Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative i...Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.展开更多
Structural damage detection is hard to conduct in large-scale civil structures due to enormous structural data and insufficient damage features.To improve this situation,a damage detection method based on model reduct...Structural damage detection is hard to conduct in large-scale civil structures due to enormous structural data and insufficient damage features.To improve this situation,a damage detection method based on model reduction and response reconstruction is presented.Based on the framework of two-step model updating including substructure-level localization and element-level detection,the response reconstruction strategy with an improved sensitivity algorithm is presented to conveniently complement modal information and promote the reliability of model updating.In the iteration process,the reconstructed response is involved in the sensitivity algorithm as a reconstruction-related item.Besides,model reduction is applied to reduce computational degrees of freedom(DOFs)in each detection step.A numerical truss bridge is modelled to vindicate the effectiveness and efficiency of the method.The results showed that the presented method reduces the requirement for installed sensors while improving efficiency and ensuring accuracy of damage detection compared to traditional methods.展开更多
This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for man...This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for many series RLC-current chains based on their Norton's form companion models in the original networks,and then the precondition conjugate gradient based iterative method is used to solve the reduced networks,which are symmetric positive definite. The solutions of the original networks are then back solved from those of the reduced networks.Experimental results show that the complexities of reduced networks are typically significantly smaller than those of the original circuits, which makes the new algorithm extremely fast. For instance, power/ground networks with more than one million branches can be solved in a few minutes on modern Sun workstations.展开更多
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ...In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.展开更多
A cost-based selective maintenance decision-making method was presented.The purpose of this method was to find an optimal choice of maintenance actions to be performed on a selected group of machines for manufacturing...A cost-based selective maintenance decision-making method was presented.The purpose of this method was to find an optimal choice of maintenance actions to be performed on a selected group of machines for manufacturing systems.The arithmetic reduction of intensity model was introduced to describe the influence on machine failure intensity by different maintenance actions (preventive maintenance,minimal repair and overhaul).In the meantime,a resolution algorithm combining the greedy heuristic rules with genetic algorithm was provided.Finally,a case study of the maintenance decision-making problem of automobile workshop was given.Furthermore,the case study demonstrates the practicability of this method.展开更多
Multi-level searching is called Drill down search.Right now,no drill down search feature is available in the existing search engines like Google,Yahoo,Bing and Baidu.Drill down search is very much useful for the end u...Multi-level searching is called Drill down search.Right now,no drill down search feature is available in the existing search engines like Google,Yahoo,Bing and Baidu.Drill down search is very much useful for the end user tofind the exact search results among the huge paginated search results.Higher level of drill down search with category based search feature leads to get the most accurate search results but it increases the number and size of thefile system.The purpose of this manuscript is to implement a big data storage reduction binaryfile system model for category based drill down search engine that offers fast multi-levelfiltering capability.The basic methodology of the proposed model stores the search engine data in the binaryfile system model.To verify the effectiveness of the proposedfile system model,5 million unique keyword data are stored into a binaryfile,thereby analysing the proposedfile system with efficiency.Some experimental results are also provided based on real data that show our storage model speed and superiority.Experiments demonstrated that ourfile system expansion ratio is constant and it reduces the disk storage space up to 30%with conventional database/file system and it also increases the search performance for any levels of search.To discuss deeply,the paper starts with the short introduction of drill down search followed by the discussion of important technologies used to implement big data storage reduction system in detail.展开更多
The internal balance technique is effective for model reduction in flexible structures, especially those with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinates from...The internal balance technique is effective for model reduction in flexible structures, especially those with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinates from the physical sensor readings, research so far on this topic has been mostly theoretic and little on experiment or engineering applications. This paper, by working on a DSP TMS320F2812-based experiment system with a flexible plate and bringing forward an approximating approach to accessing the internal balance modal coordinates, studies the internal balance method theoretically as well as experimentally, and further designs an active controller based on the reduced model. Simulation and test results have proven the proposed approximating approach feasible and effective, and the designed controller successful in restraining the plate vibration.展开更多
Cold-bonded pellets, to which a new type of inorganic binder was applied, were reduced by H2~CO mixtures with different HJCO molar ratios (1:0, 5:2, 1:1, 2:5, and 0:1) under various temperatures (1023, 1123, 1...Cold-bonded pellets, to which a new type of inorganic binder was applied, were reduced by H2~CO mixtures with different HJCO molar ratios (1:0, 5:2, 1:1, 2:5, and 0:1) under various temperatures (1023, 1123, 1223, 1323, and 1423 K) in a daermogravimetric analysis appaxatus. The effects of gas composition, temperature, and binder ratio on the reduction process were studied, and the microstxucture of re- duced pellets was observed by scanning electron microscopy-energy-dispersive spectrometry (SEM-EDS). The SEM-EDS images show that binder particles exist in pellets in two forms, and the form that binder particles completely surround ore particles has a more significant hin- der effect on the reduction. The reduction equilibrium constant, effective diffusion coefficient, and the reaction rate constant were calculated on the basis of the unreacted core model, and the promotion effect of temperature on reduction was further analyzed. The results show that no sintering phenomenon occurred at low temperatures and that the increasing reaction rate constant and high gas diffusion coefficient could main- tain the promotion effect of temperature; however, when the sintering phenomenon occurs at high temperatures, gas diffusion is hindered and the promotion effect is diminished. The contribution of the overaJl equilibrium constant to the promotion effect depends on the gas composition.展开更多
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio...Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.展开更多
In recent years,the Active Flutter Suppression(AFS)employing Linear ParameterVarying(LPV)framework has become a hot spot in the research field.Nevertheless,the flutter suppression technique is facing two severe challe...In recent years,the Active Flutter Suppression(AFS)employing Linear ParameterVarying(LPV)framework has become a hot spot in the research field.Nevertheless,the flutter suppression technique is facing two severe challenges.On the one hand,due to the fatal risk of flight test near critical airspeed,it is hard to obtain the accurate mathematical model of the aeroelastic system from the testing data.On the other hand,saturation of the actuator may degrade the closed-loop performance,which was often neglected in the past work.To tackle these two problems,a new active controller design procedure is proposed to suppress flutter in this paper.Firstly,with the aid of LPV model order reduction method and State-space Model Interpolation of Local Estimates(SMILE)technique,a set of high-fidelity Linear Time-Invariant(LTI)models which are usually derived from flight tests at different subcritical airspeeds are reduced and interpolated to construct an LPV model of an aeroelastic system.And then,the unstable aeroelastic dynamics beyond critical airspeed are‘predicted’by extrapolating the resulting LPV model.Secondly,based on the control-oriented LPV model,an AFS controller in LPV framework which is composed of a nominal LPV controller and an LPV anti-windup compensator is designed to suppress the aeroelastic vibration and overcome the performance degradation caused by actuator saturation.Although the nominal LPV controller may have superior performance in linear simulation in which the saturation effect is ignored,the results of the numerical simulations show that the nominal LPV controller fails to suppress the Body Freedom Flutter(BFF)when encountering the actuator saturation.However,the LPV anti-windup compensator not only enhances the nominal controller’s performance but also helps the nominal controller to stabilize the unstable aeroelastic system whenencountering serious actuator saturation.展开更多
The effect of magnesia on calcium ferrite(CaO.Fe2O3)reduction by CO was examined by isothermal thermogravimetry.Samples of calcium ferrite added with 0,2,4,and 8 wt.%magnesia(abbreviated as CF,CF2M,CF4M,and CF8M)were ...The effect of magnesia on calcium ferrite(CaO.Fe2O3)reduction by CO was examined by isothermal thermogravimetry.Samples of calcium ferrite added with 0,2,4,and 8 wt.%magnesia(abbreviated as CF,CF2M,CF4M,and CF8M)were prepared.Phase composition was analyzed by X-ray diffraction,and the results indicated that CF2M and CF4M are reduced to lower reduction degree and with lower apparent activation energy than CF;and CF8M with more MgO.Fe2O3 is reduced to a lower degree and with more difficulty compared with CF.Reduction rate analysis revealed that CF,CF2M,CF4M,and CF8M reductions are all typical two-step reactions with the order of CF→CWF(CaO.FeO.Fe2O3)→Fe.The apparent reduction activation energies of CF,CF2M,CF4M,and CF8M are 46.89,37.30,17.30,and 29.20 kJ/mol,respectively.Sharp analysis depicted that CF2M,CF4M,and CF8M reductions are all described by 2D Avrami–Erofeev(A–E)equation(A2)in the whole process,while CF reduction is first expressed by A2 and then by 3D A–E equation(A3).Different from shrinking core model,a new kinetic model for powdery samples reduction was proposed to illustrate the relationship among reduction rates,reduction routes,and model functions.展开更多
Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a rea...Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a realtime cutting model based on finite element and order reduction method,which improves the computational speed and ensure the real-time performance.The proposed model uses the finite element model to construct a deformation model of the virtual lung.Meanwhile,a model order reduction method combining proper orthogonal decomposition and Galerkin projection is employed to reduce the amount of deformation computation.In addition,the cutting path is formed according to the collision intersection position of the surgical instrument and the lesion area of the virtual lung.Then,the Bezier curve is adopted to draw the incision outline after the virtual lung has been cut.Finally,the simulation system is set up on the PHANTOM OMNI force haptic feedback device to realize the cutting simulation of the virtual lung.Experimental results show that the proposed model can enhance the real-time performance of telemedicine,reduce the complexity of the cutting simulation and make the incision smoother and more natural.展开更多
There are significant effects of process parameters on internal qualities of bloom, and these process parameters are as follows. position and reduction amount, reduction distribution, reduction rate, and so on. Develo...There are significant effects of process parameters on internal qualities of bloom, and these process parameters are as follows. position and reduction amount, reduction distribution, reduction rate, and so on. Developing a control model is the key to apply soft reduction technology successfully. As the research object, 360 mm ×450 mm bloom caster in PISCO (Panzhihua Iron and Steel Co. ) has been studied, and the research method for control model of dynamic soft reduction has been proposed. On the basis of solidification and heat transfer model, the position of soft reduction and reduction distribution of each frame are determined according to the bloom temperature distribution and solid fraction in bloom center calculated. Production practice shows that the ratio of center porosity which is less than or equal to 1.0, increased to 97.27%, ratio of central segregation which is less than or equal to 0.5, increased to 80.91%, and ratio of central carbon segregation index which is more than or equal to 1.10, decreased to 4% with the applying model of dynamic soft reduction.展开更多
A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear syste...A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear systems. Some numerical examples were given to explain the result in this paper.展开更多
In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is deriv...In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.展开更多
Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reducti...Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reduction, is one of the most efficient pollutant removal methods. However, research on NB degradation coupled to indigenous microorganism dissimilatory iron reduction stimulated by electron donors is still experimental. A model for remediation in an actual polluted site does not currently exist.Therefore, in this study, the dynamics was derived from the Michaelis–Menten model(when the mass ratio of emulsified vegetable oil and NB reached the critical value 91:1). The effect of SO4^(2-), NO3^-, Ca^(2+)/Mg^(2+), and the grain size of aquifer media on the dynamics were studied, and the NB degradation dynamic model was then modified based on the most significant factors. Utilizing the model, the remediation time could be calculated in a contaminated site.展开更多
Structural components may enter an initial-elastic state,a plastic-hardening state and a residual-elastic state during strong seismic excitations.In the residual-elastic state,structural components keep in an unloadin...Structural components may enter an initial-elastic state,a plastic-hardening state and a residual-elastic state during strong seismic excitations.In the residual-elastic state,structural components keep in an unloading/reloading stage that is dominated by a tangent stiffness,thus structural components remain residual deformations but behave in an elastic manner.It has a great potential to make model order reduction for such structural components using the tangent-stiffness-based vibration modes as a reduced order basis.In this paper,an adaptive substructure-based model order reduction method is developed to perform nonlinear seismic analysis for structures that have a priori unknown damage distribution.This method is able to generate time-varying substructures and make nonlinear model order reduction for substructures in the residual-elastic phase.The finite element program OpenSees has been extended to provide the adaptive substructure-based nonlinear seismic analysis.At the low level of OpenSees framework,a new abstract layer is created to represent the time-varying substructures and implement the modeling process of substructures.At the high level of OpenSees framework,a new transient analysis class is created to implement the solving process of substructure-based governing equations.Compared with the conventional time step integration method,the adaptive substructure-based model order reduction method can yield comparative results with a higher computational efficiency.展开更多
The mathematical models for dynamic distributed parameter systems are given by systems of partial differential equations. With nonlinear material properties, the corresponding finite element (FE) models are large syst...The mathematical models for dynamic distributed parameter systems are given by systems of partial differential equations. With nonlinear material properties, the corresponding finite element (FE) models are large systems of nonlinear ordinary differential equations. However, in most cases, the actual dynamics of interest involve only a few of the variables, for which model reduction strategies based on system theoretical concepts can be immensely useful. This paper considers the problem of controlling a three dimensional profile on nontrivial geometries. Dynamic model is obtained by discretizing the domain using FE method. A nonlinear control law is proposed which transfers any arbitrary initial temperature profile to another arbitrary desired one. The large dynamic model is reduced using proper orthogonal decomposition (POD). Finally, the stability of the control law is proved through Lyapunov analysis. Results of numerical implementation are presented and possible further extensions are identified.展开更多
Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task ow...Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task owing to the curse of dimensionality. This paper presents a new algorithm to reduce the size of a design space to a smaller region of interest allowing a more accurate surrogate model to be generated. The framework requires a set of models of different physical or numerical fidelities. The low-fidelity (LF) model provides physics-based approximation of the high-fidelity (HF) model at a fraction of the computational cost. It is also instrumental in identifying the small region of interest in the design space that encloses the high-fidelity optimum. A surrogate model is then constructed to match the low-fidelity model to the high-fidelity model in the identified region of interest. The optimization process is managed by an update strategy to prevent convergence to false optima. The algorithm is applied on mathematical problems and a two-dimen-sional aerodynamic shape optimization problem in a variable-fidelity context. Results obtained are in excellent agreement with high-fidelity results, even with lower-fidelity flow solvers, while showing up to 39% time savings.展开更多
Mean decision power (MDP) is an important criterion of a new reduction model, and relative decision power (RDP) and amount of rules (AR) are key parameters of MDP. This paper presents two important properties: ...Mean decision power (MDP) is an important criterion of a new reduction model, and relative decision power (RDP) and amount of rules (AR) are key parameters of MDP. This paper presents two important properties: relationship between RDP and AR, and relationship between MDP rule set of parent decision table and MDP rule set of child decision table. These properties can help better understanding of the new reduction model and are useful tools by which one can rapidly derive an MDP rule set.展开更多
基金Project(61201381) supported by the National Natural Science Foundation of ChinaProject(YP12JJ202057) supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.
基金Projects(51925808,52078504)supported by the National Natural Science Foundation of ChinaProject(2022JJ10082)supported by the Natural Science Fund for Distinguished Young Scholar of Hunan Province,ChinaProject(2021RC3016)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘Structural damage detection is hard to conduct in large-scale civil structures due to enormous structural data and insufficient damage features.To improve this situation,a damage detection method based on model reduction and response reconstruction is presented.Based on the framework of two-step model updating including substructure-level localization and element-level detection,the response reconstruction strategy with an improved sensitivity algorithm is presented to conveniently complement modal information and promote the reliability of model updating.In the iteration process,the reconstructed response is involved in the sensitivity algorithm as a reconstruction-related item.Besides,model reduction is applied to reduce computational degrees of freedom(DOFs)in each detection step.A numerical truss bridge is modelled to vindicate the effectiveness and efficiency of the method.The results showed that the presented method reduces the requirement for installed sensors while improving efficiency and ensuring accuracy of damage detection compared to traditional methods.
文摘This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for many series RLC-current chains based on their Norton's form companion models in the original networks,and then the precondition conjugate gradient based iterative method is used to solve the reduced networks,which are symmetric positive definite. The solutions of the original networks are then back solved from those of the reduced networks.Experimental results show that the complexities of reduced networks are typically significantly smaller than those of the original circuits, which makes the new algorithm extremely fast. For instance, power/ground networks with more than one million branches can be solved in a few minutes on modern Sun workstations.
基金supported by National High Technology Research and Development Program of China (863 Program)(No. 2009AA04Z162)National Nature Science Foundation of China(No. 60825302, No. 60934007, No. 61074061)+1 种基金Program of Shanghai Subject Chief Scientist,"Shu Guang" project supported by Shang-hai Municipal Education Commission and Shanghai Education Development FoundationKey Project of Shanghai Science and Technology Commission, China (No. 10JC1403400)
文摘In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.
基金Project(51105141,51275191)supported by the National Natural Science Foundation of ChinaProject(2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2012TS073)supported by the Fundamental Research Funds for the Central University of HUST,China
文摘A cost-based selective maintenance decision-making method was presented.The purpose of this method was to find an optimal choice of maintenance actions to be performed on a selected group of machines for manufacturing systems.The arithmetic reduction of intensity model was introduced to describe the influence on machine failure intensity by different maintenance actions (preventive maintenance,minimal repair and overhaul).In the meantime,a resolution algorithm combining the greedy heuristic rules with genetic algorithm was provided.Finally,a case study of the maintenance decision-making problem of automobile workshop was given.Furthermore,the case study demonstrates the practicability of this method.
文摘Multi-level searching is called Drill down search.Right now,no drill down search feature is available in the existing search engines like Google,Yahoo,Bing and Baidu.Drill down search is very much useful for the end user tofind the exact search results among the huge paginated search results.Higher level of drill down search with category based search feature leads to get the most accurate search results but it increases the number and size of thefile system.The purpose of this manuscript is to implement a big data storage reduction binaryfile system model for category based drill down search engine that offers fast multi-levelfiltering capability.The basic methodology of the proposed model stores the search engine data in the binaryfile system model.To verify the effectiveness of the proposedfile system model,5 million unique keyword data are stored into a binaryfile,thereby analysing the proposedfile system with efficiency.Some experimental results are also provided based on real data that show our storage model speed and superiority.Experiments demonstrated that ourfile system expansion ratio is constant and it reduces the disk storage space up to 30%with conventional database/file system and it also increases the search performance for any levels of search.To discuss deeply,the paper starts with the short introduction of drill down search followed by the discussion of important technologies used to implement big data storage reduction system in detail.
基金supported by the Key Project (No. 11132001)the General Projects (Nos. 11072146 and 11002087) of the National Natural Science Foundation of China
文摘The internal balance technique is effective for model reduction in flexible structures, especially those with dense frequencies. However, due to the difficulty in extracting the internal balance modal coordinates from the physical sensor readings, research so far on this topic has been mostly theoretic and little on experiment or engineering applications. This paper, by working on a DSP TMS320F2812-based experiment system with a flexible plate and bringing forward an approximating approach to accessing the internal balance modal coordinates, studies the internal balance method theoretically as well as experimentally, and further designs an active controller based on the reduced model. Simulation and test results have proven the proposed approximating approach feasible and effective, and the designed controller successful in restraining the plate vibration.
基金financially supported by the National Key Research and Development Program of China(2017YFB0304300 and 2017YFB0304302)the 111 Project(No.B13004)
文摘Cold-bonded pellets, to which a new type of inorganic binder was applied, were reduced by H2~CO mixtures with different HJCO molar ratios (1:0, 5:2, 1:1, 2:5, and 0:1) under various temperatures (1023, 1123, 1223, 1323, and 1423 K) in a daermogravimetric analysis appaxatus. The effects of gas composition, temperature, and binder ratio on the reduction process were studied, and the microstxucture of re- duced pellets was observed by scanning electron microscopy-energy-dispersive spectrometry (SEM-EDS). The SEM-EDS images show that binder particles exist in pellets in two forms, and the form that binder particles completely surround ore particles has a more significant hin- der effect on the reduction. The reduction equilibrium constant, effective diffusion coefficient, and the reaction rate constant were calculated on the basis of the unreacted core model, and the promotion effect of temperature on reduction was further analyzed. The results show that no sintering phenomenon occurred at low temperatures and that the increasing reaction rate constant and high gas diffusion coefficient could main- tain the promotion effect of temperature; however, when the sintering phenomenon occurs at high temperatures, gas diffusion is hindered and the promotion effect is diminished. The contribution of the overaJl equilibrium constant to the promotion effect depends on the gas composition.
基金support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802).
文摘Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.
基金the National Natural Science Foundation of China(No.61573289)Space Science and Technology Fund,and Natural Science Basic Research Plan in Shaanxi Province of China(No.2019JM042)Fundamental Research Funds for the Central Universities of China(No.3102019ZDHKY11)。
文摘In recent years,the Active Flutter Suppression(AFS)employing Linear ParameterVarying(LPV)framework has become a hot spot in the research field.Nevertheless,the flutter suppression technique is facing two severe challenges.On the one hand,due to the fatal risk of flight test near critical airspeed,it is hard to obtain the accurate mathematical model of the aeroelastic system from the testing data.On the other hand,saturation of the actuator may degrade the closed-loop performance,which was often neglected in the past work.To tackle these two problems,a new active controller design procedure is proposed to suppress flutter in this paper.Firstly,with the aid of LPV model order reduction method and State-space Model Interpolation of Local Estimates(SMILE)technique,a set of high-fidelity Linear Time-Invariant(LTI)models which are usually derived from flight tests at different subcritical airspeeds are reduced and interpolated to construct an LPV model of an aeroelastic system.And then,the unstable aeroelastic dynamics beyond critical airspeed are‘predicted’by extrapolating the resulting LPV model.Secondly,based on the control-oriented LPV model,an AFS controller in LPV framework which is composed of a nominal LPV controller and an LPV anti-windup compensator is designed to suppress the aeroelastic vibration and overcome the performance degradation caused by actuator saturation.Although the nominal LPV controller may have superior performance in linear simulation in which the saturation effect is ignored,the results of the numerical simulations show that the nominal LPV controller fails to suppress the Body Freedom Flutter(BFF)when encountering the actuator saturation.However,the LPV anti-windup compensator not only enhances the nominal controller’s performance but also helps the nominal controller to stabilize the unstable aeroelastic system whenencountering serious actuator saturation.
基金the financial support of the National Natural Science Foundation of China(51234010 and 51522403)the Program for New Century Excellent Talents in University and the Program for the Youth Top-Notch Talents of Chongqing(20151001)Ultrasonic Assisted Iron Ore Sintering Technology Research(cstc2014kjrc-qnrc90001),and China Scholarship Council.
文摘The effect of magnesia on calcium ferrite(CaO.Fe2O3)reduction by CO was examined by isothermal thermogravimetry.Samples of calcium ferrite added with 0,2,4,and 8 wt.%magnesia(abbreviated as CF,CF2M,CF4M,and CF8M)were prepared.Phase composition was analyzed by X-ray diffraction,and the results indicated that CF2M and CF4M are reduced to lower reduction degree and with lower apparent activation energy than CF;and CF8M with more MgO.Fe2O3 is reduced to a lower degree and with more difficulty compared with CF.Reduction rate analysis revealed that CF,CF2M,CF4M,and CF8M reductions are all typical two-step reactions with the order of CF→CWF(CaO.FeO.Fe2O3)→Fe.The apparent reduction activation energies of CF,CF2M,CF4M,and CF8M are 46.89,37.30,17.30,and 29.20 kJ/mol,respectively.Sharp analysis depicted that CF2M,CF4M,and CF8M reductions are all described by 2D Avrami–Erofeev(A–E)equation(A2)in the whole process,while CF reduction is first expressed by A2 and then by 3D A–E equation(A3).Different from shrinking core model,a new kinetic model for powdery samples reduction was proposed to illustrate the relationship among reduction rates,reduction routes,and model functions.
基金supported,in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401in part,by the National Nature Science Foundation of China under Grant Numbers 61502240,61502096,61304205,61773219in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a realtime cutting model based on finite element and order reduction method,which improves the computational speed and ensure the real-time performance.The proposed model uses the finite element model to construct a deformation model of the virtual lung.Meanwhile,a model order reduction method combining proper orthogonal decomposition and Galerkin projection is employed to reduce the amount of deformation computation.In addition,the cutting path is formed according to the collision intersection position of the surgical instrument and the lesion area of the virtual lung.Then,the Bezier curve is adopted to draw the incision outline after the virtual lung has been cut.Finally,the simulation system is set up on the PHANTOM OMNI force haptic feedback device to realize the cutting simulation of the virtual lung.Experimental results show that the proposed model can enhance the real-time performance of telemedicine,reduce the complexity of the cutting simulation and make the incision smoother and more natural.
文摘There are significant effects of process parameters on internal qualities of bloom, and these process parameters are as follows. position and reduction amount, reduction distribution, reduction rate, and so on. Developing a control model is the key to apply soft reduction technology successfully. As the research object, 360 mm ×450 mm bloom caster in PISCO (Panzhihua Iron and Steel Co. ) has been studied, and the research method for control model of dynamic soft reduction has been proposed. On the basis of solidification and heat transfer model, the position of soft reduction and reduction distribution of each frame are determined according to the bloom temperature distribution and solid fraction in bloom center calculated. Production practice shows that the ratio of center porosity which is less than or equal to 1.0, increased to 97.27%, ratio of central segregation which is less than or equal to 0.5, increased to 80.91%, and ratio of central carbon segregation index which is more than or equal to 1.10, decreased to 4% with the applying model of dynamic soft reduction.
基金supported by the National Natural Science Foundation of China (Grant No.10271074)
文摘A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear systems. Some numerical examples were given to explain the result in this paper.
基金Project supported by the National Natural Science Foundation of China(Nos.11971303 and 11871330)。
文摘In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.
基金funded by the National Natural Science Foundation of China(Nos.41272253,41402206 and 41530636)the National Science Foundation of Jilin Province(No.20130101027JC)+2 种基金 “the 12th Five-Year Plan” science and technology research projects of education department in Jilin Province(No.2014B012)the Graduate Innovation Fund of Jilin University(No.2015065)grateful for the support of the Key Laboratory of Groundwater Resources and Environment,Ministry of Education
文摘Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reduction, is one of the most efficient pollutant removal methods. However, research on NB degradation coupled to indigenous microorganism dissimilatory iron reduction stimulated by electron donors is still experimental. A model for remediation in an actual polluted site does not currently exist.Therefore, in this study, the dynamics was derived from the Michaelis–Menten model(when the mass ratio of emulsified vegetable oil and NB reached the critical value 91:1). The effect of SO4^(2-), NO3^-, Ca^(2+)/Mg^(2+), and the grain size of aquifer media on the dynamics were studied, and the NB degradation dynamic model was then modified based on the most significant factors. Utilizing the model, the remediation time could be calculated in a contaminated site.
基金supported by the National Nature Science Foundation of China(No.51678210)National Key Research and Development Program of China(No.2016YFC0701400).
文摘Structural components may enter an initial-elastic state,a plastic-hardening state and a residual-elastic state during strong seismic excitations.In the residual-elastic state,structural components keep in an unloading/reloading stage that is dominated by a tangent stiffness,thus structural components remain residual deformations but behave in an elastic manner.It has a great potential to make model order reduction for such structural components using the tangent-stiffness-based vibration modes as a reduced order basis.In this paper,an adaptive substructure-based model order reduction method is developed to perform nonlinear seismic analysis for structures that have a priori unknown damage distribution.This method is able to generate time-varying substructures and make nonlinear model order reduction for substructures in the residual-elastic phase.The finite element program OpenSees has been extended to provide the adaptive substructure-based nonlinear seismic analysis.At the low level of OpenSees framework,a new abstract layer is created to represent the time-varying substructures and implement the modeling process of substructures.At the high level of OpenSees framework,a new transient analysis class is created to implement the solving process of substructure-based governing equations.Compared with the conventional time step integration method,the adaptive substructure-based model order reduction method can yield comparative results with a higher computational efficiency.
文摘The mathematical models for dynamic distributed parameter systems are given by systems of partial differential equations. With nonlinear material properties, the corresponding finite element (FE) models are large systems of nonlinear ordinary differential equations. However, in most cases, the actual dynamics of interest involve only a few of the variables, for which model reduction strategies based on system theoretical concepts can be immensely useful. This paper considers the problem of controlling a three dimensional profile on nontrivial geometries. Dynamic model is obtained by discretizing the domain using FE method. A nonlinear control law is proposed which transfers any arbitrary initial temperature profile to another arbitrary desired one. The large dynamic model is reduced using proper orthogonal decomposition (POD). Finally, the stability of the control law is proved through Lyapunov analysis. Results of numerical implementation are presented and possible further extensions are identified.
文摘Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task owing to the curse of dimensionality. This paper presents a new algorithm to reduce the size of a design space to a smaller region of interest allowing a more accurate surrogate model to be generated. The framework requires a set of models of different physical or numerical fidelities. The low-fidelity (LF) model provides physics-based approximation of the high-fidelity (HF) model at a fraction of the computational cost. It is also instrumental in identifying the small region of interest in the design space that encloses the high-fidelity optimum. A surrogate model is then constructed to match the low-fidelity model to the high-fidelity model in the identified region of interest. The optimization process is managed by an update strategy to prevent convergence to false optima. The algorithm is applied on mathematical problems and a two-dimen-sional aerodynamic shape optimization problem in a variable-fidelity context. Results obtained are in excellent agreement with high-fidelity results, even with lower-fidelity flow solvers, while showing up to 39% time savings.
文摘Mean decision power (MDP) is an important criterion of a new reduction model, and relative decision power (RDP) and amount of rules (AR) are key parameters of MDP. This paper presents two important properties: relationship between RDP and AR, and relationship between MDP rule set of parent decision table and MDP rule set of child decision table. These properties can help better understanding of the new reduction model and are useful tools by which one can rapidly derive an MDP rule set.