effect of oxygen vacancies and N-doped carbon interfacial layer play a significant part in the enhancement of ORR.The performance of the zinc air battery assembled with PrO_(x)-NC-900 is significantly improved,and rare earth oxides and carbon frameworks originating from metal organic frameworks(MOFs)contribute to the oxygen electrocatalyst and electron transfer rate of the zinc air battery.This catalyst provides promising information for the development of rare earth metal oxide nanostructures as potential candidate materials for ORR in alkaline media. 展开更多
关键词 Rare earths Metal-organic framework Oxygen reduction reaction Zn-air batteries
原文传递
Radiation reduction modification of sp^(2) carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(Ⅵ) removal 被引量:1
7
作者 Shouchao Zhong Yue Wang +6 位作者 Mingshu Xie Yiqian Wu Jiuqiang Li Jing Peng Liyong Yuan Maolin Zhai Weiqun Shi 《Chinese Chemical Letters》 2025年第5期277-282,共6页
A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for ... A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for Cr(Ⅵ) removal.The morphology and structure of rBDATN-HCl were analyzed and identified by SEM,FTIR,XRD and solid-state13C NMR.It is found that the active functional groups,such as hydroxyl and amide,were introduced into BDATN after radiation reduction and acidification.The prepared rBDATN-HCl demonstrates a photocatalytic reduction removal rate of Cr(Ⅵ) above 99%after 60min of illumination with a solid-liquid ratio of 0.5 mg/mL,showing outstanding performance,which is attributed to the increase of dispersibility and adsorption sites of r BDATN-HCl.In comparison to the cBDATN-HCl synthesized with chemical reduction,rBDATN-HCl exhibits a better photoreduction performance for Cr(Ⅵ),demonstrating the advantages of radiation preparation of rBDATN-HCl.It is expected that more functionalized sp^(2) carbon-conjugated COFs could be obtained by this radiation-induced reduction strategy. 展开更多
关键词 Covalent organic framework Gamma radiation Photocatalytic reduction CHROMIUM Water purification
原文传递
Iron-doping regulated light absorption and active sites in LiTaO_(3) single crystal for photocatalytic nitrogen reduction 被引量:1
8
作者 Zhenfei Tang Yunwu Zhang +10 位作者 Zhiyuan Yang Haifeng Yuan Tong Wu Yue Li Guixiang Zhang Xingzhi Wang Bin Chang Dehui Sun Hong Liu Lili Zhao Weijia Zhou 《Chinese Chemical Letters》 2025年第3期206-211,共6页
In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-dept... In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes. 展开更多
关键词 Nitrogen reduction PHOTOCATALYSIS Fe doping Single crystal Lithium tantalate crystal
原文传递
Influence of heavy reduction during solidification process of billets based on 3D reconstruction of dendrites 被引量:1
9
作者 Yi Nian You-cheng Zong +3 位作者 Chao-jie Zhang Xin-yu Tang Jia-le Li Li-qiang Zhang 《Journal of Iron and Steel Research International》 2025年第6期1596-1611,共16页
The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of den... The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of dendritic solidification structures.Combining scanning electron microscopy and energy-dispersive scanning analysis and ANSYS simulation,the high-precision image processing software Mimics Research was utilized to conduct the extraction of dendritic morphologies.Reverse engineering software NX Imageware was employed for the 3D reconstruction of two-dimensional dendritic morphologies,restoring the dendritic characteristics in three-dimensional space.The results demonstrate that in a two-dimensional plane,dendrites connect with each other to form irregularly shaped“ring-like”structures.These dendrites have a thickness greater than 0.1 mm along the Z-axis direction,leading to the envelopment of molten steel by dendrites in a 3D space of at least 0.1 mm.This results in obstructed flow,confirming the“bridging”of dendrites in three-dimensional space,resulting in a tendency for central segregation.Dense and dispersed tiny dendrites,under the influence of heat flow direction,interconnect and continuously grow,gradually forming primary and secondary dendrites in three-dimensional space.After the completion of dendritic solidification and growth,these microdendrites appear dense and dispersed on the two-dimensional plane,providing the nuclei for the formation of new dendrites.When reduction occurs at a solid fraction of 0.46,there is a noticeable decrease in dendritic spacing,resulting in improved central segregation. 展开更多
关键词 SOLIDIFICATION Dendritic growth 3D reconstruction Heavy reduction Central segregation
原文传递
In situ construction of Cu(Ⅰ)-Cu(Ⅱ) pairs for efficient electrocatalytic nitrate reduction reaction to ammonia 被引量:1
10
作者 Muyun Zheng Yuchi Wan +7 位作者 Leping Yang Shen Ao Wangyang Fu Zhengjun Zhang Zheng-Hong Huang Tao Ling Feiyu Kang Ruitao Lv 《Journal of Energy Chemistry》 2025年第1期106-113,共8页
Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles in... Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states. 展开更多
关键词 Ammonia synthesis Cu oxidation state ELECTROCHEMISTRY Nitrate reduction In situ XPS
在线阅读 下载PDF
Application of a low-cost and high-efficiency polymer non-catalytic reduction technology for NO_(x) removal in waste-to-energy plant 被引量:1
11
作者 Shuai Xiao Congbo Li +4 位作者 Xueyan Zheng Liya Li Jingzhong Si Xiuqi Shu Xianqiong Zeng 《Journal of Environmental Sciences》 2025年第12期112-125,共14页
Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration eff... Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration efficiency,complex denitration system,and high investment and operating cost.Here we put forward a novel polymer non-catalytic reduction(PNCR)technology that utilized a new type of polymer agent to remove NO_(x),and the proposed PNCR technology was applied to the existing waste-to-energy plant to test the denitration performance.The PNCR technology demonstrated excellent denitration performance with a NO_(x) emission concentration of<100 mg/Nm^(3) and high denitration efficiency of>75%at the temperature range of 800-900℃,which showed the application feasibility even on the complex and unstable industrial operating conditions.In addition,PNCR and hybrid polymer/selective non-catalytic reduction(PNCR/SNCR)technology possessed remarkable economic advantages including low investment fee and low operating cost of<10 CNY per ton of municipal solid waste(MSW)compared with selective catalytic reduction(SCR)technology.The excellent denitration performance of PNCR technology forebodes a broad industrial application prospect in the field of flue gas cleaning for waste-to-energy plants. 展开更多
关键词 Polymer non-catalytic reduction High denitration efficiency Low operating cost Waste-to-energy plant
原文传递
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:1
12
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 Oxygen reduction reaction Biomass-derived electrocatalyst Single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Relative vacuum reduction innovative processes applied in primary magnesium production-Comprehensive analysis of thermodynamics,resource,energy flow,and carbon emission 被引量:1
13
作者 Xiaolong Li Tingan Zhang +3 位作者 Yan Liu Junhua Guo Jingzhong Xu Yuanyuan Liang 《Journal of Magnesium and Alloys》 2025年第7期3134-3149,共16页
Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industr... Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industries.The global production of primary magnesium has reached approximately 1.2 million tons per year,with anticipated diversification in future applications and significant market demand.Nevertheless,approximately 80%of the world’s primary magnesium is still manufactured through the Pidgeon process,grappling with formidable issues including high energy consumption,massive carbon emission,significant resource depletion,and environmental pollution.The implementation of the relative vacuum method shows potential in breaking through technological challenges in the Pidgeon process,facilitating clean,low-carbon continuous magnesium smelting.This paper begins by introducing the principles of the relative vacuum method.Subsequently,it elucidates various innovative process routes,including relative vacuum ferrosilicon reduction,aluminum thermal reduction co-production of spinel,and aluminum thermal reduction co-production of calcium aluminate.Finally,and thermodynamic foundations of the relative vacuum,a quantitative analysis of the material,energy flows,carbon emission,and production cost for several new processes is conducted,comparing and analyzing them against the Pidgeon process.The study findings reveal that,with identical raw materials,the relative vacuum silicon thermal reduction process significantly decreases raw material consumption,energy consumption,and carbon dioxide emissions by 15.86%,30.89%,and 26.27%,respectively,compared to the Pidgeon process.The relative vacuum process,using magnesite as the raw material and aluminum as the reducing agent,has the lowest magnesium-to-feed ratio,at only 3.385.Additionally,its energy consumption and carbon dioxide emissions are the lowest,at 1.817 tce/t Mg and 7.782 t CO_(2)/t Mg,respectively.The energy consumption and carbon emissions of the relative vacuum magnesium smelting process co-producing calcium aluminate(12CaO·7Al_(2)O_(3),3CaO·Al_(2)O_(3),and CaO·Al_(2)O_(3))are highly correlated with the consumption of dolomite in the raw materials.When the reduction temperature is around 1473.15 K,the critical volume fraction of magnesium vapor for different processes varies within the range of 5%–40%.Production cost analysis shows that the relative vacuum primary magnesium smelting process has significant economic benefits.This paper offers essential data support and theoretical guidance for achieving energy efficiency,carbon reduction in magnesium smelting,and the industrial adoption of innovative processes. 展开更多
关键词 Magnesium smelting Relative vacuum reduction process THERMODYNAMICS Resource and energy flow Carbon emission
在线阅读 下载PDF
Mindfulness-based stress reduction and mental health in department of emergency nurses:A narrative review 被引量:1
14
作者 Rong-Rong Zhou Ling-Long Chen Le-Dan Lin 《World Journal of Psychiatry》 2025年第9期111-117,共7页
Emergency department nurses face severe occupational stress leading to anxiety,depression,and burnout,which significantly impair their well-being and patientcare quality.This narrative review examined the role of mind... Emergency department nurses face severe occupational stress leading to anxiety,depression,and burnout,which significantly impair their well-being and patientcare quality.This narrative review examined the role of mindfulness-based stress reduction(MBSR)in addressing these challenges.Rooted in nonjudgmental present-moment awareness,MBSR enhances emotional regulation and reduces psychological distress by fostering adaptive coping strategies.Studies have demonstrated its efficacy in lowering anxiety,depressive symptoms,and emotional exhaustion,while improving workplace well-being,empathy,and job satisfaction.Mechanistically,MBSR improves interoceptive awareness and autonomic balance,as evidenced by physiological markers such as heart rate variability.However,gaps remain in long-term efficacy assessments,personalized interventions,and integration with multidisciplinary approaches.Future research should prioritize tailored biomarker-driven programs,longitudinal studies,and scalable implementation strategies in high-stress clinical settings.This review underscores MBSR’s potential as a sustainable,evidence-based tool to enhance emergency department nurses’mental health and professional performance,advocating for broader adoption and further refinement of its practical applications. 展开更多
关键词 Job satisfaction Emotional regulation Mental health Occupational stress Mindfulness-based stress reduction Emergency department nurses
暂未订购
Progress of mechanistic pathways involved in electrochemical CO_(2)reduction 被引量:1
15
作者 Jing-Wen DuanMu Xue-Peng Yang +2 位作者 Fei-Yue Gao Masoud Atapour Min-Rui Gao 《Journal of Energy Chemistry》 2025年第3期745-767,共23页
The electrochemical reduction of carbon dioxide(CO_(2))into value-added chemicals and fuels has been extensively studied as a promising strategy for mitigating environmental issues and achieving sustainable energy con... The electrochemical reduction of carbon dioxide(CO_(2))into value-added chemicals and fuels has been extensively studied as a promising strategy for mitigating environmental issues and achieving sustainable energy conversion.Substantial efforts have been made to improve the understanding of CO_(2)reduction reaction(CO_(2)RR)mechanisms by computational and spectroscopic studies.An in-depth understanding of CO_(2)RR mechanism can provide the guidance and criteria for designing high-efficiency catalysts,and hence,steering CO_(2)RR to desired products.This review systematically discusses the formation mechanisms and reaction pathways of various CO_(2)RR products,including C_(1)products(CO,HCOOH,and CH_(4)),C_(2)products(C_(2)H_(4),C_(2)H_(5)OH,and CH_(3)COOH),and C_(3+)products(C_(3)H_(6),C_(3)H_(7)OH,and others).The reaction pathways are elucidated by analyzing the adsorption behavior,energy barriers,and intermediate coupling steps involved in the generation of each product.Particular emphasis is placed on the key intermediates,such as^(*)OCHO,^(*)COOH,^(*)CO,^(*)OCCOH,and^(*)CCO,which play crucial roles in determining the product selectivity.The effects of catalyst composition,morphology,and electronic structure on the adsorption and activation of these intermediates are also discussed.Moreover,advanced characterization techniques,including in-situ spectroscopy and isotopic labeling experiments,are highlighted for their contributions to unraveling the reaction mechanisms.The review aims to provide critical insights to reveal the activity-determining para meters and underlying CO_(2)RR mechanisms,which will guide the rational design of next-generation electrocatalysts for selective CO^(2)RR towards high-value products. 展开更多
关键词 CO_(2)reduction reaction Reaction pathways Faradaic efficiency Catalytic mechanism Cataly ststructure
在线阅读 下载PDF
Numerical Simulation of Microstructure Refinement of Al-Cu-Mg-Ag Alloy During Solidification
16
作者 ZHU Shiqing ZHANG Hong CHEN Linghao 《材料科学与工程学报》 北大核心 2025年第4期513-519,524,共8页
Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material stru... Al-Cu-Mg-Ag alloys have become a research hotspot because of its good heat resistance.Its excellent mechanical properties are inseparable from the regulation of the structure by researchers.The method of material structure simulation has become more and more perfect.This study employs numerical simulation to investigate the microstructure evolution of Al-Cu-Mg-Ag alloys during solidification with the aim of controlling its structure.The size distribution of Ti-containing particles in an Al-Ti-B master alloy was characterized via microstructure observation,serving as a basis for optimizing the nucleation density parameters for particles of varying radii in the phase field model.The addition of refiner inhibited the growth of dendrites and no longer produced coarse dendrites.With the increase of refiner,the grains gradually tended to form cellular morphology.The refined grains were about 100μm in size.Experimental validation of the simulated as-cast grain morphology was conducted.The samples were observed by metallographic microscope and scanning electron microscope.The addition of refiner had a significant effect on the refinement of the alloy,and the average grain size after refinement was also about 100μm.At the same time,the XRD phase identification of the alloy was carried out.The observation of the microstructure morphology under the scanning electron microscope showed that the precipitated phase was mainly concentrated on the grain boundary.The Al_(2)Cu accounted for about 5%,and the matrix phase FCC accounted for about 95%,which also corresponded well with the simulation results. 展开更多
关键词 Al-Cu-Mg-Ag alloy Phase field simulation Dendrite refinement Phase diagram calculation
在线阅读 下载PDF
Development of Palygorskite-CaIn_(2)S_(4) composite for rapid Cr(Ⅵ) reduction under visible light 被引量:1
17
作者 Yuanyuan Wang Shijun Jia +3 位作者 Shiqiang Ding Wenyan Zhang Rui Shu Yingfei Hu 《Journal of Environmental Sciences》 2025年第10期562-575,共14页
Using natural minerals to eliminate harmful Cr(Ⅵ)under sustainable sunshine has significant potential.Herein,Palygorskite nanorods were utilized as carriers for the in-situ synthesis of CaIn_(2)S_(4) photocatalysts t... Using natural minerals to eliminate harmful Cr(Ⅵ)under sustainable sunshine has significant potential.Herein,Palygorskite nanorods were utilized as carriers for the in-situ synthesis of CaIn_(2)S_(4) photocatalysts through a simple one-pot thermal process,enabling the efficient reduction of Cr(Ⅵ).With a Palygorskite to CaIn_(2)S_(4) mass ratio of 5%,the conversion rate of Cr(Ⅵ)reached 98%after 60min of visible-light exposure,with a remarkable reaction rate of 0.0633 min^(-1).The effective integration of CaIn_(2)S_(4) with Palygorskite led to a more uniform dispersion of CaIn_(2)S_(4),exposing more reactive sites.Moreover,the establishment of a heterojunction between CaIn_(2)S_(4) and Palygorskite facilitated the transport of photogenerated electrons from CaIn_(2)S_(4),enhancing the efficiency of charge separation.These factors contribute to the improved photocatalytic performance.Additionally,the developed composite photocatalysts demonstrated excellent stability under light exposure and could be reused efficiently.Trapping tests on active substances revealed that e-played key roles in the Cr(Ⅵ)reduction.This research suggests the potential of using natural minerals to fabricate composite photocatalysts capable of effectively removing pollutants from the environment using solar energy. 展开更多
关键词 Cr(Ⅵ)reduction Visible light PALYGORSKITE CaIn_(2)S_(4)
原文传递
Photo-assisted thermal catalytic CO_(2) reduction over Ru-TiO_(2) catalysts 被引量:1
18
作者 Haodong Zhang Min Chen +5 位作者 Weiming Qian Jianghao Zhang Xueyan Chen Jinhou Fang Chi Wang Changbin Zhang 《Journal of Environmental Sciences》 2025年第9期501-509,共9页
Photothermal catalysis is a promising technology to convert CO_(2)into high value-added products.Here,we show that loading Ru NPs on TiO_(2)achieved a remarkable photothermal synergistic effect and the Ru-TiO_(2)demon... Photothermal catalysis is a promising technology to convert CO_(2)into high value-added products.Here,we show that loading Ru NPs on TiO_(2)achieved a remarkable photothermal synergistic effect and the Ru-TiO_(2)demonstrated a high efficiency for the photothermal conversion of low CO_(2)concentration to CH_(4)at the gas-solid interface.The photothermal activity of the Ru-TiO_(2)(217.9μmol/(g·h))was nearly 6 times higher than pure thermal activity(38.08μmol/(g·h)),and nearly 20 times than the photocatalytic activity(10.9μmol/(g·h)).We revealed that the light excitation could drive the generated electrons from TiO_(2)to Ru particles,beneficial to CO_(2)reduction,while external heating showed no influence on the charge separation of the Ru-TiO_(2).Hence,the photothermal synergy is not a heat-assisted photocatalytic process,but a photo-assisted thermal catalytic process.We finally demonstrated that the CO_(2)was firstly converted to CO,and the CO was further hydrogenated to CH_(4).The introduction of light could promote the activation of intermediate CO species at the Ru-Ti interface sites,thus greatly accelerating CO hydrogenation to CH_(4).This work contributes to further understanding of the mechanism of photothermal catalytic CO_(2)reduction. 展开更多
关键词 Photothermal catalysis Ru-TiO_(2) CO_(2)reduction to CH_(4)
原文传递
Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO_(2) reduction reaction through numerical simulations 被引量:1
19
作者 Lili Zhang Hui Gao +7 位作者 Gong Zhang Yuning Dong Kai Huang Zifan Pang Tuo Wang Chunlei Pei Peng Zhang Jinlong Gong 《Chinese Chemical Letters》 2025年第1期332-337,共6页
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec... Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR. 展开更多
关键词 Electrochemical reduction of CO_(2) Membrane electrode assembly Mass transfer Gas diffusion electrode Computational fluid dynamics
原文传递
Electrocatalytic CO_(2)reduction for the selective production of liquid oxygenates 被引量:1
20
作者 Jiapeng Ji Junnan Chen +2 位作者 Juxia Xiong Xiaolong Zhang Hui-Ming Cheng 《Journal of Energy Chemistry》 2025年第4期568-600,共33页
Electrocatalytic CO_(2)reduction(ECR)to produce value-added fuels and chemicals using renewable electricity is an emerging strategy to mitigate global warming and decrease reliance on fossil fuels.Among various ECR pr... Electrocatalytic CO_(2)reduction(ECR)to produce value-added fuels and chemicals using renewable electricity is an emerging strategy to mitigate global warming and decrease reliance on fossil fuels.Among various ECR products,liquid oxygenates(Oxys)are especially attractive due to their high energy density,high safety and transportability that could be adapted to the existing infrastructure and transportation system.However,efficiently generating these highly reduced oxygen-containing products by ECR remains challenging due to the complexity of coupled proton and electron transfer processes.In recent years,in-depth studies of reaction mechanisms have advanced the design of catalysts and the regulation of reaction systems for ECR to produce Oxys,Here,by focusing on the production of typical Oxys,such as methanol,acetic acid,ethanol,acetone,n-propanol,and isopropanol,we outline various reaction paths and key intermediates for the electrochemical conversion of CO_(2)into these target products.We also summarize the current research status and recent advances in catalysts based on their elemental composition,and consider recent studies on the change of catalyst geometry and electronic structure,as well as the optimization of reaction systems to increase ECR performance.Finally,we analyze the challenges in the field of ECR to Oxys and provide an outlook on future directions for high-efficiency catalyst prediction and design,as well as the development of advanced reaction systems. 展开更多
关键词 Electrocatalytic CO_(2)reduction Geometry and electronic structure Parameters and system configurations Liquid oxygenates
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部