期刊文献+
共找到285,290篇文章
< 1 2 250 >
每页显示 20 50 100
Reduction of iron oxide nanoparticles by Geobacter sulfurreducens PCA involves outer membrane proteins and secreted redox-active substances
1
作者 Yifan Cui Xiaoyan Zhang +7 位作者 Peijie Yang Yanwei Liu Maoyong Song Yingying Guo Wentao Jiao Yongguang Yin Yong Cai Guibin Jiang 《Journal of Environmental Sciences》 2026年第1期767-774,共8页
Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(... Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(III)nanoparticles with the most commonly identified FRB,Geobacter sulfurreducens PCA,remains poorly understood.Herein,we demonstrated that the synergistic role of outer membrane proteins and periplasmic proteins in the EET process for-Fe_(2)O_(3),Fe3O4,and𝛽α-FeOOH nanoparticles by construction of multiple gene knockout strain.oxpG(involved in the type II secretion system)and omcST(outer membrane c-type cytochrome)medi-ated pathways accounted for approximately 67%of the total reduction of𝛼α-Fe_(2)O_(3) nanoparticles.The residual reduction of𝛼α-Fe_(2)O_(3) nanoparticles in∆oxpG-omcST strain was likely caused by redox-active substances in cell supernatant.Conversely,the reduction of dissolved Fe(III)was almost unaffected in∆oxpG-omcST strain at the same concentration.However,at high dissolved Fe(III)concentration,the reduction significantly decreased due to the formation of Fe(III)nanoparticles,suggesting that this EET process is specific to Fe(III)nanoparticles.Overall,our study provided a more comprehensive understanding for the EET pathways between G.sulfurreducens PCA and different Fe(III)species,enriching our knowledge on the role of microorganisms in iron biogeochemical cycles and remediation strategies of pollutants. 展开更多
关键词 Microbial Fe(III)reduction Fe(III)nanoparticles Extracellular electron transfer Redox-active substances Geobacter sulfurreducens PCA
原文传递
Rare earth-rich sublayer tuned Pd-skin for methanol and CO tolerance oxygen reduction and hydrogen oxidation reaction
2
作者 Felix Kwofie Jinfan Chen +8 位作者 Yujing Liu Ying Zhang Junsong Zhang Yang Yang Quentin Meyer Chuan Zhao Zhenjiang He Yunjiao Li Yi Cheng 《Advanced Powder Materials》 2025年第4期129-141,共13页
Storing hydrogen in green methanol is a well-known and cost-effective way for long-term energy storage.However,using green methanol in fuel cell technologies requires electrocatalysts with superior resistance to poiso... Storing hydrogen in green methanol is a well-known and cost-effective way for long-term energy storage.However,using green methanol in fuel cell technologies requires electrocatalysts with superior resistance to poisoning induced by intermediate species.This study introduces a new class of palladium-based rare earth(RE)alloys with exceptional resistance to methanol for the oxygen reduction reaction(ORR)and outstanding resistance to carbon monoxide poisoning for the hydrogen oxidation reaction(HOR).The PdEr catalyst achieved unparalleled ORR activity amongst the Pd-based rare earth alloys and demonstrated remarkable resistance to methanol poisoning,which is two orders of magnitude higher than commercial Pt/C catalysts.Furthermore,the PdEr catalyst shows high hydrogen oxidation activity under 100 ppm CO.Comprehensive analysis demonstrates that the RE element-enriched sublayer tuning of the Pd-skin's surface strain is responsible for the enhanced ORR and HOR capabilities.This modification allows for precise control over the adsorption strength of critical intermediates while concurrently diminishing the adsorption energy of methanol and CO on the PdEr surface. 展开更多
关键词 Palladium-rare earth Oxygen reduction reaction Methanol resistance Hydrogen oxidation reaction CO resistance
在线阅读 下载PDF
The application of low-valent sulfur oxy-acid salts in advanced oxidation and reduction processes:A review
3
作者 Xin Zhou Xuejia Li +8 位作者 Yujia Xiang Heng Zhang Chuanshu He Zhaokun Xiong Wei Li Peng Zhou Hongyu Zhou Yang Liu Bo Lai 《Chinese Chemical Letters》 2025年第9期104-111,共8页
Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that ... Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that are readily available,cost-effective,and exhibit minimal ecological toxicity.These LVSOs have the ability to generate or promote the generation of strong oxidants or reductants,which makes them widely used in advanced oxidation processes(AOPs)and advanced reduction processes(ARPs).This article provides a comprehensive review of the recent advancements in AOPs and ARPs involving LVSOs,alongside an examination of the fundamental principles governing the generation of active species within these processes.LVSOs fulfill three primary functions in AOPs:Serving as sources of reactive oxygen species(ROS),auxiliary agents,and activators.Particular attention is devoted to elucidating the reaction mechanisms through which LVSOs,in conjunction with metal ions,metal oxides,ultraviolet light(UV),and ozone,produce potent oxidizing agents in both homogeneous and heterogeneous systems.Regarding ARPs,this review delineates the mechanisms by which LVSOs generate strong reducing agents,including hydrated electrons,hydrogen radicals,and sulfite radicals,under UV irradiation,while also exploring the interactions between these reductants and pollutants.The review identifies existing gaps within the current framework and proposes future research avenues to address these challenges. 展开更多
关键词 Low-valent sulfur oxy-acid salts Advanced oxidation process Advanced reduction process Reaction mechanism Water treatment
原文传递
Efficient and economic H_(2)O_(2)electrosynthesis via two-electron oxygen reduction reaction enabled by dynamically reconstructed Mn(^(*)OH)-N_(3)O-C motif and coupled alcohol oxidation
4
作者 Wei Liu Rui Chen +7 位作者 Zhiyuan Sang Min Zheng Zhenxin Li Jiahuan Nie Qiao Jiang Lichang Yin Feng Hou Ji Liang 《Journal of Energy Chemistry》 2025年第9期675-684,I0018,共11页
Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal ... Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal sites in the state-of-the-art metal single-atom catalysts(M-SACs)hinders their further industrial applications,and the high potential and valueless oxygen product of the conventional anodic oxygen evolution reaction(OER)further limit the economic efficiency of this technology.To address this,a dynamically local structure reconstruction strategy is proposed to in situ transfer the active sites from unstable metal sites to the stable surrounding carbon sites for efficient and durable 2e^(-)ORR electrocatalysis.For the as-designed Mn-N_(3)O-C catalyst,by reconstructing Mn sites into Mn(^(*)OH),the Mn sites were passivated and carbon sites adjacent to the O atom were verified to be the actual active sites by in situ characterization and theoretical calculation.Consequently,Mn-N_(3)O-C exhibited>80%Faradaic efficiency and superior long-term durability over 100 h for H_(2)O_(2)electrosynthesis at~120 mA cm^(-2).In addition,coupling anodic ethylene glycol oxidation reaction(EGOR)further improves the efficiency and economic viability of the H_(2)O_(2)electrosynthesis system.This two-pronged strategy thus opens up a new opportunity for the development of stable H_(2)O_(2)electrosynthesis with low energy consumption and superior economic performance. 展开更多
关键词 Hydrogen peroxide Two-electron oxygen reduction reaction Single-atom catalysts Local structure reconstruction Ethylene glycol oxidation reaction
在线阅读 下载PDF
Understanding oxidation state of Cu-based catalysts for electrocatalytic CO_(2) reduction
5
作者 Ping Zhu Yuan-Chu Qin +7 位作者 Xin-Hao Cai Wen-Min Wang Ying Zhou Lin-Lin Zhou Peng-Hui Liu Lu Peng Wen-Long Wang Qian-Yuan Wu 《Journal of Materials Science & Technology》 2025年第15期1-24,共24页
Electrocatalytic CO_(2) reduction(ECR)is a promising approach for achieving carbon neutrality due to its ability to convert CO_(2) to valuable chemicals.Recent advances have significantly enhanced the ECR performance ... Electrocatalytic CO_(2) reduction(ECR)is a promising approach for achieving carbon neutrality due to its ability to convert CO_(2) to valuable chemicals.Recent advances have significantly enhanced the ECR performance of various catalysts by tuning their oxidation states,particularly for Cu-based catalysts that can reduce CO_(2) to multiple products.However,the oxidation state of copper(OSCu),especially Cu+,changes during the reaction process,posing significant challenges for both catalyst characterization and performance.In this review,the current understanding of the effect of oxidation states on product selectivity was first discussed.A comprehensive overview of in situ/operando characterization techniques,used to monitor the dynamic evolution of oxidation states during ECR,was then provided.Various strategies for stabilizing oxidation states through modification of catalysts and manipulation of external conditions were discussed.This review aimed to deepen the understanding of oxidation states in ECR and enlighten the development of more efficient electrocatalysts. 展开更多
关键词 Electrocatalytic CO_(2)reduction Cu-based catalysts oxidation state In situ/operando characterization techniques Stabilization strategies
原文传递
Dual electric fields in Ni-CdS@Ni(OH)_(2) heterojunction: A synergistic spatial charge separation approach for enhanced coupled CO_(2) photoreduction and selective toluene oxidation
6
作者 Khakemin Khan Ahmed Mahmood Idris +4 位作者 Haseebul Hassan Sajjad Haider Salah Ud-Din Khan Antonio Miotello Ihsanullah Khan 《Advanced Powder Materials》 2025年第3期1-11,共11页
Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is... Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is particularly significant in challenging coupled systems,such as CO_(2)photoreduction integrated with selective oxidation of toluene to benzaldehyde.However,developing such a system is quite challenging and often requires a precise design and engineering.Herein,we demonstrate a unique Ni-CdS@Ni(OH)_(2)heterojunction synthesized via an in-situ self-assembly method.Comprehensive mechanistic and theoretical investigations reveal that the NiCdS@Ni(OH)_(2)heterojunction induces dual electric fields(EFs):an intrinsic polarized electric-field within the CdS lattice from Ni doping and an interfacial electric-field from the growth of ultrathin nanosheets of Ni(OH)_(2)on NiCdS nanorods,enabling efficient spatial charge separation and enhanced redox potential.As proof of concept,the Ni-CdS@Ni(OH)_(2)heterojunction simultaneously exhibits outstanding bifunctional photocatalytic performance,producing CO at a rate of 427μmol g^(-1)h^(-1)and selectively oxidizing toluene to benzaldehyde at a rate of 1476μmol g^(-1)h^(-1)with a selectivity exceeding 85%.This work offers a promising strategy to optimize the utilization of photogenerated carriers in heterojunction photocatalysts,advancing synergistic photocatalytic redox systems. 展开更多
关键词 Dual built-in electric fields Spatial charge separation Integrated redox reactions CO_(2)reduction Toluene oxidation Semiconductor photocatalysis
在线阅读 下载PDF
Unraveling the Ni-Co synergy in bifunctional hydroxide cocatalysts for better cooperation of CO_(2)reduction and H_(2)O oxidation in 2D S-scheme photosynthetic systems
7
作者 Lingxuan Hu Yan Zhang +7 位作者 Qian Lin Fengying Cao Weihao Mo Shuxian Zhong Hongjun Lin Liyan Xie Leihong Zhao Song Bai 《Chinese Journal of Catalysis》 2025年第1期311-325,共15页
Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocat... Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocatalysts,while concurrently preventing side reactions and photocorrosion on the semiconductor surface.Herein,Ni-Co bimetallic hydroxides with varying Ni/Co molar ratios(Ni_(x)Co_(1-x)(OH)_(2),x=1,0.75,0.5,0.25,and 0)were grown in situ on a model 2D/2D S-scheme heterojunction composed of Cu_(2)O nanosheets and Fe_(2)O_(3)nanoplates to form a series of Cu_(2)O/Fe_(2)O_(3)@Ni_(x)Co_(1-x)(OH)_(2)(CF@NiCo)photocatalysts.The combined experimental and theoretical investigation demonstrates that incorporating an appropriate amount of Co into Ni(OH)_(2)not only modulates the energy band structure of Ni_(x)Co_(1-x)(OH)_(2),balances the electron-and hole-trapping abilities of the bifunctional cocatalyst and maximizes the charge separation efficiency of the heterojunction,but also regulates the d-band center of Ni_(x)Co_(1-x)(OH)_(2),reinforcing the adsorption and activation of CO_(2)and H_(2)O on the cocatalyst surface and lowering the rate-limiting barriers in the CO_(2)-to-CO and H_(2)O-to-O_(2)conversion.Benefiting from the Ni-Co synergy,the redox reactions proceed stoichiometrically.The optimized CF@Ni_(0.75)Co_(0.25)achieves CO and O_(2)yields of 552.7 and 313.0μmol gcat^(-1)h^(-1),respectively,11.3/9.9,1.6/1.7,and 4.5/5.9-fold higher than those of CF,CF@Ni,and CF@Co.This study offers valuable insights into the design of bifunctional noble-metal-free cocatalysts for high-performance artificial photosynthesis. 展开更多
关键词 Ni-Co synergy Bifunctional cocatalyst CO_(2)reduction H20oxidation 2D/2D heterojunction S-scheme photosynthetic system
在线阅读 下载PDF
Efficient photoelectrochemical cell composed of Ni single atoms/P,N-doped amorphous NiFe_(2)O_(4) as anode catalyst and Ag NPs@CuO/Cu_(2)O nanocubes as cathode catalyst for microplastic oxidation and CO_(2)reduction
8
作者 Hong-Rui Zhu Xi-Lun Wang +3 位作者 Juan-Juan Zhao Meng-Han Yin Hui-Min Xu Gao-Ren Li 《Chinese Journal of Catalysis》 2025年第9期159-172,共14页
Plastics are ubiquitous in human life and pose certain hazards to the environment and human body.The increasing amount of CO_(2)in the atmosphere will lead to the greenhouse effect.Therefore,it is urgent to treat micr... Plastics are ubiquitous in human life and pose certain hazards to the environment and human body.The increasing amount of CO_(2)in the atmosphere will lead to the greenhouse effect.Therefore,it is urgent to treat microplastic waste and CO_(2)by using environmentally friendly and efficient technologies.In this work,we developed an efficient photoelectrocatalytic system composed of Ni single atoms(Ni SAs)supported by P,N-doped amorphous NiFe_(2)O_(4)(Ni SAs/A-P-N-NFO)as anode and Ag nanoparticles(Ag NPs)supported by CuO/Cu_(2)O nanocubes(Ag NPs@CuO/Cu_(2)O NCs)as cathode for microplastic oxidation and CO_(2)reduction.The Ni SAs/A-P-N-NFO was synthesized by calcination-H_(2)reduction method,and it achieved a Faraday efficiency of 93%for the oxidation reaction of poly(ethylene terephthalate)(PET)solution under AM 1.5 G light.As a photocathode,the synthesized Ag NPs@CuO/Cu_(2)O NCs was utilized to reduce CO_(2)to ethylene and CO at 1.5 V vs.RHE with selectivity of 42%and 55%,respectively.This work shows that the photoelectrocatalysis,as an environmentally friendly technology,is a feasible strategy for reducing the environmental and biological hazards of light plastics,as well as for efficient CO_(2)reduction. 展开更多
关键词 Ni single atom NiFe_(2)O_(4) PHOTOELECTROCATALYSIS Poly(ethylene terephthalate)plastics oxidation CO_(2)reduction reaction
在线阅读 下载PDF
Microwave pre-oxidation followed by biomass reduction for efficient separation of titanium and iron from vanadium-titanium magnetite
9
作者 Bing Hu Yong-zhao Liang +2 位作者 Fu-qiang Zheng Chen Liu Xun-an Ning 《Journal of Iron and Steel Research International》 2025年第7期1803-1815,共13页
Microwave pre-oxidation and biomass reduction were adopted to enhance the separation of titanium and iron in vanadium-titanium magnetite.The effects of microwave pre-oxidation temperature and time,as well as biomass r... Microwave pre-oxidation and biomass reduction were adopted to enhance the separation of titanium and iron in vanadium-titanium magnetite.The effects of microwave pre-oxidation temperature and time,as well as biomass reduction temperature and time,were investigated.The results showed that the average particle size of vanadium-titanium magnetite decreased,and the specific surface area increased with the increase in pre-oxidation temperature and time.The reaction pathway(Fe_(3-x)TixO_(4)→Fe_(2-x)TixO_(3)→Fe_(2)TiO_(5))was proved in microwave pre-oxidation process.The results of biomass reduction roasting showed that biomass reduction could effectively reduce ferric oxide to metallic iron while Ti was enriched in a solid solution of magnesium anosovite,which was beneficial to the subsequent grinding and acid leaching separation.The combined process of microwave pre-oxidation and biomass reduction achieved a high separation efficiency of titanium and iron in vanadium-titanium magnetite without forming complex titanium minerals.The titanium grade in the vanadium-titanium-rich material was 32.10%,and the recovery rate was 91.51%.The iron grade in the iron concentrate(metallic iron)was 90.90%,the recovery rate was 93.47%,and metallization rate was 93.87%. 展开更多
关键词 Electric furnace Magnesium anosovite V-Ti-rich material Biomass reduction reduction roasting
原文传递
Self-driven photoelectrocatalytic systems with carbon-felt-loaded carboxylated carbon nanotube cathodes:Reduction of uranyl,oxidation of organics,and power generation
10
作者 Qingming Zeng Yanjun Wen +5 位作者 Beibei Gao Qingyan Zhang Lulin Guo Chao Zhang Jiachen Wang Qingyi Zeng 《Chinese Chemical Letters》 2025年第9期537-541,共5页
In this study,we present a self-driven photoelectrocatalytic(SD-PEC)system that effectively treats complex uranium-bearing wastewaters for both uranium recovery and organic matter decomposition while generating power.... In this study,we present a self-driven photoelectrocatalytic(SD-PEC)system that effectively treats complex uranium-bearing wastewaters for both uranium recovery and organic matter decomposition while generating power.The system utilizes a titanium dioxide nanorod array(TNR)photoelectrode coupled with a silicon solar cell to optimize electron transport,while the cathode is composed of a carbon fiber coated with carboxylated carbon nanotubes(CCNT/CF),which efficiently reduce UO_(2)^(2+).The results demonstrate significant removal efficiency of uranium(complete removal in 25 min at a rate constant of~0.248 min^(-1)),as well as substantial degradation of organic impurities.Furthermore,the system generates sufficient power output to light an LED lamp and exhibits superior performance under various complex wastewater conditions,including simulated seawater and real uranium tailings wastewater.These findings underscore the potential of the SD-PEC system as a versatile approach for sustainable treatment and energy recovery of radioactive wastewater.The significance of this research extends to global environmental challenges,offering an innovative solution for managing radioactive wastewater while simultaneously contributing to renewable energy generation. 展开更多
关键词 Uranium recycling Uranyl reduction Organic degradation PHOTOELECTROCATALYSIS Carbon nanotube
原文传递
Amorphous Ce-Ti composite as an efficient bifunctional catalyst for deep oxidation of volatile organic compounds and selective catalytic reduction of NO
11
作者 Pengfei Tu Hong Yao +6 位作者 Lei Song Yulong Wang Lei Yang Jinyan Xiao Ye Wang Shengwei Tang Wenxiang Tang 《Journal of Rare Earths》 2025年第8期1625-1634,I0002,共11页
In this work,a series of Ce-Ti composite oxides with different Ti/Ce molar ratios was prepared by coprecipitation method,and investigated for the catalytic degradation of toluene and selective catalytic reduction of N... In this work,a series of Ce-Ti composite oxides with different Ti/Ce molar ratios was prepared by coprecipitation method,and investigated for the catalytic degradation of toluene and selective catalytic reduction of NO.The phase transition process between Ce species and Ti species is limited by modulating the interaction between Ce4+and Ti4+,while a completely amorphous composite is generated with an appropriate molar ratio of Ti/Ce(1.5/1).The catalyst CeTi1.5Oxexhibits the best catalytic performance,where the values of T90and T50for deep degradation of toluene are 297 and 330℃respectively at high weight hours space velocity(WHSV=120000 mL/(g·h)).Compared with CeO_(2),T90and T50decrease by48 and 34℃respectively while declining by 67 and 70℃compared to TiO_(2).For the SCR reaction,CeTi1.5Oxreaches 100%NO conversion at 250℃with WHSV=60000 mL/(g·h),reduced by 50℃compared to pure CeO_(2).The amorphous nanostructure with highly dispersed Ce and Ti species was confirmed by transmission electron microscopy(TEM)and X-ray diffraction(XRD)characterizations.The X-ray photoelectron spectroscopy(XPS)and Raman analyses show that a large number of active Ce-O-Ti species and surface oxygen vacancies are generated due to the strong interaction between Ti^(4+)and Ce^(4+)in CeTi_(1.5)O_(x).Additionally,H_(2)-TPR and O_(2)-TPD further confirm that the interaction promotes the low-temperature reducibility and mobility of surface-active oxygen species.Meanwhile,in-situ DRIFTS study reveals that CeTi1.5Oxwith amorphous nanostructure can dramatically enhance the dissociative and complete oxidation capacity for toluene. 展开更多
关键词 Ce-Ti composite Toluene oxidation NOreduction Amorphous structure Synergetic effect RAREEARTHS
原文传递
Techno-economic assessment of plasma-driven air oxidation coupled with electroreduction synthesis of ammonia
12
作者 Lei Xiao Shiyong Mou +7 位作者 Xiaoyu Lin Keying Wu Siyuan Liu Weidong Dai Weiping Yang Chiyao Tang Chang Long Fan Dong 《Green Energy & Environment》 2025年第9期1901-1910,共10页
Recently,the plasma-driven air oxidation coupled with electrocatalytic NO_(x)reduction reaction(pAO-eNO_(x)RR)technology for sustained NH_(3)synthesis displays the promise in tackling the high energy-consumption and c... Recently,the plasma-driven air oxidation coupled with electrocatalytic NO_(x)reduction reaction(pAO-eNO_(x)RR)technology for sustained NH_(3)synthesis displays the promise in tackling the high energy-consumption and carbon-emission associated with the Haber-Bosch process.Here,a technical and economic assessment of pAO-eNO_(x)RR technology is comprehensively undertaken to determine its feasibility as a potential substitute for the Haber-Bosch process.The technical assessment suggests that,in terms of both environmental impact and energy efficiency,N_(2)-NO-NH_(3)and N_(2)-NO_(2)^(-)-NH_(3)are presently the most effective pathways.The deep analysis of the current state-of-the-art technological performance indicates that the pAO-eNO_(x)RR technology is competitive with commercial processes in achieving large-scale NH_(3)synthesis.However,lower energy efficiency of pAO-eNO_(x)RR technology leads to high electricity costs that surpass the current market price of NH_(3).Subsequently,we conducted a comprehensive analysis which reveals that,for the economic viability of NH_(3)synthesis,an energy efficiency in the range of 33.8–38.6%must be attained.The expenses associated with plasma equipment,electrolyzer,catalysts,and NH_(3)distillation also contribute significantly to the economic burden.The further development of pAO-eNO_(x)RR technology should be centered around advancements in plasma catalysts,electrocatalysts,reactors,as well as the exploration for energy-efficient cathode-anode synergistic catalytic systems. 展开更多
关键词 NH_(3)synthesis ELECTROCATALYSIS Techno-economic assessment PLASMA NO_(x)reduction
在线阅读 下载PDF
Effects of mechanical activation and oxidation-reduction on hydrochloric acid leaching of Panxi ilmenite concentration 被引量:8
13
作者 谭平 胡慧萍 张黎 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1414-1421,共8页
The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction ... The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min. 展开更多
关键词 ilmenite concentration mechanical activation oxidation reduction hydrochloric acid leaching
在线阅读 下载PDF
Influences of Microbial Oxidation/Reduction on Mineral Transformation in Sulfide Tailings and Environmental Consequence in Shizishan Cu-Au Mine, Tongling, Eastern China
14
作者 LU Xiancai LU Jianjun +4 位作者 WANG Rucheng WANG Hongmei LI Juan ZHU Tingting OUYANG Bingjie 《矿物学报》 CAS CSCD 北大核心 2013年第S1期64-64,共1页
Mining activities have created great wealth, but they have also discharged large quantities of tailings. As an important source of heavy metal contamination, sulfide tailings are usually disposed of in open-air impoun... Mining activities have created great wealth, but they have also discharged large quantities of tailings. As an important source of heavy metal contamination, sulfide tailings are usually disposed of in open-air impoundments and thus are exposed to microbial oxidation. Microbial activities greatly enhance sulfide oxidation and result in the release of heavy metals and the precipitation of iron (oxy) hydroxides and sulfates. These secondary minerals in turn influence the mobility of dissolved metals and play important roles in the natural attenuation of heavy metals. Elucidating the microbe–mineral interactions in tailings will improve our understanding of the environmental consequence of mining activities. 展开更多
关键词 microbial reduction/oxidation sulphide TAILINGS MINERALOGICAL composition heavy metals Shizishan CU-AU MINE
原文传递
Hydrothermal synthesis of titanium-supported nanoporous palladium-copper electrocatalysts for formic acid oxidation and oxygen reduction reaction
15
作者 易清风 肖兴中 刘云清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1184-1190,共7页
Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. ... Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. Their electrocatalytic activity for formic acid oxidation and oxygen reduction reaction (ORR) in alkaline media was examined by voltammetric techniques. Among the as-prepared catalysts, nanoPdslCu19/Ti catalyst presents the highest current density of 39.8 mA/cm2 at -0.5 V or 66.4 mA/cm2 at -0.3 V for formic acid oxidation. The onset potential of ORR on the nanoPdslCU19/Ti catalyst presents an about 70 mV positive shift compared to that on the nanoPd/Ti, and the current density of ORR at -0.3 V is 2.12 mA/cm2, which is 3.7 times larger than that on the nanoPd/Ti. 展开更多
关键词 Pd electrode Pd-Cu electrode formic acid oxidation oxygen reduction reaction NANOPARTICLE ELECTROCATALYSIS
在线阅读 下载PDF
Effect of Substrate Micro-arc Oxidation Pretreatment on Microstructure and High-Temperature Oxidation Resistance of Si-Cr-Ti-Zr Coating on Ta12W Alloy
16
作者 Yang Fan Chang Jianxiu +2 位作者 Wang Xin Li Hongzhan Yan Peng 《稀有金属材料与工程》 北大核心 2026年第1期92-104,共13页
To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre... To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating. 展开更多
关键词 tantalum-tungsten alloy silicide coating micro-arc oxidation reaction formation mechanism high-temperature oxidation
原文传递
Smart Global Poverty Reduction Cooperation
17
作者 LU JIAJUN 《China Today》 2026年第1期39-41,共3页
Experts and officials shared their insights on poverty reduction cooperation and sustainable development during the 2025 International Seminar on Global Poverty Reduction Partnerships.
关键词 sustainable development international seminar OFFICIALS global poverty reduction cooperation experts poverty reduction
在线阅读 下载PDF
Biomimetic Design of“Trunk-Branch-Leaf”Metallene Electrode for Efficient CO_(2) Electroreduction
18
作者 Min Zhang Ronghao Bai +3 位作者 Yuan Liang Xun Zhu Qian Fu Qiang Liao 《Carbon Energy》 2026年第1期95-104,共10页
Controllable synthesis of ultrathin metallene nanosheets and rational design of their spatial arrangement in favor of electrochemical catalysis are critical for their renewable energy applications.Here,a biomimetic de... Controllable synthesis of ultrathin metallene nanosheets and rational design of their spatial arrangement in favor of electrochemical catalysis are critical for their renewable energy applications.Here,a biomimetic design of“Trunk-Branch-Leaf”strategy is proposed to prepare the ultrathin edge-riched Zn-ene“leaves”with a thickness of~2.5 nm,adjacent Zn-ene cross-linked with each other,which are supported by copper nanoneedle“branches”on copper mesh“trunks,”named as Zn-ene/Cu-CM.The resulting superstructure enables the formation of an interconnected network and multiple channels,which can be used as an electrocatalytic CO_(2) reduction reaction(CO_(2)RR)electrode to allow a fast charge and mass transfer as well as a large electrolyte reservoir.By virtue of the distinctive structure,the obtained Zn-ene/Cu-CM electrode exhibits excellent selectivity and activity toward CO production with a maximum Faradaic efficiency of 91.3%and incredible partial current density up to 40 mA cm^(−2),outperforming most of the state-of-the-art Zn-based electrodes for CO_(2) reduction.The phenolphthalein color probe combined with in situ attenuated total reflection-infrared spectroscopy uncovered the formation of the localized pseudo-alkaline microenvironment at the interface of the Zn-ene/Cu-CM electrode.Theoretical calculations confirmed that the localized pH as the origin is responsible for the adsorption of CO_(2) at the interface and the generation of *COOH and *CO intermediates.This study offers valuable insights into developing efficient electrodes through synergistic regulation of reaction microenvironments and active sites,thereby facilitating the electrolysis of practical CO_(2) conversion. 展开更多
关键词 carbon dioxide reduction local pH metallene reaction microenvironment trunk-branch-lea
在线阅读 下载PDF
Optimizing the RuCo Ratio for More Efficient and Durable Oxygen Reduction in Acidic Media
19
作者 WEI Mingrui ZHANG Shuai +1 位作者 HUANG Shuo WANG Chao 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期25-32,共8页
The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a serie... The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a series of RuCo/C catalysts were synthesized by NaBH4 reduction method under the premise that the total metal mass percentage was 20%.X-ray diffraction(XRD)patterns and scanning electron microscopy(SEM)confirmed the formation of single-phase nanoparticles with an average size of 33 nm.Cyclic voltammograms(CV)and linear sweep voltammograms(LSV)tests indicated that RuCo(2:1)/C catalyst had the optimal ORR properties.Additionally,the RuCo(2:1)/C catalyst remarkably sustained 98.1% of its activity even after 3000 cycles,surpassing the performance of Pt/C(84.8%).Analysis of the elemental state of the catalyst surface after cycling using X-ray photoelectron spectroscopy(XPS)revealed that the Ru^(0) percentage of RuCo(2:1)/C decreased by 2.2%(from 66.3% to 64.1%),while the Pt^(0) percentage of Pt/C decreased by 7.1%(from 53.3% to 46.2%).It is suggested that the synergy between Ru and Co holds the potential to pave the way for future low-cost and highly stable ORR catalysts,offering significant promise in the context of PEMFCs. 展开更多
关键词 ELECTROCATALYSIS oxygen reduction DURABILITY RuCo/C fuel cell
原文传递
Fe-loaded S,N co-doped carbon catalyst for oxygen reduction reaction with enhanced electrocatalytic activity and durability
20
作者 Shengzhi He Chunwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期315-321,共7页
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-... Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications. 展开更多
关键词 zinc-air batteries oxygen reduction reaction iron-loaded nitrogen-doped carbon sulfur-doping
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部