BACKGROUND Ulcerative colitis(UC)is a chronic and debilitating inflammatory bowel disease.Cumulative evidence indicates that excess hydrogen peroxide,a potent neutrophilic chemotactic agent,produced by colonic epithel...BACKGROUND Ulcerative colitis(UC)is a chronic and debilitating inflammatory bowel disease.Cumulative evidence indicates that excess hydrogen peroxide,a potent neutrophilic chemotactic agent,produced by colonic epithelial cells has a causal role leading to infiltration of neutrophils into the colonic mucosa and subsequent development of UC.This evidence-based mechanism identifies hydrogen peroxide as a therapeutic target for reducing agents in the treatment of UC.CASE SUMMARY Presented is a 41-year-old female with a 26-year history of refractory UC.Having developed steroid dependence and never achieving complete remission on treatment by conventional and advanced therapies,she began treatment with oral R-dihydrolipoic acid(RDLA),a lipid-soluble reducing agent with intracellular site of action.Within a week,rectal bleeding ceased.She was asymptomatic for three years until a highly stressful experience,when she noticed blood in her stool.RDLA was discontinued,and she began treatment with oral sodium thiosulfate pentahydrate(STS),a reducing agent with extracellular site of action.After a week,rectal bleeding ceased,and she resumed oral RDLA and discontinued STS.To date,she remains asymptomatic with normal stool calprotectin while on RDLA.CONCLUSION STS and RDLA are reducing agents that serve as highly effective and safe therapy for the induction and maintenance of remission in UC,even in patients refractory or poorly controlled by conventional and advanced therapies.Should preliminary findings be validated by subsequent clinical trials,the use of reducing agents could potentially prevent thousands of colectomies and represent a paradigm shift in the treatment of UC.展开更多
Compared with the vacuum continuous magnesium smelting process(RVCMS), its excellent energy saving and emission reduction performance provides a feasible method for green magnesium smelting. In the process of industri...Compared with the vacuum continuous magnesium smelting process(RVCMS), its excellent energy saving and emission reduction performance provides a feasible method for green magnesium smelting. In the process of industrialization, the reduction rate of prefabricated pellets affects the yield of metal magnesium and the utilization of reducing slag. In this paper, the reduction mechanism under different carbonate structures is analyzed by controlled disproportionation of prefabricated pellets and micro-nano simulation. The results show that the low temperature decomposition of NH_(4)·HCO_(3)pore-forming, improve the reduction rate(99.72%) effect is remarkable. Combined with thermodynamics and relative vacuum mechanism, a theoretical model of the relationship between disproportionation pore-forming and reduction rate was established. It was concluded that the energy consumption required to produce per ton of magnesium by adding NH_(4)·HCO_(3)to the prefabricated pellets was reduced by 0.29±0.34 tce, and the carbon emission was reduced by 1.069±1.263 t. The reduction slag had good compressive strength(Side 101.19 N cm^(-2), Bottom 466.4 N cm^(-2)). Compared with the 20 MPa reduction slag sample without pore-forming agent, the side compressive strength increased by 51.66%, and the bottom compressive strength increased by 119.10%. The amount of single furnace filler is increased by more than 50%.展开更多
Cement production,while essential for global infrastructure,contributes significantly to carbon dioxide emissions,accounting for approximately 7%of total emissions.To mitigate these environmental impacts,flash calcina...Cement production,while essential for global infrastructure,contributes significantly to carbon dioxide emissions,accounting for approximately 7%of total emissions.To mitigate these environmental impacts,flash calcination of kaolinitic clays has been investigated as a sustainable alternative.This technique involves the rapid heating of clays,enabling their use as supplementary cementitious materials.The primary objective of this study was to modify the color of calcined clay in various atmospheres(oxidizing,inert,and reducing)to achieve a grayish tone similar to commercial cement while preserving its reactive properties.The experimental procedure employed a tubular reactor with precise control of gas flows(atmospheric air,nitrogen,and a carbon monoxide–nitrogen mixture).Physicochemical characterization of the raw clay was conducted before calcination,with analyses repeated on the calcined clays following experimentation.Results indicated that clay calcined in an oxidizing atmosphere acquired a reddish hue,attributed to the oxidation of iron in hematite.The Clay exhibited a pinkish tone in an inert atmosphere,while calcination in a reducing atmosphere yielded the desired grayish color.Regarding pozzolanic activity,clays calcined in oxidizing and inert atmospheres displayed robust strength,ranging from 82%to 87%.Calcination in a reducing atmosphere resulted in slightly lower strength,around 74%,likely due to the clay’s chemical composition and the calcination process,which affects compound formation and material reactivity.展开更多
BACKGROUND Pediatric liver transplantation(LT)is the definitive treatment for end-stage liver disease and acute liver failure in children.However,graft size mismatch poses significant challenges,particularly in infant...BACKGROUND Pediatric liver transplantation(LT)is the definitive treatment for end-stage liver disease and acute liver failure in children.However,graft size mismatch poses significant challenges,particularly in infants weighing less than 10 kg.Large-forsize grafts can lead to severe complications,including vascular thrombosis and impaired graft perfusion.Surgical innovations,such as hyper-reduced left lateral segment(HRLLS)grafts and monosegmental grafts(MSG),offer viable solutions by tailoring graft size without compromising vascular or biliary integrity.AIM To analyze the techniques and outcomes of HRLLS and MSG grafts in pediatric liver trabsplantation.METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines,a comprehensive literature search was conducted across PubMed,Scopus,and Google Scholar,including studies up to February 2025.Eligible studies included case-control,observational,and randomized controlled trials reporting clinical outcomes of HRLLS,MSG,or reduced left lateral segment grafts(RLLS)in pediatric LT.The Joanna Briggs Institute Critical Appraisal Checklist was used for quality assessment.Meta-analysis was performed using MetaXL software to pool survival outcomes and assess complication profiles.RESULTS Eighteen studies involving various graft reduction techniques were included.Both HRLLS and MSG demonstrated comparable one-year survival rates exceeding 80%,with some studies reporting rates above 95%.Complications such as hepatic artery thrombosis,portal vein thrombosis,and sepsis were slightly more frequent in HRLLS/RLLS recipients but remained within acceptable limits.Meta-analysis revealed no significant differences in survivability between graft types.CONCLUSION HRLLS and MSG techniques enable successful liver transplantation in small pediatric recipients,achieving longterm outcomes comparable to standard approaches.These graft modification strategies expand donor pool utilization and optimize patient survival while mitigating large-for-size complications.展开更多
There have been ever-growing demands to develop advanced electrocatalysts for renewable energy conversion over the past decade.As a promising platform for advanced electrocatalysts,reduced graphene oxide(rGO)has attra...There have been ever-growing demands to develop advanced electrocatalysts for renewable energy conversion over the past decade.As a promising platform for advanced electrocatalysts,reduced graphene oxide(rGO)has attracted substantial research interests in a variety of electrochemical energy conversion reactions.Its versatile utility is mainly attributed to unique physical and chemical properties,such as high specific surface area,tunable electronic structure,and the feasibility of structural modification and functionalization.Here,a comprehensive discussion is provided upon recent advances in the material preparation,characterization,and the catalytic activity of rGO-based electrocatalysts for various electrochemical energy conversion reactions(water splitting,CO2 reduction reaction,N2 reduction reaction,and O2 reduction reaction).Major advantages of rGO and the related challenges for enhancing their catalytic performance are addressed.展开更多
Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,a...Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,and the anode utilization rate is low.In this work,reduced graphene oxide(RGO)fabricated via high-temperature annealing or L-ascorbic acid(L.AA)reduction was first used to obtain Si nanowires/RGO-1000(Si NWs/RGO-1000)and Si nanowires/RGO-L.AA(Si NWs/RGO-L.AA)composite anodes for SABs.It was found that RGO suppressed the passivation and self-corrosion reactions and that SABs using Si NWs/RGO-L.AA as the anode can discharge for more than 700 h,breaking the previous performance of SABs,and that the specific capacity was increased by 90.8%compared to bare Si.This work provides a new solution for the design of high specific capacity SABs with nanostructures and anode protective layers.展开更多
Macroalgae dominate nutrient dynamics and function as high-value foods for microbial,meio-and macrofaunal communities in coastal ecosystems.Because of this vital role,it is important to clarify the physiological infor...Macroalgae dominate nutrient dynamics and function as high-value foods for microbial,meio-and macrofaunal communities in coastal ecosystems.Because of this vital role,it is important to clarify the physiological information associated with environmental changes as it reflects their growth potential.To evaluate the effects of the changes in salinity and nutrients,the photosynthetic efficiency of a green macroalga Ulva fasciata from the Daya Bay was tested at a range of salinity(i.e.,31 to 10 psu)and nitrogen content(i.e.,5 to 60μmol L^(-1)).The results showed that cellular chlorophyll a(Chl a),carbohydrate and protein contents of U.fasciata were increased due to reduced salinity,and were decreased by interactive nitrogen enrichment.Within a short culture period(i.e.,18 h),the reduced salinity decreased the maximum photosynthetic efficiency(rETRmax and Pmax)derived from the rapid light response curve and photosynthetic oxygen evolution rate versus irradiance curve,respectively,as well as the saturation irradiance(E_(K)).This reducing effect diminished with enlonged cultivation time and reversed to a stimulating effect after 24 h of cultivation.The nitrogen enrichment stimulated the rETRmax and Pmax,as well as the E_(K),regardless of salinity,especially within short-term cultivation period(i.e.,<24 h).In addition,our results indicate that seawater freshening lowers the photosynthetic efficiency of U.fasciata in the short term,which is mitigated by nitrogen enrichment,but stimulates it in the long term,providing insight into how macroalgae thrive in coastal or estuarine waters where salinity and nutrients normally covary strongly.展开更多
Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In t...Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In this study,a flake-like nickel cobaltate/re-duced graphene oxide/melamine-derived carbon foam(FNC/RGO/MDCF)was successfully fabricated through a combination of solvo-thermal treatment and high-temperature pyrolysis.Results indicated that RGO was evenly distributed in the MDCF skeleton,providing ef-fective support for the load growth of FNC on its surface.Sample S3,the FNC/RGO/MDCF composite prepared by solvothermal method for 16 h,exhibited a minimum reflection loss(RL_(min))of-66.44 dB at a thickness of 2.29 mm.When the thickness was reduced to 1.50 mm,the optimal effective absorption bandwidth was 3.84 GHz.Analysis of the absorption mechanism of FNC/RGO/MDCF revealed that its excellent absorption performance was primarily attributed to the combined effects of conduction loss,multiple reflection,scattering,in-terface polarization,and dipole polarization.展开更多
The iron and steel industry,standing as a quintessential manufacture example with high consumption,pollution and emissions,faces significant environmental and sustainable development challenges.Electric arc furnace(EA...The iron and steel industry,standing as a quintessential manufacture example with high consumption,pollution and emissions,faces significant environmental and sustainable development challenges.Electric arc furnace(EAF)steelmaking process mainly uses scrap as raw material and is characterized by environmentally friendly and recyclable process.However,the further development of EAF route in China is limited by the reserve,supply,availability and quality of scrap resource.Direct reduced iron(DRI)is one of typical low-carbon and clean charges,which can effectively make up for the adverse effects caused by the lack of scrap.The physical and chemical properties,classifications,and production technologies of DRI are firstly reviewed.In particular,the reducing gas types,reduction temperature,and reduction mechanism of the DRI production with gas-based shaft furnace(SF)technology are detailed.Considering the crucial role played by DRI application in EAF,the influences of DRI addition on EAF smelting rules and operations including the blending and charging process,heat transfer and melting in molten bath,slag formation operation,refractory corrosion,and slag system evolution are then further discussed.Finally,the comparative analysis and assessment of the consumption level of material and energy as well as the cleaner production both covering the clean chemical composition of molten steel and the clean environment impact in EAF steelmaking with DRI charged are conducted.From perspectives of metallurgical process engineering,a suitable route of hydrogen generation and application(from coke oven gas,methanol,and clean energy power),CO_(2) capture and utilization integrated with SF–EAF process is proposed.In view of the difficulties in large-scale DRI application in EAF,the follow-up work should focus on the investigation of DRI charging and melting,slag system evolution and molten pool reaction rules,as well as the developments of the DRI standardized use technology and intelligent batching and control models.展开更多
In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order hom...In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.展开更多
Objective:In addition to dyspnea and edema,gastrointestinal discomfort is common among patients with heart failure(HF).Reduced cardiac output can lead to inadequate perfusion of the intestinal mucosa and subsequent im...Objective:In addition to dyspnea and edema,gastrointestinal discomfort is common among patients with heart failure(HF).Reduced cardiac output can lead to inadequate perfusion of the intestinal mucosa and subsequent impairment of the intestinal barrier.Levosimendan,a novel inotropic agent,binds to cardiac troponin C to enhance calcium sensitivity,activates ATP-dependent potassium channels in cardiomyocytes and vascular smooth muscle cells,exerts positive inotropic and vasodilatory effects,and reduces free radical generation,thereby improving systemic hemodynamics including intestinal circulation.However,clinical evidence regarding its protective effects on the intestinal barrier in HF patients remains limited,and the underlying mechanisms require further clarification.This study aims to investigate whether levosimendan confers protective effects on the intestinal barrier in HF patients and to explore its potential mechanisms.Methods:Network pharmacology was first used to analyze potential mechanisms of levosimendan in treating intestinal barrier dysfunction among HF patients.A total of 62 hospitalized patients with acute exacerbation of HF with reduced ejection fraction(HFrEF)were enrolled based on echocardiographic left ventricular ejection fraction.According to clinical medication regimens,patients were assigned to a conventional treatment group(n=31)or a levosimendan treatment group(n=31).The conventional treatment group received standard anti-HF therapy,while the levosimendan treatment group received levosimendan in addition to standard therapy.Enzyme-linked immunosorbent assays were used to measure plasma levels and changes in the intestinal-barrier proteins zonulin,intestinal fatty acid binding protein(I-FABP),proinflammatory cytokines[interleukin(IL)-17,IL-6,and tumor necrosis factor(TNF)-α],anti-inflammatory cytokine IL-10,and N-terminal probrain natriuretic peptide(NT-proBNP).Improvements in cardiac function and gastrointestinal symptoms were evaluated using the Kansas City Cardiomyopathy Questionnaire(KCCQ)and the Gastrointestinal Symptom Rating Scale(GSRS).Results:Network pharmacology indicated that the effects of levosimendan on intestinal barrier dysfunction in HF patients may involve inflammation-related pathways such as IL-17 and TNF.Clinically,after treatment,zonulin decreased by 32.94 ng/mL in the levosimendan treatment group versus 15.05 ng/mL in the conventional treatment group(P<0.05).I-FABP decreased by 6.97 pg/mL in the levosimendan treatment group but increased by 35.16 pg/mL in the conventional treatment group(P<0.05).IL-6,IL-17,and TNF-αdecreased by 1.11 pg/mL,1.21 pg/mL,and 2.83 pg/mL,respectively,in the levosimendan treatment group,whereas they increased by 7.68 pg/mL,0.67 pg/mL,and 2.38 pg/mL in the conventional treatment group(all P<0.05).IL-10 decreased by 24.48 pg/mL in the conventional treatment group but increased by 24.98 pg/mL in the levosimendan treatment group(P<0.05).NT-proBNP increased by 7.35 pg/mL in the conventional treatment group but decreased by 4.73 pg/mL in the levosimendan treatment group(P<0.05).KCCQ scores increased by 0.36 in the conventional treatment group and 1.86 in the levosimendan treatment group,GSRS scores decreased by 1.00 in the conventional treatment group and 2.40 in the levosimendan treatment group,respectively,but the differences were not statistically significant(both P>0.05).Conclusion:Levosimendan not only improves HF and gastrointestinal symptoms in hospitalized patients with acute exacerbation of HFrEF but also reduces plasma intestinal barrier factor levels.These effects may be associated with decreased plasma proinflammatory cytokines and increased anti-inflammatory cytokines after treatment,potentially involving IL-17 and TNF signaling pathways.展开更多
The sulfate-reducing bacteria(SRB)corrosion of H70 brass,H80 brass and T2 copper was systematically studied using microstructure characterizations and electrochemical measurements.The results showed that H70 brass,H80...The sulfate-reducing bacteria(SRB)corrosion of H70 brass,H80 brass and T2 copper was systematically studied using microstructure characterizations and electrochemical measurements.The results showed that H70 brass,H80 brass and T2 copper exhibited good corrosion resistance in the sterile environment,and the corrosion products were mainly metal oxides,such as Cu_(2)O,CuO and ZnO.The SRB metabolism sharply accelerated the corrosion process of three types of copper alloys,especially the T2 copper.In the inoculated environment,an additional mixture of Cu_(2)S,ZnS and CuSO_(4)existed in the corrosion products.Pitting corrosion was the main corrosion style for the H70 brass and H80 brass,while general corrosion and pitting corrosion simultaneously dominated the corrosion process of the T2 copper in this environment.The results provide a new insight to the microbiological corrosion of copper alloys.展开更多
As the global exploration and development of oil and gas resources advances into deep formations,the harsh conditions of high temperature and high salinity present significant challenges for drilling fluids.In order t...As the global exploration and development of oil and gas resources advances into deep formations,the harsh conditions of high temperature and high salinity present significant challenges for drilling fluids.In order to address the technical difficulties associated with the failure of filtrate loss reducers under high-temperature and high-salinity conditions.In this study,a hydrophobic zwitterionic filtrate loss reducer(PDA)was synthesized based on N,N-dimethylacrylamide(DMAA),2-acrylamido-2-methylpropane sulfonic acid(AMPS),diallyl dimethyl ammonium chloride(DMDAAC),styrene(ST)and a specialty vinyl monomer(A1).When the concentration of PDA was 3%,the FLAPI of PDA-WBDF was 9.8 mL and the FLHTHP(180℃,3.5 MPa)was 37.8 mL after aging at 240℃for 16 h.In the saturated NaCl environment,the FLAPI of PDA-SWBDF was 4.0 mL and the FLHTHP(180℃,3.5 MPa)was 32.0 mL after aging at 220℃ for 16 h.Under high-temperature and high-salinity conditions,the combined effect of anti-polyelectrolyte and hydrophobic association allowed PDA to adsorb on the bentonite surface tightly.The sulfonic acid groups of PDA increased the negative electronegativity and the hydration film thickness on bentonite surface,which enhanced the colloidal stability,maintained the flattened lamellar structure of bentonite and formed an appropriate particle size distribution,resulting in the formation of dense mud cakes and reducing the filtration loss effectively.展开更多
Biodiesel is a clean and renewable energy,and it is an effective measure to optimize engine combustion fueled with biodiesel to meet the increasingly strict toxic and CO_(2) emission regulations of internal combustion...Biodiesel is a clean and renewable energy,and it is an effective measure to optimize engine combustion fueled with biodiesel to meet the increasingly strict toxic and CO_(2) emission regulations of internal combustion engines.A suitable-scale chemical kinetic mechanism is very crucial for the accurate and rapid prediction of engine combustion and emissions.However,most previous researchers developed the mechanism of blend fuels through the separate simplification and merging of the reduced mechanisms of diesel and biodiesel rather than considering their cross-reaction.In this study,a new reduced chemical reaction kinetics mechanism of diesel and biodiesel was constructed through the adoption of directed relationship graph (DRG),directed relationship graph with error propagation,and full-species sensitivity analysis (FSSA).N-heptane and methyl decanoate (MD) were selected as surrogates of traditional diesel and biodiesel,respectively.In this mechanism,the interactions between the intermediate products of both fuels were considered based on the cross-reaction theory.Reaction pathways were revealed,and the key species involved in the oxidation of n-heptane and MD were identified through sensitivity analyses.The reduced mechanism of n-heptane/MD consisting of 288 species and 800 reactions was developed and sufficiently verified by published experimental data.Prediction maps of ignition delay time were established at a wide range of parameter matrices (temperature from 600 to 1 700 K,pressure from 10 bar to 80 bar,equivalence ratio from 0.5 to 1.5) and different substitution ratios to identify the occurrence regions of the crossreaction.Concentration and sensitivity analyses were then conducted to further investigate the effects of cross-reactions.The results indicate temperature as the primary factor causing cross-reactivity.In addition,the reduced mechanism with cross-reactions was more accurate than that without cross-reactions.At 700–1 000 K,the cross-reactions inhibited the consumption of n-heptane/MD,which resulted in a prolonged ignition delay time.At this point,the elementary reaction,NC_(7)H_(16)+OH<=>C_(7)H_(15)-2+H_(2)O,played a dominant role in fuel consumption.Specifically,the contribution of the MD consumption reaction to ignition decreased,and the increased generation time of OH,HO_(2),and H_(2)O_(2) was directly responsible for the increased ignition delay.展开更多
This study numerically investigates the seismic response of a nine-story self-centering concentrically braced frame building incorporating force-limiting connections between the floor system and the lateral force-resi...This study numerically investigates the seismic response of a nine-story self-centering concentrically braced frame building incorporating force-limiting connections between the floor system and the lateral force-resisting system.Nonlinear earthquake simulations are conducted under design basis earthquake ground motions,and the results are compared against a baseline model with rigid-elastic connections.The study discusses connection design considerations and evaluates the effectiveness of force-limiting connections in mitigating higher-mode effects.The findings show that force-limiting connections significantly reduce the magnitude and variability of floor accelerations,brace forces,and connection forces,while maintaining comparable story drifts.limiting Force-connections primarily reduce the contribution of higher-mode responses,while the controlled rocking base mechanism modifies the first-mode response.Overall,the reduced dispersion in structural response improves the reliability of seismic design and enhances resilience by minimizing damage to both structural components and acceleration-sensitive nonstructural elements.展开更多
The eutrophication of rivers and lakes is becoming increasingly common,primarily because of pollution from agricultural non-point sources.We investigated the effects of optimized water and fertilizer treatments on agr...The eutrophication of rivers and lakes is becoming increasingly common,primarily because of pollution from agricultural non-point sources.We investigated the effects of optimized water and fertilizer treatments on agricultural non-point source pollution in the Nansi Lake basin.The water heat carbon nitrogen simulator model(WHCNS model)was used to analyze water and nitrogen transport in wheat fields in Nansi Lake basin.Four water and fertilizer treatments were set up:conventional fertilization and irrigation(CK),reduced controlled-release fertilizer and conventional irrigation(F2W1),an equal amount of controlled-release fertilizer and reduced irrigation(F1W2),and reduced controlled-release fertilizer and reduced irrigation(F2W2).The results indicated that the replacement of conventional fertilizers with controlled-release fertilizers,combined with reduced irrigation,led to reduced nitrogen loss.Compared with those of the CK,the cumulative nitrogen leaching and ammonia volatilization of F2W1 were reduced by 8.90 and 41.67%,respectively;under F1W2,the same parameters were reduced by 12.50 and 15.99%,respectively.Compared with the other treatments,F2W2 significantly reduced nitrogen loss while producing a stable yield.Compared with those of the CK,ammonia volatilization and nitrogen loss due to leaching were reduced by 29.17 and 27.13%,respectively,water and nitrogen use efficiencies increased by 11.38 and 17.80%,respectively.F2W2 showed the best performance among the treatments,considering water and fertilizer management.Our findings highlight the effectiveness of optimizing water and fertilizer application in improving the water and nitrogen use efficiency of wheat,which is of great significance for mitigating nitrogen loss from farmland in the Nansi Lake basin.展开更多
The relative permeability of oil and water is a key factor in assessing the production performance of a reservoir.This study analyzed the impact of injecting a viscosity reducer solution into low-viscosity crude oil t...The relative permeability of oil and water is a key factor in assessing the production performance of a reservoir.This study analyzed the impact of injecting a viscosity reducer solution into low-viscosity crude oil to enhance fluid flow within a low-permeability reservoir.At 72°C,the oil-water dispersion solution achieved a viscosity reduction rate(f)of 92.42%,formulated with a viscosity reducer agent concentration(C_(VR))of 0.1%and an oil-water ratio of 5:5.The interfacial tension between the viscosity reducer solution and the crude oil remained stable at approximately 1.0 mN/m across different concentrations,with the minimum value of 4.07×10^(-1)mN/m recorded at a C_(VR)of 0.2%.As the CVR increased,the relative permeability curve of the oil phase gradually decreased while the oil-water two-phase region(Ro-wtp)expanded significantly.At a C_(VR)of 0.1%,the R_(o-wtp)peaked,making an increase of 7.93 percentage points compared to water flooding.In addition,the final displacement efficiency(E_(R),final)achieved with a 0.1%viscosity reducer solution reached 48.64%,exceeding water flooding by 15.46 percentage points,highlighting the effectiveness of the viscosity reducer solution in enhancing oil recovery.展开更多
Tungsten(W)is considered a critical and strategic material,the recycling of which has proved extremely important due to the substantial amount of W-rich waste and rising demand for W products.This study provides a sou...Tungsten(W)is considered a critical and strategic material,the recycling of which has proved extremely important due to the substantial amount of W-rich waste and rising demand for W products.This study provides a sound technological approach for efficient utilization of bulk W,achieving a high W destruction rate(rw)of 0.3 g·cm^(-2)·h^(-1)via electrochemical oxidation/in situ reduction of W electrodes in oxalic acid under alternating current(AC)with varying symmetries to synthesize WO_(3-x)nanopowders(NPs).Amorphous-crystalline dual-phase reduced WO_(3-x)NPs featuring dense and porous nanoarchitectures were synthesized using asymmetrical and symmetrical AC,respectively.The nano scale interconnecting flaky WO_(3-x)structure arises from the synergy of high anodic voltage etching and the release of H_(2)microbubbles,boosting the exfoliation of WO_(3)flakes.The optimized WO_(3-x)NP exhibits superior electrochemical and electrochromic properties,attributed to the increased surface capacitance alongside an extra contribution from intercalation pseudocapacitance.The number of WO_(3-x)layers deposited by the spin coating technique and the annealing temperature have a significant impact on the electrochemical and electrochromic characteristics of the WO_(3)film.An increase in the transferred charge density(Q),coloring/bleaching time(t_(c)/t_(b))values,and areal capacitance was observed,alongside a decrease in optical modulation(ΔT)and coloration efficiency(CE)with an increasing number of WO_(3)layers.WO_(3)produced at a lower temperature outperforms WO_(3)treated at 400-500℃,particularly in fast switching,enhanced efficiency,and reversibility.TheΔT of 68.7%,CE of 47.9 cm^(2)·C^(-1),areal capacitance of 53.5 mF·cm^(-2),and reversibility close to 100%were achieved in H_(2)SO_(4)for the optimized WO_(3-x)film.The research aligns with the ongoing development strategy of the circular economy and validates the promising features of the efficient recycling of W-containing spent resources through an environmentally sustainable electrochemical approach.展开更多
文摘BACKGROUND Ulcerative colitis(UC)is a chronic and debilitating inflammatory bowel disease.Cumulative evidence indicates that excess hydrogen peroxide,a potent neutrophilic chemotactic agent,produced by colonic epithelial cells has a causal role leading to infiltration of neutrophils into the colonic mucosa and subsequent development of UC.This evidence-based mechanism identifies hydrogen peroxide as a therapeutic target for reducing agents in the treatment of UC.CASE SUMMARY Presented is a 41-year-old female with a 26-year history of refractory UC.Having developed steroid dependence and never achieving complete remission on treatment by conventional and advanced therapies,she began treatment with oral R-dihydrolipoic acid(RDLA),a lipid-soluble reducing agent with intracellular site of action.Within a week,rectal bleeding ceased.She was asymptomatic for three years until a highly stressful experience,when she noticed blood in her stool.RDLA was discontinued,and she began treatment with oral sodium thiosulfate pentahydrate(STS),a reducing agent with extracellular site of action.After a week,rectal bleeding ceased,and she resumed oral RDLA and discontinued STS.To date,she remains asymptomatic with normal stool calprotectin while on RDLA.CONCLUSION STS and RDLA are reducing agents that serve as highly effective and safe therapy for the induction and maintenance of remission in UC,even in patients refractory or poorly controlled by conventional and advanced therapies.Should preliminary findings be validated by subsequent clinical trials,the use of reducing agents could potentially prevent thousands of colectomies and represent a paradigm shift in the treatment of UC.
基金supported by the China Postdoctoral Science Foundation (No. 2023T160088)the Youth Fund of the National Natural Science Foundation of China(No.52304324)+1 种基金the National Natural Science Foundation of China (U1908225, U1702253)the Special Funds for Basic Research Operations of Central Universities(N182515007, N170908001, N2025004)。
文摘Compared with the vacuum continuous magnesium smelting process(RVCMS), its excellent energy saving and emission reduction performance provides a feasible method for green magnesium smelting. In the process of industrialization, the reduction rate of prefabricated pellets affects the yield of metal magnesium and the utilization of reducing slag. In this paper, the reduction mechanism under different carbonate structures is analyzed by controlled disproportionation of prefabricated pellets and micro-nano simulation. The results show that the low temperature decomposition of NH_(4)·HCO_(3)pore-forming, improve the reduction rate(99.72%) effect is remarkable. Combined with thermodynamics and relative vacuum mechanism, a theoretical model of the relationship between disproportionation pore-forming and reduction rate was established. It was concluded that the energy consumption required to produce per ton of magnesium by adding NH_(4)·HCO_(3)to the prefabricated pellets was reduced by 0.29±0.34 tce, and the carbon emission was reduced by 1.069±1.263 t. The reduction slag had good compressive strength(Side 101.19 N cm^(-2), Bottom 466.4 N cm^(-2)). Compared with the 20 MPa reduction slag sample without pore-forming agent, the side compressive strength increased by 51.66%, and the bottom compressive strength increased by 119.10%. The amount of single furnace filler is increased by more than 50%.
基金financial support for the research and for the publication costs of the articlesupported by Santa Catarina State Research Support Foundation(FAPESC)National Council for Scientific and Technological Development(CNPq no 302903/2023-2).
文摘Cement production,while essential for global infrastructure,contributes significantly to carbon dioxide emissions,accounting for approximately 7%of total emissions.To mitigate these environmental impacts,flash calcination of kaolinitic clays has been investigated as a sustainable alternative.This technique involves the rapid heating of clays,enabling their use as supplementary cementitious materials.The primary objective of this study was to modify the color of calcined clay in various atmospheres(oxidizing,inert,and reducing)to achieve a grayish tone similar to commercial cement while preserving its reactive properties.The experimental procedure employed a tubular reactor with precise control of gas flows(atmospheric air,nitrogen,and a carbon monoxide–nitrogen mixture).Physicochemical characterization of the raw clay was conducted before calcination,with analyses repeated on the calcined clays following experimentation.Results indicated that clay calcined in an oxidizing atmosphere acquired a reddish hue,attributed to the oxidation of iron in hematite.The Clay exhibited a pinkish tone in an inert atmosphere,while calcination in a reducing atmosphere yielded the desired grayish color.Regarding pozzolanic activity,clays calcined in oxidizing and inert atmospheres displayed robust strength,ranging from 82%to 87%.Calcination in a reducing atmosphere resulted in slightly lower strength,around 74%,likely due to the clay’s chemical composition and the calcination process,which affects compound formation and material reactivity.
文摘BACKGROUND Pediatric liver transplantation(LT)is the definitive treatment for end-stage liver disease and acute liver failure in children.However,graft size mismatch poses significant challenges,particularly in infants weighing less than 10 kg.Large-forsize grafts can lead to severe complications,including vascular thrombosis and impaired graft perfusion.Surgical innovations,such as hyper-reduced left lateral segment(HRLLS)grafts and monosegmental grafts(MSG),offer viable solutions by tailoring graft size without compromising vascular or biliary integrity.AIM To analyze the techniques and outcomes of HRLLS and MSG grafts in pediatric liver trabsplantation.METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines,a comprehensive literature search was conducted across PubMed,Scopus,and Google Scholar,including studies up to February 2025.Eligible studies included case-control,observational,and randomized controlled trials reporting clinical outcomes of HRLLS,MSG,or reduced left lateral segment grafts(RLLS)in pediatric LT.The Joanna Briggs Institute Critical Appraisal Checklist was used for quality assessment.Meta-analysis was performed using MetaXL software to pool survival outcomes and assess complication profiles.RESULTS Eighteen studies involving various graft reduction techniques were included.Both HRLLS and MSG demonstrated comparable one-year survival rates exceeding 80%,with some studies reporting rates above 95%.Complications such as hepatic artery thrombosis,portal vein thrombosis,and sepsis were slightly more frequent in HRLLS/RLLS recipients but remained within acceptable limits.Meta-analysis revealed no significant differences in survivability between graft types.CONCLUSION HRLLS and MSG techniques enable successful liver transplantation in small pediatric recipients,achieving longterm outcomes comparable to standard approaches.These graft modification strategies expand donor pool utilization and optimize patient survival while mitigating large-for-size complications.
基金This study was supported by Korea Hydro&Nuclear Power Co.,Ltd.(No.:2018-Tech-21)the National Research Foundation of Korea(NRF)grant funded by the Korea government MSIT(2019M3E6A1064763).
文摘There have been ever-growing demands to develop advanced electrocatalysts for renewable energy conversion over the past decade.As a promising platform for advanced electrocatalysts,reduced graphene oxide(rGO)has attracted substantial research interests in a variety of electrochemical energy conversion reactions.Its versatile utility is mainly attributed to unique physical and chemical properties,such as high specific surface area,tunable electronic structure,and the feasibility of structural modification and functionalization.Here,a comprehensive discussion is provided upon recent advances in the material preparation,characterization,and the catalytic activity of rGO-based electrocatalysts for various electrochemical energy conversion reactions(water splitting,CO2 reduction reaction,N2 reduction reaction,and O2 reduction reaction).Major advantages of rGO and the related challenges for enhancing their catalytic performance are addressed.
基金supported by the National Natural Science Foundation of China(No.61904073)Spring City Plan-Special Program for Young Talents(No.K202005007)+4 种基金Yunnan Talents Support Plan for Yong Talents(No.XDYC-QNRC-20220482)Yunnan Local Colleges Applied Basic Research Projects(No.202101BA070001-138)Scientific Research Fund of Yunnan Education Department(No.2023Y0883)Frontier Research Team of Kunming University 2023Key Laboratory of Artificial Microstructures in Yunnan Higher Education。
文摘Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,and the anode utilization rate is low.In this work,reduced graphene oxide(RGO)fabricated via high-temperature annealing or L-ascorbic acid(L.AA)reduction was first used to obtain Si nanowires/RGO-1000(Si NWs/RGO-1000)and Si nanowires/RGO-L.AA(Si NWs/RGO-L.AA)composite anodes for SABs.It was found that RGO suppressed the passivation and self-corrosion reactions and that SABs using Si NWs/RGO-L.AA as the anode can discharge for more than 700 h,breaking the previous performance of SABs,and that the specific capacity was increased by 90.8%compared to bare Si.This work provides a new solution for the design of high specific capacity SABs with nanostructures and anode protective layers.
基金funded by the National Key Research and Development Program of China(No.20022YFC3102405)the National Natural Science Foundation of China(Nos.42425004,32371665)the Natural Science Foundation of Guangdong Province(Nos.2022A1515011461,2022A1515011831)。
文摘Macroalgae dominate nutrient dynamics and function as high-value foods for microbial,meio-and macrofaunal communities in coastal ecosystems.Because of this vital role,it is important to clarify the physiological information associated with environmental changes as it reflects their growth potential.To evaluate the effects of the changes in salinity and nutrients,the photosynthetic efficiency of a green macroalga Ulva fasciata from the Daya Bay was tested at a range of salinity(i.e.,31 to 10 psu)and nitrogen content(i.e.,5 to 60μmol L^(-1)).The results showed that cellular chlorophyll a(Chl a),carbohydrate and protein contents of U.fasciata were increased due to reduced salinity,and were decreased by interactive nitrogen enrichment.Within a short culture period(i.e.,18 h),the reduced salinity decreased the maximum photosynthetic efficiency(rETRmax and Pmax)derived from the rapid light response curve and photosynthetic oxygen evolution rate versus irradiance curve,respectively,as well as the saturation irradiance(E_(K)).This reducing effect diminished with enlonged cultivation time and reversed to a stimulating effect after 24 h of cultivation.The nitrogen enrichment stimulated the rETRmax and Pmax,as well as the E_(K),regardless of salinity,especially within short-term cultivation period(i.e.,<24 h).In addition,our results indicate that seawater freshening lowers the photosynthetic efficiency of U.fasciata in the short term,which is mitigated by nitrogen enrichment,but stimulates it in the long term,providing insight into how macroalgae thrive in coastal or estuarine waters where salinity and nutrients normally covary strongly.
基金support of the Key Science Research Project in Colleges and Universities of Anhui Province,China(No.2022AH050813)the Medical Special Cultivation Project of Anhui University of Science and Technology,China(No.YZ2023H2A002).
文摘Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In this study,a flake-like nickel cobaltate/re-duced graphene oxide/melamine-derived carbon foam(FNC/RGO/MDCF)was successfully fabricated through a combination of solvo-thermal treatment and high-temperature pyrolysis.Results indicated that RGO was evenly distributed in the MDCF skeleton,providing ef-fective support for the load growth of FNC on its surface.Sample S3,the FNC/RGO/MDCF composite prepared by solvothermal method for 16 h,exhibited a minimum reflection loss(RL_(min))of-66.44 dB at a thickness of 2.29 mm.When the thickness was reduced to 1.50 mm,the optimal effective absorption bandwidth was 3.84 GHz.Analysis of the absorption mechanism of FNC/RGO/MDCF revealed that its excellent absorption performance was primarily attributed to the combined effects of conduction loss,multiple reflection,scattering,in-terface polarization,and dipole polarization.
基金financial support from the National Natural Science Foundation of China(No.52174328)the Fundamental Research Funds for the Central Universities of Central South University(No.2024ZZTS0062).
文摘The iron and steel industry,standing as a quintessential manufacture example with high consumption,pollution and emissions,faces significant environmental and sustainable development challenges.Electric arc furnace(EAF)steelmaking process mainly uses scrap as raw material and is characterized by environmentally friendly and recyclable process.However,the further development of EAF route in China is limited by the reserve,supply,availability and quality of scrap resource.Direct reduced iron(DRI)is one of typical low-carbon and clean charges,which can effectively make up for the adverse effects caused by the lack of scrap.The physical and chemical properties,classifications,and production technologies of DRI are firstly reviewed.In particular,the reducing gas types,reduction temperature,and reduction mechanism of the DRI production with gas-based shaft furnace(SF)technology are detailed.Considering the crucial role played by DRI application in EAF,the influences of DRI addition on EAF smelting rules and operations including the blending and charging process,heat transfer and melting in molten bath,slag formation operation,refractory corrosion,and slag system evolution are then further discussed.Finally,the comparative analysis and assessment of the consumption level of material and energy as well as the cleaner production both covering the clean chemical composition of molten steel and the clean environment impact in EAF steelmaking with DRI charged are conducted.From perspectives of metallurgical process engineering,a suitable route of hydrogen generation and application(from coke oven gas,methanol,and clean energy power),CO_(2) capture and utilization integrated with SF–EAF process is proposed.In view of the difficulties in large-scale DRI application in EAF,the follow-up work should focus on the investigation of DRI charging and melting,slag system evolution and molten pool reaction rules,as well as the developments of the DRI standardized use technology and intelligent batching and control models.
基金support by the National Key R&D Program of China(Grant No.2023YFA1008901)the National Natural Science Foundation of China(Grant Nos.11988102,12172009)is gratefully acknowledged.
文摘In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.
基金supported by the Hunan Provincial Science and Technology Major Special Fund(2021SK1020)the Natural Science Foundation of Hunan Province(2023JJ30948)+1 种基金the Health Commission of Hunan Province(202203014687)the International Medical Exchange Cardiovascular Multidisciplinary Integrated Thinking Research Foundation(Z-2016-23-2101-20),China.
文摘Objective:In addition to dyspnea and edema,gastrointestinal discomfort is common among patients with heart failure(HF).Reduced cardiac output can lead to inadequate perfusion of the intestinal mucosa and subsequent impairment of the intestinal barrier.Levosimendan,a novel inotropic agent,binds to cardiac troponin C to enhance calcium sensitivity,activates ATP-dependent potassium channels in cardiomyocytes and vascular smooth muscle cells,exerts positive inotropic and vasodilatory effects,and reduces free radical generation,thereby improving systemic hemodynamics including intestinal circulation.However,clinical evidence regarding its protective effects on the intestinal barrier in HF patients remains limited,and the underlying mechanisms require further clarification.This study aims to investigate whether levosimendan confers protective effects on the intestinal barrier in HF patients and to explore its potential mechanisms.Methods:Network pharmacology was first used to analyze potential mechanisms of levosimendan in treating intestinal barrier dysfunction among HF patients.A total of 62 hospitalized patients with acute exacerbation of HF with reduced ejection fraction(HFrEF)were enrolled based on echocardiographic left ventricular ejection fraction.According to clinical medication regimens,patients were assigned to a conventional treatment group(n=31)or a levosimendan treatment group(n=31).The conventional treatment group received standard anti-HF therapy,while the levosimendan treatment group received levosimendan in addition to standard therapy.Enzyme-linked immunosorbent assays were used to measure plasma levels and changes in the intestinal-barrier proteins zonulin,intestinal fatty acid binding protein(I-FABP),proinflammatory cytokines[interleukin(IL)-17,IL-6,and tumor necrosis factor(TNF)-α],anti-inflammatory cytokine IL-10,and N-terminal probrain natriuretic peptide(NT-proBNP).Improvements in cardiac function and gastrointestinal symptoms were evaluated using the Kansas City Cardiomyopathy Questionnaire(KCCQ)and the Gastrointestinal Symptom Rating Scale(GSRS).Results:Network pharmacology indicated that the effects of levosimendan on intestinal barrier dysfunction in HF patients may involve inflammation-related pathways such as IL-17 and TNF.Clinically,after treatment,zonulin decreased by 32.94 ng/mL in the levosimendan treatment group versus 15.05 ng/mL in the conventional treatment group(P<0.05).I-FABP decreased by 6.97 pg/mL in the levosimendan treatment group but increased by 35.16 pg/mL in the conventional treatment group(P<0.05).IL-6,IL-17,and TNF-αdecreased by 1.11 pg/mL,1.21 pg/mL,and 2.83 pg/mL,respectively,in the levosimendan treatment group,whereas they increased by 7.68 pg/mL,0.67 pg/mL,and 2.38 pg/mL in the conventional treatment group(all P<0.05).IL-10 decreased by 24.48 pg/mL in the conventional treatment group but increased by 24.98 pg/mL in the levosimendan treatment group(P<0.05).NT-proBNP increased by 7.35 pg/mL in the conventional treatment group but decreased by 4.73 pg/mL in the levosimendan treatment group(P<0.05).KCCQ scores increased by 0.36 in the conventional treatment group and 1.86 in the levosimendan treatment group,GSRS scores decreased by 1.00 in the conventional treatment group and 2.40 in the levosimendan treatment group,respectively,but the differences were not statistically significant(both P>0.05).Conclusion:Levosimendan not only improves HF and gastrointestinal symptoms in hospitalized patients with acute exacerbation of HFrEF but also reduces plasma intestinal barrier factor levels.These effects may be associated with decreased plasma proinflammatory cytokines and increased anti-inflammatory cytokines after treatment,potentially involving IL-17 and TNF signaling pathways.
基金the financial support of the National Natural Science Foundation of China(No.51971191)Scientific Research Project of Education Department of Hunan Province(Nos.22B0178,22C0075)+1 种基金Hunan Provincial Innovation Foundation for Postgraduate(No.CX20220558)the National Scholarship Foundation(No.202008430013)。
文摘The sulfate-reducing bacteria(SRB)corrosion of H70 brass,H80 brass and T2 copper was systematically studied using microstructure characterizations and electrochemical measurements.The results showed that H70 brass,H80 brass and T2 copper exhibited good corrosion resistance in the sterile environment,and the corrosion products were mainly metal oxides,such as Cu_(2)O,CuO and ZnO.The SRB metabolism sharply accelerated the corrosion process of three types of copper alloys,especially the T2 copper.In the inoculated environment,an additional mixture of Cu_(2)S,ZnS and CuSO_(4)existed in the corrosion products.Pitting corrosion was the main corrosion style for the H70 brass and H80 brass,while general corrosion and pitting corrosion simultaneously dominated the corrosion process of the T2 copper in this environment.The results provide a new insight to the microbiological corrosion of copper alloys.
基金supported by State Key Laboratory of Deep Oil and Gas(No.SKLDOG2024-ZYRC-03)supported by the Excellent Young Scientists Fund of the National Natural Science Foundation of China(No.52322401)the National Natural Science Foundation of China(52288101).
文摘As the global exploration and development of oil and gas resources advances into deep formations,the harsh conditions of high temperature and high salinity present significant challenges for drilling fluids.In order to address the technical difficulties associated with the failure of filtrate loss reducers under high-temperature and high-salinity conditions.In this study,a hydrophobic zwitterionic filtrate loss reducer(PDA)was synthesized based on N,N-dimethylacrylamide(DMAA),2-acrylamido-2-methylpropane sulfonic acid(AMPS),diallyl dimethyl ammonium chloride(DMDAAC),styrene(ST)and a specialty vinyl monomer(A1).When the concentration of PDA was 3%,the FLAPI of PDA-WBDF was 9.8 mL and the FLHTHP(180℃,3.5 MPa)was 37.8 mL after aging at 240℃for 16 h.In the saturated NaCl environment,the FLAPI of PDA-SWBDF was 4.0 mL and the FLHTHP(180℃,3.5 MPa)was 32.0 mL after aging at 220℃ for 16 h.Under high-temperature and high-salinity conditions,the combined effect of anti-polyelectrolyte and hydrophobic association allowed PDA to adsorb on the bentonite surface tightly.The sulfonic acid groups of PDA increased the negative electronegativity and the hydration film thickness on bentonite surface,which enhanced the colloidal stability,maintained the flattened lamellar structure of bentonite and formed an appropriate particle size distribution,resulting in the formation of dense mud cakes and reducing the filtration loss effectively.
基金Supported by the National Natural Science Foundation of China (Grant No. 52171298)the National Foreign Experts Program (G2023180006L)+1 种基金the Natural Science Foundation of Heilongjiang Province of China (Grant No. ZD2019E003)the Fundamental Research Funds for the Central Universities (Grant No. 3072022TS0303)。
文摘Biodiesel is a clean and renewable energy,and it is an effective measure to optimize engine combustion fueled with biodiesel to meet the increasingly strict toxic and CO_(2) emission regulations of internal combustion engines.A suitable-scale chemical kinetic mechanism is very crucial for the accurate and rapid prediction of engine combustion and emissions.However,most previous researchers developed the mechanism of blend fuels through the separate simplification and merging of the reduced mechanisms of diesel and biodiesel rather than considering their cross-reaction.In this study,a new reduced chemical reaction kinetics mechanism of diesel and biodiesel was constructed through the adoption of directed relationship graph (DRG),directed relationship graph with error propagation,and full-species sensitivity analysis (FSSA).N-heptane and methyl decanoate (MD) were selected as surrogates of traditional diesel and biodiesel,respectively.In this mechanism,the interactions between the intermediate products of both fuels were considered based on the cross-reaction theory.Reaction pathways were revealed,and the key species involved in the oxidation of n-heptane and MD were identified through sensitivity analyses.The reduced mechanism of n-heptane/MD consisting of 288 species and 800 reactions was developed and sufficiently verified by published experimental data.Prediction maps of ignition delay time were established at a wide range of parameter matrices (temperature from 600 to 1 700 K,pressure from 10 bar to 80 bar,equivalence ratio from 0.5 to 1.5) and different substitution ratios to identify the occurrence regions of the crossreaction.Concentration and sensitivity analyses were then conducted to further investigate the effects of cross-reactions.The results indicate temperature as the primary factor causing cross-reactivity.In addition,the reduced mechanism with cross-reactions was more accurate than that without cross-reactions.At 700–1 000 K,the cross-reactions inhibited the consumption of n-heptane/MD,which resulted in a prolonged ignition delay time.At this point,the elementary reaction,NC_(7)H_(16)+OH<=>C_(7)H_(15)-2+H_(2)O,played a dominant role in fuel consumption.Specifically,the contribution of the MD consumption reaction to ignition decreased,and the increased generation time of OH,HO_(2),and H_(2)O_(2) was directly responsible for the increased ignition delay.
基金financial support provided by Lehigh University,the Advanced Technology for Large Structural Systems(ATLSS)Engineering Research Center,and the Department of Structural Engineering at the University of California,San Diegolarge research team led by Professor Robert B.Fleischman under the project“NEESR:Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building Structures”with the support of grants from the National Science Foundation,award no.CMMI-1135033in the George E.Brown,Jr.Network for Earthquake gineering En-Simulation Research(NEESR)program and award no.CMMI-0402490 for the George E.Brown,Jr.Network for Earthquake ing Engineer-Simulation(NEES)consortium operations.
文摘This study numerically investigates the seismic response of a nine-story self-centering concentrically braced frame building incorporating force-limiting connections between the floor system and the lateral force-resisting system.Nonlinear earthquake simulations are conducted under design basis earthquake ground motions,and the results are compared against a baseline model with rigid-elastic connections.The study discusses connection design considerations and evaluates the effectiveness of force-limiting connections in mitigating higher-mode effects.The findings show that force-limiting connections significantly reduce the magnitude and variability of floor accelerations,brace forces,and connection forces,while maintaining comparable story drifts.limiting Force-connections primarily reduce the contribution of higher-mode responses,while the controlled rocking base mechanism modifies the first-mode response.Overall,the reduced dispersion in structural response improves the reliability of seismic design and enhances resilience by minimizing damage to both structural components and acceleration-sensitive nonstructural elements.
基金supported by the National Key Research and Development Program of China(2018YFD0800303)the Major Science and Technology Innovation Projects in Shandong Province,China(2021CXGC010804).
文摘The eutrophication of rivers and lakes is becoming increasingly common,primarily because of pollution from agricultural non-point sources.We investigated the effects of optimized water and fertilizer treatments on agricultural non-point source pollution in the Nansi Lake basin.The water heat carbon nitrogen simulator model(WHCNS model)was used to analyze water and nitrogen transport in wheat fields in Nansi Lake basin.Four water and fertilizer treatments were set up:conventional fertilization and irrigation(CK),reduced controlled-release fertilizer and conventional irrigation(F2W1),an equal amount of controlled-release fertilizer and reduced irrigation(F1W2),and reduced controlled-release fertilizer and reduced irrigation(F2W2).The results indicated that the replacement of conventional fertilizers with controlled-release fertilizers,combined with reduced irrigation,led to reduced nitrogen loss.Compared with those of the CK,the cumulative nitrogen leaching and ammonia volatilization of F2W1 were reduced by 8.90 and 41.67%,respectively;under F1W2,the same parameters were reduced by 12.50 and 15.99%,respectively.Compared with the other treatments,F2W2 significantly reduced nitrogen loss while producing a stable yield.Compared with those of the CK,ammonia volatilization and nitrogen loss due to leaching were reduced by 29.17 and 27.13%,respectively,water and nitrogen use efficiencies increased by 11.38 and 17.80%,respectively.F2W2 showed the best performance among the treatments,considering water and fertilizer management.Our findings highlight the effectiveness of optimizing water and fertilizer application in improving the water and nitrogen use efficiency of wheat,which is of great significance for mitigating nitrogen loss from farmland in the Nansi Lake basin.
基金supported by the Petrochina Daqing Oilfield Research Project(No.DQYT-1201002-2023-JS-1201).
文摘The relative permeability of oil and water is a key factor in assessing the production performance of a reservoir.This study analyzed the impact of injecting a viscosity reducer solution into low-viscosity crude oil to enhance fluid flow within a low-permeability reservoir.At 72°C,the oil-water dispersion solution achieved a viscosity reduction rate(f)of 92.42%,formulated with a viscosity reducer agent concentration(C_(VR))of 0.1%and an oil-water ratio of 5:5.The interfacial tension between the viscosity reducer solution and the crude oil remained stable at approximately 1.0 mN/m across different concentrations,with the minimum value of 4.07×10^(-1)mN/m recorded at a C_(VR)of 0.2%.As the CVR increased,the relative permeability curve of the oil phase gradually decreased while the oil-water two-phase region(Ro-wtp)expanded significantly.At a C_(VR)of 0.1%,the R_(o-wtp)peaked,making an increase of 7.93 percentage points compared to water flooding.In addition,the final displacement efficiency(E_(R),final)achieved with a 0.1%viscosity reducer solution reached 48.64%,exceeding water flooding by 15.46 percentage points,highlighting the effectiveness of the viscosity reducer solution in enhancing oil recovery.
基金supported by the Russian Science Foundation(No.23-79-10219),https://rscf.ru/en/project/23-79-10219/)。
文摘Tungsten(W)is considered a critical and strategic material,the recycling of which has proved extremely important due to the substantial amount of W-rich waste and rising demand for W products.This study provides a sound technological approach for efficient utilization of bulk W,achieving a high W destruction rate(rw)of 0.3 g·cm^(-2)·h^(-1)via electrochemical oxidation/in situ reduction of W electrodes in oxalic acid under alternating current(AC)with varying symmetries to synthesize WO_(3-x)nanopowders(NPs).Amorphous-crystalline dual-phase reduced WO_(3-x)NPs featuring dense and porous nanoarchitectures were synthesized using asymmetrical and symmetrical AC,respectively.The nano scale interconnecting flaky WO_(3-x)structure arises from the synergy of high anodic voltage etching and the release of H_(2)microbubbles,boosting the exfoliation of WO_(3)flakes.The optimized WO_(3-x)NP exhibits superior electrochemical and electrochromic properties,attributed to the increased surface capacitance alongside an extra contribution from intercalation pseudocapacitance.The number of WO_(3-x)layers deposited by the spin coating technique and the annealing temperature have a significant impact on the electrochemical and electrochromic characteristics of the WO_(3)film.An increase in the transferred charge density(Q),coloring/bleaching time(t_(c)/t_(b))values,and areal capacitance was observed,alongside a decrease in optical modulation(ΔT)and coloration efficiency(CE)with an increasing number of WO_(3)layers.WO_(3)produced at a lower temperature outperforms WO_(3)treated at 400-500℃,particularly in fast switching,enhanced efficiency,and reversibility.TheΔT of 68.7%,CE of 47.9 cm^(2)·C^(-1),areal capacitance of 53.5 mF·cm^(-2),and reversibility close to 100%were achieved in H_(2)SO_(4)for the optimized WO_(3-x)film.The research aligns with the ongoing development strategy of the circular economy and validates the promising features of the efficient recycling of W-containing spent resources through an environmentally sustainable electrochemical approach.