期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Wind-Driven,Double-Gyre,Ocean Circulation in a Reduced-Gravity,2.5-Layer,Lattice Boltzmann Model
1
作者 钟霖浩 冯士德 +1 位作者 罗德海 高守亭 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第4期561-578,共18页
A coupled lattice Boltzmann (LB) model with second-order accuracy is applied to the reduced-gravity, shallow water, 2.5-layer model for wind-driven double-gyre ocean circulation. By introducing the secondorder integ... A coupled lattice Boltzmann (LB) model with second-order accuracy is applied to the reduced-gravity, shallow water, 2.5-layer model for wind-driven double-gyre ocean circulation. By introducing the secondorder integral approximation for the collision operator, the model becomes fully explicit. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretization accuracy of the LB equation. The feature of the multiple equilibria solutions is found in the numerical experiments under different Reynolds numbers based on this LB scheme. With the Reynolds number increasing from 3000 to 4000, the solution of this model is destabilized from the anti-symmetric double-gyre solution to the subtropic gyre solution and then to the subpolar gyre solution. The transitions between these equilibria states are also found in some parameter ranges. The time-dependent variability of the circulation based on this LB simulation is also discussed for varying viscosity regimes. The flow of this model exhibits oscillations with different timescales varying from subannual to interannual. The corresponding statistical oscillation modes are obtained by spectral analysis. By analyzing the spatiotemporal structures of these modes, it is found that the subannual oscillation with a 9-month period originates from the barotropic Rossby basin mode, and the interarmual oscillations with periods ranging from 1.5 years to 4.6 years originate from the recirculation gyre modes, which include the barotropic and the baroclinic recirculation gyre modes. 展开更多
关键词 Lattice Boltzmann model 2.5-layer reduced-gravity model wind-driven ocean circulation multiple equilibria solutions low-frequency mode
在线阅读 下载PDF
THE EFFECT OF SLOPING BOTTOM TOPOGRAPHY ON THE SOURCE-DRIVEN DEEP TROPICAL CIRCULATION
2
作者 吕建 吴德星 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 1998年第4期308-316,共0页
An inverted one-and-a-half layer reduced-gravity linear shallow-waer model with lin-early varied topography is formulated, in which a uniform mid-depth upweling is prescribed The analyti-cal particular solution of ord... An inverted one-and-a-half layer reduced-gravity linear shallow-waer model with lin-early varied topography is formulated, in which a uniform mid-depth upweling is prescribed The analyti-cal particular solution of order single equation in u1 showed that the linear topography inclinationforces the water column to move pole-ward with increased planetary vorticity or to produce relative vortici-ty, and hence to depress the cross-equatorial transport of deep western boundary current. It is notewnrthythat the topography Plays the same role as Newtonian Cooling in forcing on the absolute voricity. 展开更多
关键词 TOPOGRAPHY reduced-gravity cross-equatorial transport DEEP western boundary current NEWTONIAN Cooling
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部