Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into...Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.展开更多
Experts and officials shared their insights on poverty reduction cooperation and sustainable development during the 2025 International Seminar on Global Poverty Reduction Partnerships.
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-...Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.展开更多
The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a serie...The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a series of RuCo/C catalysts were synthesized by NaBH4 reduction method under the premise that the total metal mass percentage was 20%.X-ray diffraction(XRD)patterns and scanning electron microscopy(SEM)confirmed the formation of single-phase nanoparticles with an average size of 33 nm.Cyclic voltammograms(CV)and linear sweep voltammograms(LSV)tests indicated that RuCo(2:1)/C catalyst had the optimal ORR properties.Additionally,the RuCo(2:1)/C catalyst remarkably sustained 98.1% of its activity even after 3000 cycles,surpassing the performance of Pt/C(84.8%).Analysis of the elemental state of the catalyst surface after cycling using X-ray photoelectron spectroscopy(XPS)revealed that the Ru^(0) percentage of RuCo(2:1)/C decreased by 2.2%(from 66.3% to 64.1%),while the Pt^(0) percentage of Pt/C decreased by 7.1%(from 53.3% to 46.2%).It is suggested that the synergy between Ru and Co holds the potential to pave the way for future low-cost and highly stable ORR catalysts,offering significant promise in the context of PEMFCs.展开更多
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr...Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.展开更多
An analysis of the hot flow forming of Mg-3.0Al-l.0Zn-0.3Mn (AZ31B) alloy was conducted by experiments and numerical simulations. The effects of different thickness reductions on the microstructure and mechanical pr...An analysis of the hot flow forming of Mg-3.0Al-l.0Zn-0.3Mn (AZ31B) alloy was conducted by experiments and numerical simulations. The effects of different thickness reductions on the microstructure and mechanical properties were investigated at a temperature of 693 K, a spindle speed of 800 rev/min and a feed ratio of 0.1 mm/rev. Thickness reductions have great influence on the uniformity of microstructure along the radial direction (RD) and the grain sizes become refined and uniform when the thickness reduction reaches 45%. The c-axes of most grains are approximately parallel to the RD, with a slight inclination towards the axial direction (AD). The best mechanical properties with UTS of 280 MPa and YS of 175 MPa near the outer surface while 266 MPa and 153 MPa near the inner surface have been achieved due to grain refinement and texture. Moreover, the material flow behavior and stress/strain distributions for singlepass reductions were studied using the ABAQUS/Explicit software. The calculated results indicate that the materials mainly suffer from triaxial compressive stresses and undergo compressive plastic strain in RD and tensile strains in other directions. The higher stress and strain rate near the outer surface lead to more refined grains than that of other regions along the RD, whereas the orientation of the maximum principal compressive stress leads to a discrepancy of the grain orientations in RD.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
The effect of electroslag refining on iron reduction from commercial aluminum was investigated.Cast electrodes of commercial aluminum were electroslag refined using KCl-NaCl-Na3AlF6 slag containing Na2B4O7.Experimenta...The effect of electroslag refining on iron reduction from commercial aluminum was investigated.Cast electrodes of commercial aluminum were electroslag refined using KCl-NaCl-Na3AlF6 slag containing Na2B4O7.Experimental results indicate that the iron content decreases with increasing Na2B4O7 addition and remelting time,and the iron content decreases from 0.400% to 0.184% under 9% Na2B4O7 addition for 30 min remelting.The elastic modulus,yield strength and ultimate tensile strength commercial aluminum are improved,and the tensile elongation is increased by 43% after electroslag refining.The chemical reaction between melt and slag to form Fe2B is the main reason for iron reduction and the thermodynamic calculation of the chemical reaction theoretically accounts for the formation of Fe2B.展开更多
The Fe reduction,microstructure evolution and corrosion susceptibility of Mg−Mn alloys made from magnesium scrap refining with Mn addition were investigated.The results show that significant Fe content change occurs d...The Fe reduction,microstructure evolution and corrosion susceptibility of Mg−Mn alloys made from magnesium scrap refining with Mn addition were investigated.The results show that significant Fe content change occurs during near-solid-melt treatment(NSMT)process even in the absence of Mn,because of the high saturation of Fe in the melt.Furthermore,in the NSMT process,even a small amount of Mn addition can lead to a sharp deposition of Mn atoms.The NSMT process can increase the growth rate of the Fe-rich particles,and then accelerate their sinking movement.Nevertheless,the addition of Mn hinders the coarsening process of Fe-rich particles.Besides,the corrosion susceptibility of the alloys is mainly affected by the solubility of Fe,which can be significantly reduced by Mn addition.Moreover,the presence of more Fe-rich particles does not necessarily increase the corrosion susceptibility of the alloy.Consequently,in the refining process of Mg−Mn alloys made from magnesium scrap,on the basis of NSMT process and adding an appropriate Mn content(about 0.5 wt.%),the purity of the melt can be improved,thereby obtaining an alloy with excellent corrosion resistance.展开更多
The electrochemical conversion of nitrate,a widespread water pollutant,into valuable ammonia represents a green and decentralized approach to ammonia synthesis.However,the sluggish multielectronproton coupling path an...The electrochemical conversion of nitrate,a widespread water pollutant,into valuable ammonia represents a green and decentralized approach to ammonia synthesis.However,the sluggish multielectronproton coupling path and the low reactive species(nitrate and proton)concentration at the catalyst interface inhibit the efficiency of ammonia production from nitrate reduction reaction(NitRR).Herein,we introduce a novel iron-based tandem catalyst encapsulated by reduced graphene oxide(denoted as Fe-rGO),with a superior ammonia production rate of 47.815 mg h^(-1)mg_(ca)^(t-1)and a high Faraday efficiency(FE)of 96.51%at an applied potential of-0.5 V.It also delivers a robust stability with FE above90%under a current density of 250 mA cm^(-2)for 50 h.In situ X-ray absorption spectroscopy reveals that the FeO_(x)is dynamically translated to Fe~0 site concurrently with the enhancement of the NH_(3)production rate,suggesting the Fe^(0) site as hydrogenation active center.The asymmetric distribution of surface charges of rGO not only enriches nitrate ions at the catalytic interface and promotes the hydrogenation process in NitRR,but also protects the iron species and ensures their stability during electrolysis.The Zn-NO_(3)^(-)battery demonstrates an impressive FE of 88.6%,highlighting its exceptional potential for practical applications.展开更多
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de...The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.展开更多
Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as...Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.展开更多
Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can res...Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can result in solidification defects and reduced mechanical properties.In this work,a novel welding wire containing MgO particles has been developed to promote columnar-to-equiaxed transition(CET)in the FZ of TIG-welded AZ31 alloy.The results show the achievement of a fully equiaxed grain structure in the FZ,with a significant 71.9%reduction in grain size to 41 μm from the original coarse columnar dendrites.Furthermore,the combination of using MgO-containing welding wire and pulse current can further refine the grain size to 25.6 μm.Microstructural analyses reveal the homogeneous distribution of MgO particles in the FZ.The application of pulse current results in an increase in the number density of MgO(1-2 μm)from 5.16 × 10^(4) m^(-3) to 6.18 × 10^(4) m^(-3).The good crystallographic matching relationship between MgO and α-Mg matrix,characterized by the orientation relationship of[11(2)0]α-Mg//[0(1)1]MgO and(0002)_(α-Mg)//(111)_(MgO),indicates that the MgO particles can act as effective nucleation sites for α-Mg to reduce nucleation undercooling.According to the Hunt criteria,the critical temperature gradient for CET is greatly enhanced due to the significantly increased number density of MgO nucleation sites.In addition,the correlation with the thermal simulation results reveals a transition in the solidification conditions within the welding pool from the columnar grain zone to the equiaxed grain zone in the CET map,leading to the realization of CET.The exceptional grain refinement has contributed to a simultaneous improvement in the strength and plasticity of welded joints.This study presents a novel strategy for controlling equiaxed microstructure and optimizing mechanical properties in fusion welding or wire and arc additive manufacturing of Mg alloy components.展开更多
To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,...To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,roasting time,and bastnaesite-to-hematite mass ratio on in-situ reduction of hematite in a N_(2)atmosphere.Relevant analytical tests were used to explore the mineral phase evolution during roasting,the magnetism and microstructure of the roasted products,the phase composition,and the surface element valence of concentrate.It was found that magnetic separation of the iron concentrate afforded an iron grade of 68.87%and a recovery of 93.18%under the optimum roasting conditions.During roasting,bastnaesite decomposed to generate CO_(2)and CO,and the compact structure of hematite was gradually destroyed,resulting in microcracks.Subsequently,the CO entered the surface of the hematite through the microcracks and reacted to form a magnetite shell,and the magnetite-encapsulated hematite particles were recovered via low-intensity magnetic separation.展开更多
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform...Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.展开更多
Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This ...Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids)exposure.The results showed that the diversity and abundance of nitrogen-cyclingmicroorganisms showed negative feedback to heavy metal(loids)concentrations.Denitrifying microorganisms were shown to be the dominant microorganisms with over 60%of relative abundance and a complex community structure including 27 phyla.Further,the key bacterial species in the denitrification process were calculated using a random forest model,where the top three key species(Pseudomonas stutzei,Sphingobium japonicum and Leifsonia rubra)were found to play a prominent role in nitrite reduction.Functional gene analysis and qPCR revealed that nirK,which is involved in nitrite reduction,significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%.The experimental results confirmed that the activity of nitrite reductase(Nir)encoded by nirK in the soil was increased at high concentrations of heavy metal(loids).Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids),the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species.The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids).展开更多
Ammonia is the cornerstone of modern agriculture,providing a critical nitrogen source for global food production and serving as a key raw material for numerous industrial chemicals.Electrocatalytic nitrate reduction,a...Ammonia is the cornerstone of modern agriculture,providing a critical nitrogen source for global food production and serving as a key raw material for numerous industrial chemicals.Electrocatalytic nitrate reduction,as an environmentally friendly method for synthesizing ammonia,not only mitigates the reliance on current ammonia synthesis processes fed by traditional fossil fuels but also effectively reduces nitrate pollution resulting from agricultural and industrial activities.This review explores the fundamental principles of electrocata lytic nitrate reduction,focusing on the key steps of electron transfer and ammonia formation.Additionally,it summarizes the critical factors influencing the performance and selectivity of the reaction,including the properties of the electrolyte,operating voltage,electrode materials,and design of the electrolytic cell.Further discussion of recent advances in electrocatalysts,including pure metal catalysts,metal oxide catalysts,non-metallic catalysts,and composite catalysts,highlights their significant roles in enhancing both the efficiency and selectivity of electrocata lytic nitrate to ammonia(NRA)reactions.Critical challenges for the industrial NRA trials and further outlooks are outlined to propel this strategy toward real-world applications.Overall,the review provides an in-depth overview and comprehensive understanding of electrocata lytic NRA technology,thereby promoting further advancements and innovations in this domain.展开更多
Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange...Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells.For fundamental understanding,clearly identifying the metalsupport effect on enhancement mechanisms of ORR electrocatalysis is definitely needed.In this work,the impact of Pt-support interaction via interfacial Pt-N coordination on electrocatalytic ORR activity and stability in Pt/N-C catalyst is deeply studied through structural/compositional characterizations,electrochemical measurements and theoretical DFT-calculations/AIMD-simulations.The resulting Pt/N-C catalyst exhibits a superior electrocatalytic performance compared to the commercial Pt/C catalyst in both half-cell and H_(2)-O_(2)fuel cell.Experimental and theoretical results reveal that the interfacial Pt-N coordination enables electron transfer from N-C support to Pt nanoparticles,which can weaken the adsorption strength of oxygen intermediates on Pt surface to improve ORR activity and induce the strong Pt-support interaction to enhance electrochemical stability.展开更多
Photocatalytic conversion of CO_(2) is pivotal for mitigating the global greenhouse effect and fostering sustainable energy development.Nowadays,polymeric carbon nitride(PCN)has gained widespread application in CO_(2)...Photocatalytic conversion of CO_(2) is pivotal for mitigating the global greenhouse effect and fostering sustainable energy development.Nowadays,polymeric carbon nitride(PCN)has gained widespread application in CO_(2) solar reduction due to its excellent visible light response,suitable conduction band position,and good cost-effectiveness.However,the amorphous nature and low conductivity of PCN limit its photocatalytic efficiency by leading to low carrier concentrations and facile electron–hole recombination during photocatalysis.Addressing this bottleneck,in this study,potassium-doped PCN(KPCN)/copper(Ⅱ)-complexed bipyridine hydroxyquinoline carboxylic acid(Cu(Ⅱ)(bpy)(H_(2)hqc))composite catalysts were synthesized through a multistep microwave heating process.In the composite,the formation of an S-scheme junction facilitates the enrichment of more negative electrons on the conduction band of KPCN via intermolecular electron–hole recombination between Cu(Ⅱ)(bpy)(H_(2)hqc)(CuPyQc)and KPCN,thereby promoting efficient photoreduction of CO_(2) to CO.Microwave heating enhances the amidation reaction between these two components,achieving the immobilization of homogeneous molecular catalysts and forming amidation chemical bonds that serve as key channels for the S-scheme charge transfer.This work not only presents a new PCN-based catalytic system for CO_(2) reduction applications,but also offers a novel microwave-practical approach for immobilizing homogeneous catalysts.展开更多
Background:Enzyme fragility remains a major challenge in research and applications.Free enzymes are highly unstable,inactivated by heat,acid,alkali,or organic solvents,and often lose activity even under optimal storag...Background:Enzyme fragility remains a major challenge in research and applications.Free enzymes are highly unstable,inactivated by heat,acid,alkali,or organic solvents,and often lose activity even under optimal storage conditions.Limiting their use in cosmetics.Few commercial products combine acids and enzymes effectively.Objective:To investigate the physicochemical properties,in vitro exfoliation efficacy,and effects on facial skin parameters of a supramolecular acid-enzyme complex(SAE)composed of mandelic acid(MAN),betaine(BET),and composite enzymes(CE;papain and bromelain),thereby establishing a theoretical foundation for cosmetic applications.Methods:The supramolecular structure was characterized using Fourier transform infrared(FTIR)spectroscopy and proton nuclear magnetic resonance(1H NMR)spectroscopy.Dissolution experiments were conducted to compare the solubility of SAE and CE in aqueous solutions.Enzymatic activity assays evaluated the stabilizing effect of supramolecular deep eutectic technology on enzymes.In vitro exfoliation tests assessed acid-enzyme synergy in keratin removal.A 4-week clinical trial evaluated the efficacy of a 2%SAE essence aqueous solution on facial skin parameters.Results:Dissolution experiments confirmed that supramolecular deep eutectic technology significantly improved enzyme solubility.Enzymatic activity tests demonstrated that this technology effectively preserved protease activity,substantially enhancing its practical applicability.Furthermore,in vitro exfoliation efficacy tests revealed that this technology strengthened the synergistic interaction between acids and enzymes and exhibited superior stratum corneum-removing capability of the SAE.In clinical evaluations of efficacy,after 7 days of using the essence containing SAE,the formulation significantly enhanced cheek gloss(+8.08%),while reducing comedones volume(-16.25%).after 28 days,significantly enhanced cheek hydration(+25.0%,SCH),gloss(+15.93%),and smoothness(−7.78%SEsm),while reducing TEWL(−6.86%),sebum(−15.54%),roughness(+16.24%SEr),and pore metrics(volume:−39.98%;count:−30.64%),and decreased comedones(blackheads:−70.33%;Whiteheads:−52.42%;all p<0.05).Conclusion:The supramolecular acid-enzyme complex demonstrates enhanced stability,improved solubility,and superior exfoliation efficacy compared to free enzymes.Clinical results further confirm its multifunctional benefits,including enhancing skin hydration,sebum regulation,barrier repair,pore refinement,and comedolytic effects.This study provides both theoretical and practical foundations for developing stable acid-enzyme combinations in dermatological applications.展开更多
The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-bas...The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-based catalyst PrO_(x)-NC,and optimized the calcination temperature and proportion.The PrO_(x)-NC-900 catalyst has high durability and activity and exhibits superior ORR performance in alkaline electrolytes with an onset potential(E_(0))of 0.96 V and a half-wave potential(E_(1/2))of 0.85 V.The research results indicate that the ORR performance of rare earth oxide composite carbon catalysts can be improved by adjusting oxygen vacancies(Ov).In addition,high specific surface area,N rich defect carbon.increased oxygen vacancies,and the synergistic effect of oxygen vacancies and N-doped carbon interfacial layer play a significant part in the enhancement of ORR.The performance of the zinc air battery assembled with PrO_(x)-NC-900 is significantly improved,and rare earth oxides and carbon frameworks originating from metal organic frameworks(MOFs)contribute to the oxygen electrocatalyst and electron transfer rate of the zinc air battery.This catalyst provides promising information for the development of rare earth metal oxide nanostructures as potential candidate materials for ORR in alkaline media.展开更多
基金National Key Research and Development Program of China(2021YFB3700801)。
文摘Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.
文摘Experts and officials shared their insights on poverty reduction cooperation and sustainable development during the 2025 International Seminar on Global Poverty Reduction Partnerships.
基金financial support of the National Natural Science Foundation of China(No.52472271)the National Key Research and Development Program of China(No.2023YFE0115800)。
文摘Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.
基金Funded by the 111 Project(No.B17034)Open Project of Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle(No.ZDSYS202212)+1 种基金Innovative Research Team Development Program of Ministry of Education of China(No.IRT_17R83)the Science and Technology Project of China Southern Power Grid Co.,Ltd.(No.GDKJXM20222546)。
文摘The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a series of RuCo/C catalysts were synthesized by NaBH4 reduction method under the premise that the total metal mass percentage was 20%.X-ray diffraction(XRD)patterns and scanning electron microscopy(SEM)confirmed the formation of single-phase nanoparticles with an average size of 33 nm.Cyclic voltammograms(CV)and linear sweep voltammograms(LSV)tests indicated that RuCo(2:1)/C catalyst had the optimal ORR properties.Additionally,the RuCo(2:1)/C catalyst remarkably sustained 98.1% of its activity even after 3000 cycles,surpassing the performance of Pt/C(84.8%).Analysis of the elemental state of the catalyst surface after cycling using X-ray photoelectron spectroscopy(XPS)revealed that the Ru^(0) percentage of RuCo(2:1)/C decreased by 2.2%(from 66.3% to 64.1%),while the Pt^(0) percentage of Pt/C decreased by 7.1%(from 53.3% to 46.2%).It is suggested that the synergy between Ru and Co holds the potential to pave the way for future low-cost and highly stable ORR catalysts,offering significant promise in the context of PEMFCs.
基金supports from the National Natural Science Foundation of China(Grant Nos.12305372 and 22376217)the National Key Research&Development Program of China(Grant Nos.2022YFA1603802 and 2022YFB3504100)+1 种基金the projects of the key laboratory of advanced energy materials chemistry,ministry of education(Nankai University)key laboratory of Jiangxi Province for persistent pollutants prevention control and resource reuse(2023SSY02061)are gratefully acknowledged.
文摘Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.
基金finanically supported by the National Key Research and Development Program of China (Nos. 2016YFB0101604 and 2016YFB0301103)National Natural Science Foundation of China (No. 51601112)Shanghai Rising-Star Program (No. 17QB1403000)
文摘An analysis of the hot flow forming of Mg-3.0Al-l.0Zn-0.3Mn (AZ31B) alloy was conducted by experiments and numerical simulations. The effects of different thickness reductions on the microstructure and mechanical properties were investigated at a temperature of 693 K, a spindle speed of 800 rev/min and a feed ratio of 0.1 mm/rev. Thickness reductions have great influence on the uniformity of microstructure along the radial direction (RD) and the grain sizes become refined and uniform when the thickness reduction reaches 45%. The c-axes of most grains are approximately parallel to the RD, with a slight inclination towards the axial direction (AD). The best mechanical properties with UTS of 280 MPa and YS of 175 MPa near the outer surface while 266 MPa and 153 MPa near the inner surface have been achieved due to grain refinement and texture. Moreover, the material flow behavior and stress/strain distributions for singlepass reductions were studied using the ABAQUS/Explicit software. The calculated results indicate that the materials mainly suffer from triaxial compressive stresses and undergo compressive plastic strain in RD and tensile strains in other directions. The higher stress and strain rate near the outer surface lead to more refined grains than that of other regions along the RD, whereas the orientation of the maximum principal compressive stress leads to a discrepancy of the grain orientations in RD.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金Project (50825401) supported by the National Natural Science Foundation of ChinaProject (2012CB61905) supported by the National Basic Research Program of China
文摘The effect of electroslag refining on iron reduction from commercial aluminum was investigated.Cast electrodes of commercial aluminum were electroslag refined using KCl-NaCl-Na3AlF6 slag containing Na2B4O7.Experimental results indicate that the iron content decreases with increasing Na2B4O7 addition and remelting time,and the iron content decreases from 0.400% to 0.184% under 9% Na2B4O7 addition for 30 min remelting.The elastic modulus,yield strength and ultimate tensile strength commercial aluminum are improved,and the tensile elongation is increased by 43% after electroslag refining.The chemical reaction between melt and slag to form Fe2B is the main reason for iron reduction and the thermodynamic calculation of the chemical reaction theoretically accounts for the formation of Fe2B.
基金Project(2016YFB0301100)supported by the National Key Research and Development Program of ChinaProject(2018CDJDCD0001)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The Fe reduction,microstructure evolution and corrosion susceptibility of Mg−Mn alloys made from magnesium scrap refining with Mn addition were investigated.The results show that significant Fe content change occurs during near-solid-melt treatment(NSMT)process even in the absence of Mn,because of the high saturation of Fe in the melt.Furthermore,in the NSMT process,even a small amount of Mn addition can lead to a sharp deposition of Mn atoms.The NSMT process can increase the growth rate of the Fe-rich particles,and then accelerate their sinking movement.Nevertheless,the addition of Mn hinders the coarsening process of Fe-rich particles.Besides,the corrosion susceptibility of the alloys is mainly affected by the solubility of Fe,which can be significantly reduced by Mn addition.Moreover,the presence of more Fe-rich particles does not necessarily increase the corrosion susceptibility of the alloy.Consequently,in the refining process of Mg−Mn alloys made from magnesium scrap,on the basis of NSMT process and adding an appropriate Mn content(about 0.5 wt.%),the purity of the melt can be improved,thereby obtaining an alloy with excellent corrosion resistance.
基金supported by the National Natural Science Foundation of China(12205300(H.S.),12405377(M.H.L))the Postdoctoral Science Foundation of China(2024M763694(M.H.L))+3 种基金the Natural Science Foundation of Hunan Province(2024JJ4027(H.S.))the Postdoctoral Fellowship Program of CPSF under Grant Number GZB20240859(M.H.L)financial support from the Hunan Normal University Program(grant05311204666)financial support from the 2024 Large Instrument Testing Open Fund of Hunan Normal University(24CSY033,24CSY086)。
文摘The electrochemical conversion of nitrate,a widespread water pollutant,into valuable ammonia represents a green and decentralized approach to ammonia synthesis.However,the sluggish multielectronproton coupling path and the low reactive species(nitrate and proton)concentration at the catalyst interface inhibit the efficiency of ammonia production from nitrate reduction reaction(NitRR).Herein,we introduce a novel iron-based tandem catalyst encapsulated by reduced graphene oxide(denoted as Fe-rGO),with a superior ammonia production rate of 47.815 mg h^(-1)mg_(ca)^(t-1)and a high Faraday efficiency(FE)of 96.51%at an applied potential of-0.5 V.It also delivers a robust stability with FE above90%under a current density of 250 mA cm^(-2)for 50 h.In situ X-ray absorption spectroscopy reveals that the FeO_(x)is dynamically translated to Fe~0 site concurrently with the enhancement of the NH_(3)production rate,suggesting the Fe^(0) site as hydrogenation active center.The asymmetric distribution of surface charges of rGO not only enriches nitrate ions at the catalytic interface and promotes the hydrogenation process in NitRR,but also protects the iron species and ensures their stability during electrolysis.The Zn-NO_(3)^(-)battery demonstrates an impressive FE of 88.6%,highlighting its exceptional potential for practical applications.
基金supported by the National Natural Science Foundation of China(No.52474355)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project),China(Nos.2022JH25/10200003 and 2023JH2/101800058).
文摘The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.
基金financially supported by the National Natural Science Foundation of China(No.21675131)the Volkswagen Foundation(Freigeist Fellowship No.89592)+1 种基金the Natural Science Foundation of Chongqing(No.2020jcyj-zdxmX0003,CSTB2023NSCQ-MSX0924)the National Research Foundation,Singapore,and A*STAR(Agency for Science Technology and Research)under its LCER Phase 2 Programme Hydrogen&Emerging Technologies FI,Directed Hydrogen Programme(Award No.U2305D4003).
文摘Ammonia and nitric acid,versatile industrial feedstocks,and burgeoning clean energy vectors hold immense promise for sustainable development.However,Haber–Bosch and Ostwald processes,which generates carbon dioxide as massive by-product,contribute to greenhouse effects and pose environmental challenges.Thus,the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics,with the harnessing of solar energy emerging as an enticing and viable option.This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation,fields ripe with potential for innovation.The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers.Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures,rational element selection,and functional planning,state-of-the-art experimental protocols for understanding photo-fixation processes,valid photocatalytic activity evaluation,and the rational design of catalysts.Furthermore,the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation.It scrutinizes the existing challenges and prospects within this burgeoning domain,aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.
基金supported by the National Natural Science Foundation of China(No.51871155).
文摘Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can result in solidification defects and reduced mechanical properties.In this work,a novel welding wire containing MgO particles has been developed to promote columnar-to-equiaxed transition(CET)in the FZ of TIG-welded AZ31 alloy.The results show the achievement of a fully equiaxed grain structure in the FZ,with a significant 71.9%reduction in grain size to 41 μm from the original coarse columnar dendrites.Furthermore,the combination of using MgO-containing welding wire and pulse current can further refine the grain size to 25.6 μm.Microstructural analyses reveal the homogeneous distribution of MgO particles in the FZ.The application of pulse current results in an increase in the number density of MgO(1-2 μm)from 5.16 × 10^(4) m^(-3) to 6.18 × 10^(4) m^(-3).The good crystallographic matching relationship between MgO and α-Mg matrix,characterized by the orientation relationship of[11(2)0]α-Mg//[0(1)1]MgO and(0002)_(α-Mg)//(111)_(MgO),indicates that the MgO particles can act as effective nucleation sites for α-Mg to reduce nucleation undercooling.According to the Hunt criteria,the critical temperature gradient for CET is greatly enhanced due to the significantly increased number density of MgO nucleation sites.In addition,the correlation with the thermal simulation results reveals a transition in the solidification conditions within the welding pool from the columnar grain zone to the equiaxed grain zone in the CET map,leading to the realization of CET.The exceptional grain refinement has contributed to a simultaneous improvement in the strength and plasticity of welded joints.This study presents a novel strategy for controlling equiaxed microstructure and optimizing mechanical properties in fusion welding or wire and arc additive manufacturing of Mg alloy components.
基金the financial support from the National Key R&D Program of China(No.2022YFC2905800)the National Natural Science Foundation of China(Nos.52174242,52130406)。
文摘To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,roasting time,and bastnaesite-to-hematite mass ratio on in-situ reduction of hematite in a N_(2)atmosphere.Relevant analytical tests were used to explore the mineral phase evolution during roasting,the magnetism and microstructure of the roasted products,the phase composition,and the surface element valence of concentrate.It was found that magnetic separation of the iron concentrate afforded an iron grade of 68.87%and a recovery of 93.18%under the optimum roasting conditions.During roasting,bastnaesite decomposed to generate CO_(2)and CO,and the compact structure of hematite was gradually destroyed,resulting in microcracks.Subsequently,the CO entered the surface of the hematite through the microcracks and reacted to form a magnetite shell,and the magnetite-encapsulated hematite particles were recovered via low-intensity magnetic separation.
基金supported by the National Natural Science Foundation of China(No.21571062)the Program for Professor of Special Appointment(Eastern Scholar)at the Shanghai Institutions of Higher Learning to JGL,and the Fundamental Research Funds for the Central Universities(No.222201717003)。
文摘Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.
基金supported by the National Natural Science Foundation of China(No.41977029).
文摘Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids)exposure.The results showed that the diversity and abundance of nitrogen-cyclingmicroorganisms showed negative feedback to heavy metal(loids)concentrations.Denitrifying microorganisms were shown to be the dominant microorganisms with over 60%of relative abundance and a complex community structure including 27 phyla.Further,the key bacterial species in the denitrification process were calculated using a random forest model,where the top three key species(Pseudomonas stutzei,Sphingobium japonicum and Leifsonia rubra)were found to play a prominent role in nitrite reduction.Functional gene analysis and qPCR revealed that nirK,which is involved in nitrite reduction,significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%.The experimental results confirmed that the activity of nitrite reductase(Nir)encoded by nirK in the soil was increased at high concentrations of heavy metal(loids).Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids),the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species.The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids).
基金supported by the National Key Research and Development Program of China(2023YFE0120900)the National Natural Science Foundation of China(52377160)+2 种基金the National Natural Science Foundation of China National Young Talents Project(GYKP010)Shaanxi Provincial Natural Science Program(2023-JCYB-425)Xi’an Jiaotong University Young Top Talents Program。
文摘Ammonia is the cornerstone of modern agriculture,providing a critical nitrogen source for global food production and serving as a key raw material for numerous industrial chemicals.Electrocatalytic nitrate reduction,as an environmentally friendly method for synthesizing ammonia,not only mitigates the reliance on current ammonia synthesis processes fed by traditional fossil fuels but also effectively reduces nitrate pollution resulting from agricultural and industrial activities.This review explores the fundamental principles of electrocata lytic nitrate reduction,focusing on the key steps of electron transfer and ammonia formation.Additionally,it summarizes the critical factors influencing the performance and selectivity of the reaction,including the properties of the electrolyte,operating voltage,electrode materials,and design of the electrolytic cell.Further discussion of recent advances in electrocatalysts,including pure metal catalysts,metal oxide catalysts,non-metallic catalysts,and composite catalysts,highlights their significant roles in enhancing both the efficiency and selectivity of electrocata lytic nitrate to ammonia(NRA)reactions.Critical challenges for the industrial NRA trials and further outlooks are outlined to propel this strategy toward real-world applications.Overall,the review provides an in-depth overview and comprehensive understanding of electrocata lytic NRA technology,thereby promoting further advancements and innovations in this domain.
基金supported by the National Natural Science Foundation of China(Nos.22272105 and 22002110)Natural Science Foundation of Shanghai(No.23ZR1423900)。
文摘Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells.For fundamental understanding,clearly identifying the metalsupport effect on enhancement mechanisms of ORR electrocatalysis is definitely needed.In this work,the impact of Pt-support interaction via interfacial Pt-N coordination on electrocatalytic ORR activity and stability in Pt/N-C catalyst is deeply studied through structural/compositional characterizations,electrochemical measurements and theoretical DFT-calculations/AIMD-simulations.The resulting Pt/N-C catalyst exhibits a superior electrocatalytic performance compared to the commercial Pt/C catalyst in both half-cell and H_(2)-O_(2)fuel cell.Experimental and theoretical results reveal that the interfacial Pt-N coordination enables electron transfer from N-C support to Pt nanoparticles,which can weaken the adsorption strength of oxygen intermediates on Pt surface to improve ORR activity and induce the strong Pt-support interaction to enhance electrochemical stability.
基金supported by the National Natural Science Foundation of China(Nos.22106105 and 22201180)the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-E00015)+2 种基金Shanghai Science and Technology Innovation Program(No.21DZ1206300)the Central Local Science and Technology Development Guidance Fund(No.YDZX20213100003002)Shanghai Science and Technology Commission Program(No.20060502200).
文摘Photocatalytic conversion of CO_(2) is pivotal for mitigating the global greenhouse effect and fostering sustainable energy development.Nowadays,polymeric carbon nitride(PCN)has gained widespread application in CO_(2) solar reduction due to its excellent visible light response,suitable conduction band position,and good cost-effectiveness.However,the amorphous nature and low conductivity of PCN limit its photocatalytic efficiency by leading to low carrier concentrations and facile electron–hole recombination during photocatalysis.Addressing this bottleneck,in this study,potassium-doped PCN(KPCN)/copper(Ⅱ)-complexed bipyridine hydroxyquinoline carboxylic acid(Cu(Ⅱ)(bpy)(H_(2)hqc))composite catalysts were synthesized through a multistep microwave heating process.In the composite,the formation of an S-scheme junction facilitates the enrichment of more negative electrons on the conduction band of KPCN via intermolecular electron–hole recombination between Cu(Ⅱ)(bpy)(H_(2)hqc)(CuPyQc)and KPCN,thereby promoting efficient photoreduction of CO_(2) to CO.Microwave heating enhances the amidation reaction between these two components,achieving the immobilization of homogeneous molecular catalysts and forming amidation chemical bonds that serve as key channels for the S-scheme charge transfer.This work not only presents a new PCN-based catalytic system for CO_(2) reduction applications,but also offers a novel microwave-practical approach for immobilizing homogeneous catalysts.
文摘Background:Enzyme fragility remains a major challenge in research and applications.Free enzymes are highly unstable,inactivated by heat,acid,alkali,or organic solvents,and often lose activity even under optimal storage conditions.Limiting their use in cosmetics.Few commercial products combine acids and enzymes effectively.Objective:To investigate the physicochemical properties,in vitro exfoliation efficacy,and effects on facial skin parameters of a supramolecular acid-enzyme complex(SAE)composed of mandelic acid(MAN),betaine(BET),and composite enzymes(CE;papain and bromelain),thereby establishing a theoretical foundation for cosmetic applications.Methods:The supramolecular structure was characterized using Fourier transform infrared(FTIR)spectroscopy and proton nuclear magnetic resonance(1H NMR)spectroscopy.Dissolution experiments were conducted to compare the solubility of SAE and CE in aqueous solutions.Enzymatic activity assays evaluated the stabilizing effect of supramolecular deep eutectic technology on enzymes.In vitro exfoliation tests assessed acid-enzyme synergy in keratin removal.A 4-week clinical trial evaluated the efficacy of a 2%SAE essence aqueous solution on facial skin parameters.Results:Dissolution experiments confirmed that supramolecular deep eutectic technology significantly improved enzyme solubility.Enzymatic activity tests demonstrated that this technology effectively preserved protease activity,substantially enhancing its practical applicability.Furthermore,in vitro exfoliation efficacy tests revealed that this technology strengthened the synergistic interaction between acids and enzymes and exhibited superior stratum corneum-removing capability of the SAE.In clinical evaluations of efficacy,after 7 days of using the essence containing SAE,the formulation significantly enhanced cheek gloss(+8.08%),while reducing comedones volume(-16.25%).after 28 days,significantly enhanced cheek hydration(+25.0%,SCH),gloss(+15.93%),and smoothness(−7.78%SEsm),while reducing TEWL(−6.86%),sebum(−15.54%),roughness(+16.24%SEr),and pore metrics(volume:−39.98%;count:−30.64%),and decreased comedones(blackheads:−70.33%;Whiteheads:−52.42%;all p<0.05).Conclusion:The supramolecular acid-enzyme complex demonstrates enhanced stability,improved solubility,and superior exfoliation efficacy compared to free enzymes.Clinical results further confirm its multifunctional benefits,including enhancing skin hydration,sebum regulation,barrier repair,pore refinement,and comedolytic effects.This study provides both theoretical and practical foundations for developing stable acid-enzyme combinations in dermatological applications.
基金Project supported by the National Natural Science Foundation of China(22062019)the Natural Science Foundation of Inner Mongolia of China(2022QN02002)Science and Technology Program of Inner Mongolia Autonomous Region,China(2020PT0003)。
文摘The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-based catalyst PrO_(x)-NC,and optimized the calcination temperature and proportion.The PrO_(x)-NC-900 catalyst has high durability and activity and exhibits superior ORR performance in alkaline electrolytes with an onset potential(E_(0))of 0.96 V and a half-wave potential(E_(1/2))of 0.85 V.The research results indicate that the ORR performance of rare earth oxide composite carbon catalysts can be improved by adjusting oxygen vacancies(Ov).In addition,high specific surface area,N rich defect carbon.increased oxygen vacancies,and the synergistic effect of oxygen vacancies and N-doped carbon interfacial layer play a significant part in the enhancement of ORR.The performance of the zinc air battery assembled with PrO_(x)-NC-900 is significantly improved,and rare earth oxides and carbon frameworks originating from metal organic frameworks(MOFs)contribute to the oxygen electrocatalyst and electron transfer rate of the zinc air battery.This catalyst provides promising information for the development of rare earth metal oxide nanostructures as potential candidate materials for ORR in alkaline media.