期刊文献+
共找到8,386篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical simulation of the deformation risk in thin slab continuous casting process with liquid core reduction 被引量:1
1
作者 Zhida Zhang Jize Chen +3 位作者 Cheng Ji Yutang Ma Miaoyong Zhu Wenxue Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1114-1127,共14页
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de... The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively. 展开更多
关键词 thin slab continuous casting liquid core reduction three-dimensional thermal-mechanical critical strain crack risk maxim-um theoretical reduction amount
在线阅读 下载PDF
Separation and enrichment of valuable elements from slag containing rare earth,niobium and titanium via Fe-Si bath smelting reduction
2
作者 Xing-li Jia Bo Zhang +2 位作者 Lei Cui Cheng-jun Liu Mao-fa Jiang 《Journal of Iron and Steel Research International》 2025年第7期1990-2000,共11页
To recover the valuable elements in Bayan Obo tailings,Fe-Si bath smelting reduction was adopted to separate and enrich rare earth elements(REE),niobium and titanium from the REE-Nb-Ti-containing slag.The reduction re... To recover the valuable elements in Bayan Obo tailings,Fe-Si bath smelting reduction was adopted to separate and enrich rare earth elements(REE),niobium and titanium from the REE-Nb-Ti-containing slag.The reduction reaction process of the Fe-Si bath and the migration behavior of valuable elements in the solidification and crystallization process of silicothermic reduction tailings were investigated,and a treatment method for efficiently separating and enriching REE,Nb and Ti was explored.Thermodynamic analysis indicated that at 1600℃,with a 6 wt.%addition of Si as the reducing agent,the niobium oxide in the REE-Nb-Ti-containing slag could be selectively reduced to metallic Nb.In the Fe-Si bath reduction process,the Nb mass fraction in the metal phase increased with prolonged reaction time,peaking at 2.77%,while the Ti mass fraction consistently stayed below 0.12%.Lowering the w(CaO)/w(SiO_(2))enhanced the migration of Nb from slag to metal phase and reduced the Ti impurities.During solidification and crystallization,a significant quantity of perovskite precipitated from reduction tailings,with the REE dissolving into this perovskite.By adjusting the w(CaO)/w(SiO_(2))in tailings to 1.2-1.9 and maintaining a temperature of 1100℃for 4 h,the perovskite area fraction in the final slag could exceed 37%.Finally,a method was proposed to separate and enrich valuable elements in REE-Nb-Ti-containing slags via Fe-Si bath smelting reduction and crystallization control. 展开更多
关键词 Bayan Obo tailing Silicothermic reduction NIOBIUM Titanium Rare earth Bath smelting reduction
原文传递
Isothermal reduction kinetics and reduction prediction for iron ore pellets
3
作者 Fei Meng Hao Liu +4 位作者 Yue-lin Qin Huang-jie Hua Yin Deng Ze-zheng Sun Long-hai Liu 《Journal of Iron and Steel Research International》 2025年第1期64-72,共9页
Iron ore pellets,as one of the main charges of blast furnaces,have a greater impact on the CO_(2)emission reduction and stable operation of blast furnaces.The isothermal reduction behavior of the pellets obtained from... Iron ore pellets,as one of the main charges of blast furnaces,have a greater impact on the CO_(2)emission reduction and stable operation of blast furnaces.The isothermal reduction behavior of the pellets obtained from a Chinese steel plant was studied in the gas mixtures of CO and N_(2).The results showed the reduction process is divided into two stages.The reduction in the initial stage(time t≤40 min)is cooperatively controlled by internal diffusion and interface chemical reactions with the activation energy of 30.19 and 16.67 kJ/mol,respectively.The controlling step of the reduction in the final stage(t>40 min)is internal diffusion with the activation energy of 34.60 kJ/mol.The reduction process can be described by two equations obtained from kinetic calculations.The reduction degree can be predicted under different temperatures and time,and the predicted results showed an excellent correlation with the experimental results.The reduction mechanisms were confirmed by the analysis of the scanning electron microscope equipped with an energy dispersive spectrometer and optical microscope. 展开更多
关键词 PELLET reduction behavior KINETICS MECHANISM reduction prediction
原文传递
Computational insights and strategic choices of nitrate and nitric oxide electroreduction to ammonia
4
作者 Pu Guo Shaoxue Yang +3 位作者 Huijuan Jing Dong Luan Jun Long Jianping Xiao 《Chinese Journal of Catalysis》 2025年第10期220-226,共7页
Electrochemical nitrate reduction(eNO_(3)RR)and nitric oxide reduction(eNORR)to ammonia have emerged as promising and sustainable alternatives to the traditional Haber-Bosch method for ammonia production,particularly ... Electrochemical nitrate reduction(eNO_(3)RR)and nitric oxide reduction(eNORR)to ammonia have emerged as promising and sustainable alternatives to the traditional Haber-Bosch method for ammonia production,particularly within the recently proposed reverse artificial nitrogen cycle route:N_(2)→NO_(x)→NH_(3).Notably,experimental studies have demonstrated that eNORR exhibits superior performance over eNO_(3)RR on Cu6Sn5 catalysts.However,the fundamental mechanisms underlying this difference remain poorly understood.Herein,we performed systematic theoretical calculations to explore the reaction pathways,electronic structure effects,and potential-dependent Faradic efficiency associated with ammonia production via these two distinct electrochemical pathways(eNORR and eNO_(3)RR)on Cu6Sn5.By implementing an advanced‘adaptive electric field controlled constant potential(EFC-CP)’methodology combined with microkinetic modeling,we successfully reproduced the experimental observations and identified the key factors affecting ammonia production in both reaction pathways.It was found that eNORR outperforms eNO_(3)RR because it circumvents the ^(*)NO_(2) dissociation and ^(*)NO_(2) desorption steps,leading to distinct surface coverage of key intermediates between the two pathways.Furthermore,the reaction rates were found to exhibit a pronounced dependence on the surface coverage of ^(*)NO in eNORR and ^(*)NO_(2) in eNO_(3)RR.Specifically,the facile desorption of ^(*)NO_(2) on the Cu6Sn5 surface in eNO_(3)RR limits the attainable surface coverage of ^(*)NO,thereby impeding its performance.In contrast,the eNORR can maintain a high surface coverage of adsorbed ^(*)NO species,contributing to its enhanced ammonia production performance.These fundamental insights provide valuable guidance for the rational design of catalysts and the optimization of reaction routes,facilitating the development of more efficient,sustainable,and scalable techniques for ammonia production. 展开更多
关键词 Reverse ammonia production ELECTROCATALYSIS Nitric oxide reduction Nitrate reduction Constant potential Density functional theory calculation Microkinetic modeling
在线阅读 下载PDF
Mechanism analysis of effect of MgO on reduction swelling behaviour of iron pellets in CO/H_(2)atmosphere based on first-principles calculations
5
作者 Hong-ming Long Jing-shu An +3 位作者 Xing-wang Li Ting Wu Sheng-ping He Jie Lei 《Journal of Iron and Steel Research International》 2025年第1期73-84,共12页
To explain the influence mechanism of MgO on the consolidation and reduction characteristics of roasted iron pellets,the properties and structure of pellets were investigated from multi-dimensions.It indicated that th... To explain the influence mechanism of MgO on the consolidation and reduction characteristics of roasted iron pellets,the properties and structure of pellets were investigated from multi-dimensions.It indicated that the MgO addition decreased the reduction swelling index(RSI)and reduction degree of pellets in both CO and H_(2)atmospheres.During the stepwise reduction process of Fe2O3→Fe3O4→FeO,the reduction behaviour of pellets in CO and H_(2)was similar,while the reduction rate of pellets in H_(2)atmosphere was almost twice as high as that in CO atmosphere.During the stepwise reduction process of FeO→Fe,the RSI of pellets showed a logarithmic increase in CO atmosphere and a linear decrease in H_(2)atmosphere.As investigated by first-principles calculations,C and Fe mainly formed chemical bonds,and the CO reduction process released energy,promoting the formation of iron whiskers.However,H and Fe produced weak physical adsorption,and the H_(2)reduction process was endothermic,inhibiting the generation of iron whiskers.With Mg2+doping in FexO,the nucleation region of iron whiskers expanded in CO reduction process,and the morphology of iron whiskers transformed from“slender”to“stocky,”reducing RSI of the pellets. 展开更多
关键词 MGO CO atmosphere H_(2)atmosphere reduction degree reduction swelling index First-principles calculation
原文传递
Microwave pre-oxidation followed by biomass reduction for efficient separation of titanium and iron from vanadium-titanium magnetite
6
作者 Bing Hu Yong-zhao Liang +2 位作者 Fu-qiang Zheng Chen Liu Xun-an Ning 《Journal of Iron and Steel Research International》 2025年第7期1803-1815,共13页
Microwave pre-oxidation and biomass reduction were adopted to enhance the separation of titanium and iron in vanadium-titanium magnetite.The effects of microwave pre-oxidation temperature and time,as well as biomass r... Microwave pre-oxidation and biomass reduction were adopted to enhance the separation of titanium and iron in vanadium-titanium magnetite.The effects of microwave pre-oxidation temperature and time,as well as biomass reduction temperature and time,were investigated.The results showed that the average particle size of vanadium-titanium magnetite decreased,and the specific surface area increased with the increase in pre-oxidation temperature and time.The reaction pathway(Fe_(3-x)TixO_(4)→Fe_(2-x)TixO_(3)→Fe_(2)TiO_(5))was proved in microwave pre-oxidation process.The results of biomass reduction roasting showed that biomass reduction could effectively reduce ferric oxide to metallic iron while Ti was enriched in a solid solution of magnesium anosovite,which was beneficial to the subsequent grinding and acid leaching separation.The combined process of microwave pre-oxidation and biomass reduction achieved a high separation efficiency of titanium and iron in vanadium-titanium magnetite without forming complex titanium minerals.The titanium grade in the vanadium-titanium-rich material was 32.10%,and the recovery rate was 91.51%.The iron grade in the iron concentrate(metallic iron)was 90.90%,the recovery rate was 93.47%,and metallization rate was 93.87%. 展开更多
关键词 Electric furnace Magnesium anosovite V-Ti-rich material Biomass reduction reduction roasting
原文传递
Experiments on the characteristics of upgrading and viscosity reduction of heavy oil under supercritical water conditions
7
作者 HUANG Zhongwei SHEN Yazhou +5 位作者 WU Xiaoguang LI Gensheng LONG Tengda ZOU Wenchao SUN Weizhen SHEN Haoyang 《Petroleum Exploration and Development》 2025年第1期170-181,共12页
This paper investigates the macroscopic and microscopic characteristics of viscosity reduction and quality improvement of heavy oil in a supercritical water environment through laboratory experiments and testing.The e... This paper investigates the macroscopic and microscopic characteristics of viscosity reduction and quality improvement of heavy oil in a supercritical water environment through laboratory experiments and testing.The effect of three reaction parameters,i.e.reaction temperature,reaction time and oil-water ratio,is analyzed on the product and their correlation with viscosity.The results show that the flow state of heavy oil is significantly improved with a viscosity reduction of 99.4%in average after the reaction in the supercritical water.Excessively high reaction temperature leads to a higher content of resins and asphaltenes,with significantly increasing production of coke.The optimal temperature ranges in 380–420℃.Prolonged reaction time could continuously increase the yield of light oil,but it will also results in the growth of resins and asphaltenes,with the optimal reaction time of 150 min.Reducing the oil-water ratio helps improve the diffusion environment within the reaction system and reduce the content of resins and asphaltenes,but it will increase the cost of heavy oil treatment.An oil-water ratio of 1︰2 is considered as optimum to balance the quality improvement,viscosity reduction and reaction economics.The correlation of the three reaction parameters relative to the oil sample viscosity is ranked as temperature,time and oil-water ratio.Among the four fractions of heavy oil,the viscosity is dominated by asphaltene content,followed by aromatic content and less affected by resins and saturates contents. 展开更多
关键词 heavy oil supercritical water in-situ modification viscosity reduction influencing factors thermal recovery of heavy oil viscosity reduction for gathering and transportation
在线阅读 下载PDF
Localized enriching nitrate/proton on reconstituted Fe nanoparticles boosting electrocatalytic nitrate reduction to ammonia
8
作者 Shiyu Li Jin Yan +1 位作者 Meihuan Liu Hui Su 《Journal of Energy Chemistry》 2025年第4期682-691,共10页
The electrochemical conversion of nitrate,a widespread water pollutant,into valuable ammonia represents a green and decentralized approach to ammonia synthesis.However,the sluggish multielectronproton coupling path an... The electrochemical conversion of nitrate,a widespread water pollutant,into valuable ammonia represents a green and decentralized approach to ammonia synthesis.However,the sluggish multielectronproton coupling path and the low reactive species(nitrate and proton)concentration at the catalyst interface inhibit the efficiency of ammonia production from nitrate reduction reaction(NitRR).Herein,we introduce a novel iron-based tandem catalyst encapsulated by reduced graphene oxide(denoted as Fe-rGO),with a superior ammonia production rate of 47.815 mg h^(-1)mg_(ca)^(t-1)and a high Faraday efficiency(FE)of 96.51%at an applied potential of-0.5 V.It also delivers a robust stability with FE above90%under a current density of 250 mA cm^(-2)for 50 h.In situ X-ray absorption spectroscopy reveals that the FeO_(x)is dynamically translated to Fe~0 site concurrently with the enhancement of the NH_(3)production rate,suggesting the Fe^(0) site as hydrogenation active center.The asymmetric distribution of surface charges of rGO not only enriches nitrate ions at the catalytic interface and promotes the hydrogenation process in NitRR,but also protects the iron species and ensures their stability during electrolysis.The Zn-NO_(3)^(-)battery demonstrates an impressive FE of 88.6%,highlighting its exceptional potential for practical applications. 展开更多
关键词 Electrocatalytic nitrate reduction Dynamically reconstituted Long-term stability Oxygen reduction reaction In-situ characterization
在线阅读 下载PDF
Advances in Sn-based electrocatalysts for selective reduction of CO_(2) to formate
9
作者 ZHANG Ying-ping LI Wei-jie +1 位作者 HAN Chao LIU Yong 《Journal of Central South University》 2025年第5期1581-1601,共21页
The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) ... The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) and promote the balance of the carbon cycle.Formate is one of the most economical and practical products of all the electrochemical CO_(2) reduction products.Among the many metal-based electrocatalysts that can convert CO_(2) into formate,Sn-based catalysts have received a lot of attention because of their low-cost,non-toxic characteristics and high selectivity for formate.In this article,the most recent development of Sn-based electrocatalysts is comprehensively summarized by giving examples,which are mainly divided into monometallic Sn,alloyed Sn,Sn-based compounds and Sn composite catalysts.Finally,the current performance enhancement strategies and future directions of the field are summarized. 展开更多
关键词 CO_(2)electrochemical reduction Sn-based electrocatalysts FORMATE progress and perspective selective reduction
在线阅读 下载PDF
Evaluation of MgO on hematite swelling dynamics during CO-driven stepwise reduction
10
作者 Fang Zhang Jun Peng +2 位作者 Shuang Liu Yong-bin Wang Fan Yang 《Journal of Iron and Steel Research International》 2025年第3期564-577,共14页
The significant effect of MgO in inhibiting the reduction swelling of iron ore pellets has been widely recognized.The swelling behaviors of pellets during the stepwise reduction by CO were assessed.The linear expansio... The significant effect of MgO in inhibiting the reduction swelling of iron ore pellets has been widely recognized.The swelling behaviors of pellets during the stepwise reduction by CO were assessed.The linear expansion of strip samples was measured using a linear dilatometer during the staged reduction process at a temperature of 900℃.The existence states of MgO in hematite,magnetite,and wüstite were investigated through thermodynamic calculations.The magnetite strip samples were subjected to oxidizing roasting at 1250℃ for 30 min to produce hematite strip samples.The strip samples with 0.49,1.49,2.49,and 3.49 wt.%MgO were analyzed for length change.It was observed that the sample with 2.49 wt.%MgO exhibited the least significant length change.The lengths of the samples with the initial length being 20 mm before reduction changed during the reduction stages of Fe_(2)O_(3)→Fe_(3)O_(4),Fe_(3)O_(4)→FeO,and FeO→Fe were 615,−25,and−378μm,respectively.The volume expansion of hematite to magnetite was primarily attributed to the crystal transformation.During the reduction stage from wüstite to metallic iron,a substantial contraction occurred,while the slag phase was able to retain its original basic shape.The enclosed areas,as indicated by the expansion change curves of the samples with 0.49,1.49,2.49,and 3.49 wt.%MgO,were measured at 3.76×10^(6),3.23×10^(6),3.05×10^(6),and 3.17×10^(6)μm s,respectively. 展开更多
关键词 MGO HEMATITE reduction swelling Step-by-step reduction
原文传递
Kinetics of isothermal reduction of carbon-containing silicomanganese dust
11
作者 Ju Xu Guojun Ma +4 位作者 Jie Xu Mengke Liu Xiang Zhang Dingli Zheng Junlong Li 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期869-878,共10页
Silicomanganese dust contains large amounts of valuables,such as Si and Mn,which can be used as raw materials for the smelting of silicomanganese.However,the direct addition of dust to the submerged arc furnace can in... Silicomanganese dust contains large amounts of valuables,such as Si and Mn,which can be used as raw materials for the smelting of silicomanganese.However,the direct addition of dust to the submerged arc furnace can influence the permeability of burden due to the fine particle size of dust,which results in incomplete reduction reactions during the smelting process.In this paper,silicomanganese dust,graphite powder,and other additives were pressed to form carbon-containing dust briquettes,and the self-reduction process of the dust briquettes was investigated through the isothermal thermogravimetric method with different carbon–oxygen (C/O) molar ratios,contents of fluxing agents,and reduction temperatures.Various reduction kinetic models for dust briquettes at different temperatures were established.The results show that the reaction fraction of the dust briquettes was about 90%at a C/O molar ratio of 1.2 with optimal reduction efficiency.The addition of CaF_(2)contributed to the decrease in the melting point and viscosity of dust briquettes,which increased their reduction rate.As the reduction temperature increased,the reduction rate of dust briquettes increased.The reduction reaction rate of dust briquettes was controlled through gas-phase diffusion.Meanwhile,their reduction process was analyzed kinetically,with the reaction time of 5 min as the dividing line.The apparent activation energies for the two diffusion stages were 56.10 and 100.52 kJ/mol,respectively.The kinetic equations are expressed as[1-(1-f)^(1/3)]^(2)=0.69e^(-56100/(RT))t and [1-(1-f)^(1/3)]^(2)=2.06e^(-100520/(RT))t. 展开更多
关键词 silicomanganese dust carbothermal reduction isothermal reduction KINETICS
在线阅读 下载PDF
Mechanisms and interactions in the reduction of Fe_(2)O_(3) by H_(2)/CO mixed gas:Atomic insights from ReaxFF molecular dynamics simulations and experiments
12
作者 Qiang Cheng Alberto NConejo +3 位作者 Jianliang Zhang Daniel Sopu Yaozu Wang Zhengjian Liu 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1372-1382,共11页
The experiment explored the Fe_(2)O_(3) reduction process with H_(2)/CO mixed gas and confirmed a promoting effect from CO when its volume proportion in mixed gas is 20% at 850℃.The ReaxFF molecular dynamics(MD)simul... The experiment explored the Fe_(2)O_(3) reduction process with H_(2)/CO mixed gas and confirmed a promoting effect from CO when its volume proportion in mixed gas is 20% at 850℃.The ReaxFF molecular dynamics(MD)simulation method was used to observe the reduction process and provide an atomic-level explanation.The accuracy of the parameters used in the simulation was verified by the density functional theory(DFT)calculation.The simulation shows that the initial reduction rate of H_(2) is much faster than that of CO(from 800 to 950℃).As the reduction proceeds,cementite,obtained after CO participates in the reduction at 850℃,will appear on the iron surface.Due to the active properties of C atoms in cementite,they are easy to further react with the O atoms in Fe_(2)O_(3).The generation of internal CO may destroy the dense structure of the surface layer,thereby affecting the overall reduction swelling of Fe_(2)O_(3).However,excess CO is detrimental to the reaction rate,mainly because of the poor thermodynamic conditions of CO in the temperature range and the molecular diffusion capacity is not as good as that of H_(2).Furthermore,the surface structures obtained after H_(2) and CO reduction have been compared,and it was found that the structure obtained by CO reduction has a larger surface area,thus promoting the sub sequent reaction of H_(2). 展开更多
关键词 hydrogen reduction hydrogen/carbon monoxide mixture ReaxFF molecular dynamics simulations reduction swelling atomic mechanisms
在线阅读 下载PDF
Competitions between hydrogen evolution reaction and oxygen reduction reaction on an Au surface
13
作者 Yao Yao Juping Xu Minhua Shao 《Chinese Journal of Catalysis》 2025年第6期271-278,共8页
Hydrogen evolution reaction(HER)is unavoidable in many electrochemical synthesis systems,such as CO_(2)reduction,N2reduction,and H_(2)O_(2)synthesis.It makes those electrochemical reactions with multiple electron-prot... Hydrogen evolution reaction(HER)is unavoidable in many electrochemical synthesis systems,such as CO_(2)reduction,N2reduction,and H_(2)O_(2)synthesis.It makes those electrochemical reactions with multiple electron-proton transfers more complex when determining kinetics and mass transfer information.Understanding how HER competes with other electrochemical reduction reactions is crucial for both fundamental studies and system performance improvements.In this study,we employed the oxygen reduction reaction(ORR)as a model reaction to investigate HER competition on a polycrystalline-Au surface,using a rotating ring and disk electrode.It’s proved that water molecules serve as the proton source for ORR in alkaline,neutral,and even acidic electrolytes,and a 4-electron process can be achieved when the overpotential is sufficiently high.The competition from H⁺reduction becomes noticeable at the H⁺concentration higher than 2 mmol L^(–1)and intensi-fies as the H^(+)concentration increases.Based on the electrochemical results,we obtained an equivalent circuit diagram for the ORR system with competition from the H+reduction reaction,showing that these reactions occur in parallel and compete with each other.Electrochemical impedance spectroscopy measurements further confirm this argument.Additionally,we discover that the contribution of H+mass transfer to the total H^(+)reduction current is significant and comparable to the kinetic current.We believe this work will deepen our understanding of HER and its competition in electrochemical reduction systems. 展开更多
关键词 Hydrogen evolution reaction Oxygen reduction reaction H⁺reduction competition Rotating ring and disk electrode Proton source
在线阅读 下载PDF
Process mechanism research on direct vortex melting reduction of vanadium–titanium magnetite
14
作者 Yong-chao Han Zhi-he Dou +2 位作者 Zhan-ning Yang Wei Xie Ting-an Zhang 《Journal of Iron and Steel Research International》 2025年第3期536-549,共14页
In response to the new mechanism of direct vortex melting reduction of vanadium–titanium magnetite,the reaction control mechanism and the migration regularity of valuable components in the process of direct melting r... In response to the new mechanism of direct vortex melting reduction of vanadium–titanium magnetite,the reaction control mechanism and the migration regularity of valuable components in the process of direct melting reduction were investigated using kinetic empirical equation by fitting and combining with X-ray diffraction,X-ray fluorescence,scanning electron microscopy,energy-dispersive spectrometry,and optical microscopy.The results show that iron reduction is controlled by the mass transfer process of(FeOx)in the slag,while vanadium reduction is controlled by both the mass transfer of(VOx)in the slag and the mass transfer of[V]in the molten iron,and the slag–metal interfacial reaction is the only pathway for vanadium reduction.The reduction of iron and vanadium is an obvious first-order reaction,with activation energy of 101.6051 and 197.416 kJ mol^(−1),respectively.Increasing the vortex rate and reaction temperature is beneficial to improving the reaction rate and reduction efficiency.The mineral phase variation of iron and vanadium in the slag during the reduction process is Fe_(2)O_(3)→Fe_(3)O_(4)/FeV_(2)O_(4)→FeTiO_(3) and FeV_(2)O_(4)→MgV_(2)O_(5);titanium in slag is mainly in the form of Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)and CaTiO_(3).As the reaction time went on,the molar ratio(nTi/nMg)in Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)and the Ti2O_(3) content in the slag gradually went up,while the area proportion of Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)went up and then down,and the porosity of the slag and the grain size of Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)got smaller. 展开更多
关键词 Vanadium-titanium magnetite Vortex melting reduction KINETICS reduction process mechanism
原文传递
Dynamic characteristics and vibration reduction performance of a novel Bi-TRMD
15
作者 SONG Yuda LI Zuohua +2 位作者 NING Jiafei SONG Tingsu TENG Jun 《Journal of Southeast University(English Edition)》 2025年第2期147-155,共9页
A novel bidirectional tuned rolling mass damper(Bi-TRMD)device is proposed,and its dynamic character-istics and vibration reduction performance are investigated.The device achieves the performance goal of bidirectiona... A novel bidirectional tuned rolling mass damper(Bi-TRMD)device is proposed,and its dynamic character-istics and vibration reduction performance are investigated.The device achieves the performance goal of bidirectional vibration reduction for a tuned rolling mass damper with a single concave structure.First,the Bi-TRMD device is introduced,and its three-dimensional(3D)mechanical model is established.The motion equations of the model are de-rived using the Gibbs-Appell equation,and a trajectory pre-diction method for the sphere and structure within the model is developed.This method demonstrates that the rolling motion of the sphere around orthogonal axes is nearly indepen-dent within a limited range,enabling the simplification of the 3D model into a two-dimensional(2D)model.The accuracy of this simplification is validated through case analysis.The vibration reduction parameters are optimized using the 2D model and Den Hartog theory,leading to the derivation of mathematical expressions for the optimal frequency ratio and damping ratio.Subsequently,the bidirectional vi-bration reduction performance of the Bi-TRMD is analyzed.The results show that under white noise excitation,the Bi-TRMD achieves a bidirectional peak acceleration reduction rate that is 9.92%and 7.79%higher than that of translational tuned mass dampers(TMD)with the same mass.These findings demonstrate that the proposed Bi-TRMD ef-fectively achieves two-directional vibration reduction with a single concave structure,offering superior vibration reduction performance. 展开更多
关键词 bidirectional tuned rolling mass damper(Bi-TRMD) tuned mass damper(TMD) dynamic charac-teristics trajectory prediction optimization of vibration reduction parameters vibration reduction performance
在线阅读 下载PDF
Revealing the effect of hybrid oxide coatings on copper catalysts for CO_(2) electroreduction
16
作者 Xing-Jian Cao Pei-Lei He 《Rare Metals》 2025年第4期2861-2864,共4页
Electrochemical CO_(2) reduction reaction(CO_(2)RR),driven by renewable energy,offers a promising solution to mitigate increasing CO_(2) emissions and establish a carbon-neutral cycle.Copper is a highly selective and ... Electrochemical CO_(2) reduction reaction(CO_(2)RR),driven by renewable energy,offers a promising solution to mitigate increasing CO_(2) emissions and establish a carbon-neutral cycle.Copper is a highly selective and active catalyst for CO_(2)RR but suffers from structural reconstruction challenges.Hybrid organic/inorganic materials address these issues by offering customizable compositions and interfaces.Recently,Buonsanti’s team developed hybrid Cu@AlOx nanocrystals with tunable alumina shells via a colloidal atomic layer deposition approach,achieving stable and selective methane production during CO_(2)RR.Mechanistic studies reveal that the alumina shell stabilizes oxidized copper species through Cu^(2+)-O-Al motifs coordinated with AlO_(4) Lewis acid sites,reducing copper dissolution and structural reconstruction.This study provides key insights into the mechanism underlying stabilization,highlighting the critical role of Lewis acidity in preserving the structural integrity of the catalyst.This highlight review aims to inspire the development of other high-performance and stable catalysts through colloidal atomic layer deposition strategies. 展开更多
关键词 hybrid oxide coatings renewable energyoffers copper catalysts structural reconstruction electrochemical CO reduction reaction alumina shells renewable energy CO electroreduction
原文传递
Nitrogen-cycling processes under long-term compound heavy metal(loids)pressure around a gold mine:Stimulation of nitrite reduction 被引量:1
17
作者 Xuesong Hu Xiaoxia Liu +1 位作者 Shuo Zhang Caihong Yu 《Journal of Environmental Sciences》 2025年第1期571-581,共11页
Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This ... Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids)exposure.The results showed that the diversity and abundance of nitrogen-cyclingmicroorganisms showed negative feedback to heavy metal(loids)concentrations.Denitrifying microorganisms were shown to be the dominant microorganisms with over 60%of relative abundance and a complex community structure including 27 phyla.Further,the key bacterial species in the denitrification process were calculated using a random forest model,where the top three key species(Pseudomonas stutzei,Sphingobium japonicum and Leifsonia rubra)were found to play a prominent role in nitrite reduction.Functional gene analysis and qPCR revealed that nirK,which is involved in nitrite reduction,significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%.The experimental results confirmed that the activity of nitrite reductase(Nir)encoded by nirK in the soil was increased at high concentrations of heavy metal(loids).Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids),the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species.The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids). 展开更多
关键词 N cycle Nitrite reduction Nitrite reductase METAGENOME Key species
原文传递
Interfacial Pt-N coordination for promoting oxygen reduction reaction 被引量:1
18
作者 Jialin Cai Yizhe Chen +5 位作者 Ruiwen Zhang Cheng Yuan Zeyu Jin Yongting Chen Shiming Zhang Jiujun Zhang 《Chinese Chemical Letters》 2025年第2期481-485,共5页
Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange... Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells.For fundamental understanding,clearly identifying the metalsupport effect on enhancement mechanisms of ORR electrocatalysis is definitely needed.In this work,the impact of Pt-support interaction via interfacial Pt-N coordination on electrocatalytic ORR activity and stability in Pt/N-C catalyst is deeply studied through structural/compositional characterizations,electrochemical measurements and theoretical DFT-calculations/AIMD-simulations.The resulting Pt/N-C catalyst exhibits a superior electrocatalytic performance compared to the commercial Pt/C catalyst in both half-cell and H_(2)-O_(2)fuel cell.Experimental and theoretical results reveal that the interfacial Pt-N coordination enables electron transfer from N-C support to Pt nanoparticles,which can weaken the adsorption strength of oxygen intermediates on Pt surface to improve ORR activity and induce the strong Pt-support interaction to enhance electrochemical stability. 展开更多
关键词 Oxygen reduction reaction N-doped carbon PLATINUM Pt-N Theoretical calculations
原文传递
Radiation reduction modification of sp^(2) carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(Ⅵ) removal 被引量:1
19
作者 Shouchao Zhong Yue Wang +6 位作者 Mingshu Xie Yiqian Wu Jiuqiang Li Jing Peng Liyong Yuan Maolin Zhai Weiqun Shi 《Chinese Chemical Letters》 2025年第5期277-282,共6页
A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for ... A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for Cr(Ⅵ) removal.The morphology and structure of rBDATN-HCl were analyzed and identified by SEM,FTIR,XRD and solid-state13C NMR.It is found that the active functional groups,such as hydroxyl and amide,were introduced into BDATN after radiation reduction and acidification.The prepared rBDATN-HCl demonstrates a photocatalytic reduction removal rate of Cr(Ⅵ) above 99%after 60min of illumination with a solid-liquid ratio of 0.5 mg/mL,showing outstanding performance,which is attributed to the increase of dispersibility and adsorption sites of r BDATN-HCl.In comparison to the cBDATN-HCl synthesized with chemical reduction,rBDATN-HCl exhibits a better photoreduction performance for Cr(Ⅵ),demonstrating the advantages of radiation preparation of rBDATN-HCl.It is expected that more functionalized sp^(2) carbon-conjugated COFs could be obtained by this radiation-induced reduction strategy. 展开更多
关键词 Covalent organic framework Gamma radiation Photocatalytic reduction CHROMIUM Water purification
原文传递
Iron-doping regulated light absorption and active sites in LiTaO_(3) single crystal for photocatalytic nitrogen reduction 被引量:1
20
作者 Zhenfei Tang Yunwu Zhang +10 位作者 Zhiyuan Yang Haifeng Yuan Tong Wu Yue Li Guixiang Zhang Xingzhi Wang Bin Chang Dehui Sun Hong Liu Lili Zhao Weijia Zhou 《Chinese Chemical Letters》 2025年第3期206-211,共6页
In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-dept... In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes. 展开更多
关键词 Nitrogen reduction PHOTOCATALYSIS Fe doping Single crystal Lithium tantalate crystal
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部