期刊文献+
共找到166篇文章
< 1 2 9 >
每页显示 20 50 100
Fire Hawk Optimization-Enabled Deep Learning Scheme Based Hybrid Cloud Container Architecture for Migrating Interoperability Based Application
1
作者 G Indumathi R Sarala 《China Communications》 2025年第5期285-304,共20页
Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositori... Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositories results in increased overload due to the adoption of cloud services.Moreover,the migration of applications on the cloud with optimized resource allocation is a herculean task even though it is employed for minimizing the dilemma of allocating resources.In this paper,a Fire Hawk Optimization enabled Deep Learning Scheme(FHOEDLS)is proposed for minimizing the overload and optimizing the resource allocation on the hybrid cloud container architecture for migrating interoperability based applications This FHOEDLS achieves the load prediction through the utilization of deep CNN-GRU-AM model for attaining resource allocation and better migration of applications.It specifically adopted the Fire Hawk Optimization Algorithm(FHOA)for optimizing the parameters that influence the factors that aid in better interoperable application migration with improved resource allocation and minimized overhead.It considered the factors of resource capacity,transmission cost,demand,and predicted load into account during the formulation of the objective function utilized for resource allocation and application migration.The cloud simulation of this FHOEDLS is achieved using a container,Virtual Machine(VM),and Physical Machine(PM).The results of this proposed FHOEDLS confirmed a better resource capability of 0.418 and a minimized load of 0.0061. 展开更多
关键词 CONTAINER deep learning fire hawk optimization algorithm hybrid cloud interoperable application migration
在线阅读 下载PDF
An Improved Harris Hawks Optimization Algorithm with Multi-strategy for Community Detection in Social Network 被引量:8
2
作者 Farhad Soleimanian Gharehchopogh 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1175-1197,共23页
The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing conne... The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing connections between things. Communities are node clusters with many internal links but minimal intergroup connections. Although community detection has attracted much attention in social media research, most face functional weaknesses because the structure of society is unclear or the characteristics of nodes in society are not the same. Also, many existing algorithms have complex and costly calculations. This paper proposes different Harris Hawk Optimization (HHO) algorithm methods (such as Improved HHO Opposition-Based Learning(OBL) (IHHOOBL), Improved HHO Lévy Flight (IHHOLF), and Improved HHO Chaotic Map (IHHOCM)) were designed to balance exploitation and exploration in this algorithm for community detection in the social network. The proposed methods are evaluated on 12 different datasets based on NMI and modularity criteria. The findings reveal that the IHHOOBL method has better detection accuracy than IHHOLF and IHHOCM. Also, to offer the efficiency of the , state-of-the-art algorithms have been used as comparisons. The improvement percentage of IHHOOBL compared to the state-of-the-art algorithm is about 7.18%. 展开更多
关键词 Bionic algorithm Complex network Community detection Harris hawk optimization algorithm Opposition-based learning Levy flight Chaotic maps
在线阅读 下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem 被引量:1
3
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
在线阅读 下载PDF
An Improved Harris Hawk Optimization Algorithm
4
作者 GuangYa Chong Yongliang YUAN 《Mechanical Engineering Science》 2024年第1期21-25,共5页
Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).F... Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems. 展开更多
关键词 Harris hawk optimization algorithm chaotic mapping cosine strategy function optimization
在线阅读 下载PDF
Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network 被引量:13
5
作者 Bhatawdekar Ramesh Murlidhar Hoang Nguyen +4 位作者 Jamal Rostami XuanNam Bui Danial Jahed Armaghani Prashanth Ragam Edy Tonnizam Mohamad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1413-1427,共15页
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t... In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models. 展开更多
关键词 Flyrock Harris hawks optimization(HHO) Multi-layer perceptron(MLP) Random forest(RF) Support vector machine(SVM) Whale optimization algorithm(WOA)
在线阅读 下载PDF
Computing Connected Resolvability of Graphs Using Binary Enhanced Harris Hawks Optimization 被引量:1
6
作者 Basma Mohamed Linda Mohaisen Mohamed Amin 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2349-2361,共13页
In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distanc... In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the ver-tices in B.A resolving set B of G is connected if the subgraph B induced by B is a nontrivial connected subgraph of G.The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G.The problem is solved heuristically by a binary version of an enhanced Harris Hawk Optimization(BEHHO)algorithm.This is thefirst attempt to determine the connected resolving set heuristically.BEHHO combines classical HHO with opposition-based learning,chaotic local search and is equipped with an S-shaped transfer function to convert the contin-uous variable into a binary one.The hawks of BEHHO are binary encoded and are used to represent which one of the vertices of a graph belongs to the connected resolving set.The feasibility is enforced by repairing hawks such that an addi-tional node selected from V\B is added to B up to obtain the connected resolving set.The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-zation(BHHO),binary opposition-based learning Harris Hawk Optimization(BOHHO),binary chaotic local search Harris Hawk Optimization(BCHHO)algorithms.Computational results confirm the superiority of the BEHHO for determining connected metric dimension. 展开更多
关键词 Connected resolving set binary optimization harris hawks algorithm
在线阅读 下载PDF
Optimization of Resource Allocation in Unmanned Aerial Vehicles Based on Swarm Intelligence Algorithms
7
作者 Siling Feng Yinjie Chen +1 位作者 Mengxing Huang Feng Shu 《Computers, Materials & Continua》 SCIE EI 2023年第5期4341-4355,共15页
Due to their adaptability,Unmanned Aerial Vehicles(UAVs)play an essential role in the Internet of Things(IoT).Using wireless power transfer(WPT)techniques,an UAV can be supplied with energy while in flight,thereby ext... Due to their adaptability,Unmanned Aerial Vehicles(UAVs)play an essential role in the Internet of Things(IoT).Using wireless power transfer(WPT)techniques,an UAV can be supplied with energy while in flight,thereby extending the lifetime of this energy-constrained device.This paper investigates the optimization of resource allocation in light of the fact that power transfer and data transmission cannot be performed simultaneously.In this paper,we propose an optimization strategy for the resource allocation of UAVs in sensor communication networks.It is a practical solution to the problem of marine sensor networks that are located far from shore and have limited power.A corresponding system model is summarized based on the scenario and existing theoretical works.The minimum throughputmaximizing object is then formulated as an optimization problem.As swarm intelligence algorithms are utilized effectively in numerous fields,this paper chose to solve the formed optimization problem using the Harris Hawks Optimization and Whale Optimization Algorithms.This paper introduces a method for translating multi-decisions into a row vector in order to adapt swarm intelligence algorithms to the problem,as joint time and energy optimization have two sets of variables.The proposed method performs well in terms of stability and duration.Finally,performance is evaluated through numerical experiments.Simulation results demonstrate that the proposed method performs admirably in the given scenario. 展开更多
关键词 Resource allocation unmanned aerial vehicles harris hawks optimization whale optimization algorithm
在线阅读 下载PDF
Crisscross Harris Hawks Optimizer for Global Tasks and Feature Selection 被引量:1
8
作者 Xin Wang Xiaogang Dong +1 位作者 Yanan Zhang Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1153-1174,共22页
Harris Hawks Optimizer (HHO) is a recent well-established optimizer based on the hunting characteristics of Harris hawks, which shows excellent efficiency in solving a variety of optimization issues. However, it under... Harris Hawks Optimizer (HHO) is a recent well-established optimizer based on the hunting characteristics of Harris hawks, which shows excellent efficiency in solving a variety of optimization issues. However, it undergoes weak global search capability because of the levy distribution in its optimization process. In this paper, a variant of HHO is proposed using Crisscross Optimization Algorithm (CSO) to compensate for the shortcomings of original HHO. The novel developed optimizer called Crisscross Harris Hawks Optimizer (CCHHO), which can effectively achieve high-quality solutions with accelerated convergence on a variety of optimization tasks. In the proposed algorithm, the vertical crossover strategy of CSO is used for adjusting the exploitative ability adaptively to alleviate the local optimum;the horizontal crossover strategy of CSO is considered as an operator for boosting explorative trend;and the competitive operator is adopted to accelerate the convergence rate. The effectiveness of the proposed optimizer is evaluated using 4 kinds of benchmark functions, 3 constrained engineering optimization issues and feature selection problems on 13 datasets from the UCI repository. Comparing with nine conventional intelligence algorithms and 9 state-of-the-art algorithms, the statistical results reveal that the proposed CCHHO is significantly more effective than HHO, CSO, CCNMHHO and other competitors, and its advantage is not influenced by the increase of problems’ dimensions. Additionally, experimental results also illustrate that the proposed CCHHO outperforms some existing optimizers in working out engineering design optimization;for feature selection problems, it is superior to other feature selection methods including CCNMHHO in terms of fitness, error rate and length of selected features. 展开更多
关键词 Harris hawks optimization Bioinspired algorithm Global optimization Engineering optimization Feature selection
在线阅读 下载PDF
An Improved Jump Spider Optimization for Network Traffic Identification Feature Selection 被引量:1
9
作者 Hui Xu Yalin Hu +1 位作者 Weidong Cao Longjie Han 《Computers, Materials & Continua》 SCIE EI 2023年第9期3239-3255,共17页
The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for to... The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for today’s complex and changing networks.Recently,machine learning has beenwidely applied to network traffic recognition.Still,high-dimensional features and redundant data in network traffic can lead to slow convergence problems and low identification accuracy of network traffic recognition algorithms.Taking advantage of the faster optimizationseeking capability of the jumping spider optimization algorithm(JSOA),this paper proposes a jumping spider optimization algorithmthat incorporates the harris hawk optimization(HHO)and small hole imaging(HHJSOA).We use it in network traffic identification feature selection.First,the method incorporates the HHO escape energy factor and the hard siege strategy to forma newsearch strategy for HHJSOA.This location update strategy enhances the search range of the optimal solution of HHJSOA.We use small hole imaging to update the inferior individual.Next,the feature selection problem is coded to propose a jumping spiders individual coding scheme.Multiple iterations of the HHJSOA algorithmfind the optimal individual used as the selected feature for KNN classification.Finally,we validate the classification accuracy and performance of the HHJSOA algorithm using the UNSW-NB15 dataset and KDD99 dataset.Experimental results show that compared with other algorithms for the UNSW-NB15 dataset,the improvement is at least 0.0705,0.00147,and 1 on the accuracy,fitness value,and the number of features.In addition,compared with other feature selectionmethods for the same datasets,the proposed algorithmhas faster convergence,better merit-seeking,and robustness.Therefore,HHJSOAcan improve the classification accuracy and solve the problem that the network traffic recognition algorithm needs to be faster to converge and easily fall into local optimum due to high-dimensional features. 展开更多
关键词 Network traffic identification feature selection jumping spider optimization algorithm harris hawk optimization small hole imaging
在线阅读 下载PDF
基于改进Harris Hawk优化算法的虚拟电厂优化调度研究
10
作者 丁君 秦浩庭 +3 位作者 苏鹏 曾雪松 李竞轩 郝巍 《可再生能源》 北大核心 2025年第6期829-838,共10页
文章针对虚拟电厂的优化调度问题,提出了一种基于改进Harris Hawk优化算法的调度策略。该策略旨在提高包含光伏、风力发电、燃料电池以及热电联产单元的虚拟电厂的经济性和环境友好性,并引入电动汽车和储能系统分别作为灵活储备和旋转备... 文章针对虚拟电厂的优化调度问题,提出了一种基于改进Harris Hawk优化算法的调度策略。该策略旨在提高包含光伏、风力发电、燃料电池以及热电联产单元的虚拟电厂的经济性和环境友好性,并引入电动汽车和储能系统分别作为灵活储备和旋转备用,建立虚拟电厂灵活性聚合模型,通过改进的Harris Hawk优化算法调度方案。最后进行全面的日前调度和短期调度分析。结果表明,该策略能有效应对可再生能源的不确定性,实现对联络线功率的响应跟随。研究结果为虚拟电厂的协调优化调度提供了新的思路和方法。 展开更多
关键词 虚拟电厂 改进Harris hawk优化算法 灵活性聚合 日前和短期调度
在线阅读 下载PDF
混合增强黑翅鸢优化算法及其应用
11
作者 王玉芳 程培浩 闫明 《计算机科学与探索》 北大核心 2026年第1期99-121,共23页
针对黑翅鸢优化算法(BKA)收敛速度慢和易陷入局部最优的局限性,提出了一种混合增强黑翅鸢优化算法(HEBKA),旨在提升算法的全局搜索能力和优化性能。HEBKA通过引入红尾鹰优化算法替换BKA的攻击阶段,并结合Bernoulli混沌映射作为攻击调节... 针对黑翅鸢优化算法(BKA)收敛速度慢和易陷入局部最优的局限性,提出了一种混合增强黑翅鸢优化算法(HEBKA),旨在提升算法的全局搜索能力和优化性能。HEBKA通过引入红尾鹰优化算法替换BKA的攻击阶段,并结合Bernoulli混沌映射作为攻击调节因子,以简化算法流程并显著增强全局搜索能力,从而有效提高收敛效率。借鉴黑寡妇优化算法的信息素机制,HEBKA将种群划分为优秀个体和劣质个体两类:对优秀个体实施迁徙操作以引导种群向最优解方向移动,而对劣质个体施加随机扰动以增加种群的多样性,从而减少对领导者迁徙的盲目依赖,避免种群过早收敛。当种群出现聚集现象时,HEBKA针对最优个体引入正交试验-准反射扰动策略,通过正交试验设计高效探索解空间,并利用准反射机制引入适度扰动,进一步增强算法跳出局部最优的能力。为验证HEBKA的改进效果,在CEC2017测试函数集上开展了仿真实验,与多种优化算法进行收敛性分析及Wilcoxon非参数统计检验,结果表明HEBKA在收敛速度、优化精度和鲁棒性方面均显著优于对比算法,展现出优秀的全局搜索能力和稳定性。HEBKA被应用于二维和三维旅行商问题(TSP)的求解,通过在实际复杂优化问题中的表现,验证了其高效性和应用潜力。 展开更多
关键词 黑翅鸢优化算法 红尾鹰优化算法 劣质个体分类策略 正交试验-准反射扰动 旅行商问题
在线阅读 下载PDF
基于Harris Hawks优化算法的介质波导滤波器优化设计 被引量:2
12
作者 舒佩文 麦健业 褚庆昕 《电波科学学报》 CSCD 北大核心 2021年第5期787-796,共10页
Harris Hawks优化(Harris Hawks optimization, HHO)算法是一种模拟鸟群合作捕食行为的新型群智能算法.介质波导滤波器是当前5G移动通信设备急需的器件,因此如何利用新型优化算法高效且精确地对介质波导滤波器进行优化设计十分重要.文... Harris Hawks优化(Harris Hawks optimization, HHO)算法是一种模拟鸟群合作捕食行为的新型群智能算法.介质波导滤波器是当前5G移动通信设备急需的器件,因此如何利用新型优化算法高效且精确地对介质波导滤波器进行优化设计十分重要.文中首先描述了HHO算法流程,并结合滤波器优化问题提出了一种通用框架;然后基于稳态假设对HHO算法的更新方程进行了理论分析,依据所导出的方程分析了算法的动态特性及收敛行为;最后利用HHO算法实现了两款介质波导滤波器的优化设计.为验证算法性能,将本文算法与三个著名的群智能算法进行比较.实验结果表明,HHO算法的收敛速度、效率和精度都明显优于目前业内主流应用的自适应差分进化算法、花粉授粉优化算法和灰狼优化算法. 展开更多
关键词 群智能优化算法 5G移动通信 Harris hawks优化(HHO)算法 滤波器优化设计 介质波导滤波器
在线阅读 下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
13
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
复杂山区环境下的应急无人机路径规划 被引量:3
14
作者 彭艺 唐剑 杨青青 《吉林大学学报(理学版)》 北大核心 2025年第2期585-594,共10页
针对复杂山区环境下应急通信无人机的飞行路径规划问题,通过综合考虑障碍物、无人机载重量、无人机电池容量等约束条件,为降低无人机的飞行时间并延长飞行距离,基于Harris鹰算法框架设计一种改进Harris鹰算法的无人机三维路径规划方法.... 针对复杂山区环境下应急通信无人机的飞行路径规划问题,通过综合考虑障碍物、无人机载重量、无人机电池容量等约束条件,为降低无人机的飞行时间并延长飞行距离,基于Harris鹰算法框架设计一种改进Harris鹰算法的无人机三维路径规划方法.首先,对Harris鹰的种群初始位置、位置更新方程和猎物的逃逸能量进行改进;其次,采用三次样条曲线插值法对路径进行平滑,以确保无人机飞行过程中安全可靠且平滑;最后,将应急无人机在具有不同障碍物的山区进行测试,并将所得结果与标准Harris鹰、蚁群算法和人工蜂群算法进行对比分析.分析结果表明,该算法所规划的三维路径规划方法生成的路径更短,并能更快地寻找到最优路径. 展开更多
关键词 路径规划 Harris鹰算法 无人机 最优路径
在线阅读 下载PDF
基于适应度地形分析的优化算法调度方法
15
作者 朱晓东 任春晓 +2 位作者 刘晓兰 陈科 余春明 《郑州大学学报(工学版)》 北大核心 2025年第6期32-39,共8页
由于不同的优化问题具有不同的适应度地形,而一种优化算法通常只在某一种适应度地形上有更好的效果,因此,提出了一种基于适应度地形分析的优化算法调度方法(FL-AMAS)。首先,通过提取优化目标函数的局部峰簇数特征来描述优化问题的地形特... 由于不同的优化问题具有不同的适应度地形,而一种优化算法通常只在某一种适应度地形上有更好的效果,因此,提出了一种基于适应度地形分析的优化算法调度方法(FL-AMAS)。首先,通过提取优化目标函数的局部峰簇数特征来描述优化问题的地形特征,根据地形特征选择相应具有优势的算法,利用对算法的调度发挥不同算法的最大优势;其次,根据优化问题对探索性与开发性的平衡要求,选择了具有高开发能力的哈里斯鹰优化算法(HHO)和具有高探索能力的差分进化算法(DE)作为调度使用的算法,根据不同的适应度地形特征来选择更适合的算法。实验结果表明:在基准测试集上,相较于单独使用HHO,FL-AMAS在收敛性能上提升了75%;与DE算法相比,FL-AMAS收敛性能提升了40%。将FL-AMAS与6种先进算法进行比较,在75%的基准测试集上,FL-AMAS的收敛精度均优于这些算法。通过调度其他类型优化算法的结果进行对比,也验证了所提调度方法的有效性和扩展性。 展开更多
关键词 优化算法调度 适应度地形 特征提取 局部峰值点 哈里斯鹰优化算法 差分进化算法
在线阅读 下载PDF
基于改进HHO的水轮机空化信号降噪及特征提取
16
作者 刘忠 刘圳 +2 位作者 邹淑云 周泽华 乔帅程 《噪声与振动控制》 北大核心 2025年第2期70-75,111,共7页
为对水轮机空化声发射信号进行降噪并提取其时频特征,提出一种基于改进哈里斯鹰算法(IHHO)和波动散布熵(FDE)的降噪和特征提取方法。首先,利用秃鹰搜索算法(BES)的螺旋搜索机制改进哈里斯鹰算法(HHO)的全局搜索阶段。然后,以散布熵差异... 为对水轮机空化声发射信号进行降噪并提取其时频特征,提出一种基于改进哈里斯鹰算法(IHHO)和波动散布熵(FDE)的降噪和特征提取方法。首先,利用秃鹰搜索算法(BES)的螺旋搜索机制改进哈里斯鹰算法(HHO)的全局搜索阶段。然后,以散布熵差异互相关系数为适应度函数,利用IHHO对VMD进行参数寻优,对信号进行最优VMD分解和相关系数阈值重构从而实现降噪。最后,提取其能量和波动散布熵特征,分析其随空化系数变化的关系。结果表明:相较于灰狼-布谷鸟(GWO-CS)和HHO算法,IHHO对VMD寻优的降噪效果更好;随着空化系数减小,声发射信号能量呈现先增加、再减小、再增加、再减小的趋势,波动散布熵值呈现先减小后增大的趋势。 展开更多
关键词 声学 水轮机 空化 声发射 降噪 哈里斯鹰优化算法 秃鹰搜索算法
在线阅读 下载PDF
基于IHHO-Stacking集成模型的车辆驾驶性评估
17
作者 莫易敏 王相 +2 位作者 王哲 蒋华梁 李琼 《汽车技术》 北大核心 2025年第3期39-45,共7页
为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型... 为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型,并且使用改进的哈里斯鹰优化(IHHO)算法优化了Stacking集成模型,提高了预测性能。最后通过道路试验表明,IHHO-Stacking集成模型的性能均优于单个机器学习模型,IHHO-Stacking集成模型预测合格率达95%,能够更有效完成驾驶性评价。 展开更多
关键词 驾驶性 主观评价 改进的哈里斯鹰算法 STACKING 集成模型 客观评价
在线阅读 下载PDF
改进HHO算法优化的BPNN模型在管道腐蚀速率预测中的应用
18
作者 线岩团 苗育华 +1 位作者 相艳 郭军军 《安全与环境学报》 北大核心 2025年第11期4222-4231,共10页
油气管道在运行过程中常会出现腐蚀问题,建立合理的模型并准确预测管道的腐蚀速率具有重要的现实意义。针对传统BP神经网络模型的不足,采用新型Sine混沌映射对哈里斯鹰优化(Harris Hawk Optimization,HHO)算法进行改进,建立了基于改进... 油气管道在运行过程中常会出现腐蚀问题,建立合理的模型并准确预测管道的腐蚀速率具有重要的现实意义。针对传统BP神经网络模型的不足,采用新型Sine混沌映射对哈里斯鹰优化(Harris Hawk Optimization,HHO)算法进行改进,建立了基于改进哈里斯鹰优化算法的优化BP神经网络(Improved Harris Hawk Optimization-Back Propagation Neural Network,IHHO-BPNN)模型,并对比分析了IHHO-BPNN模型、HHO-BPNN模型及传统BPNN模型对管道腐蚀速率的预测精度。输油管道腐蚀速率的预测结果表明,IHHO-BPNN模型的平均绝对百分比误差和均方根误差分别为1.473%和0.001,HHO-BPNN模型的平均绝对百分比误差和均方根误差分别为4.647%和0.004,而传统BPNN模型的预测精度较差;南海油田管道腐蚀速率的预测结果表明,IHHO-BPNN模型的平均绝对百分比误差和均方根误差均低于HHO-BPNN模型和传统BPNN模型;混沌映射的引入改善了种群的多样性并可以更好地探索寻优空间,有助于提高HHO-BPNN模型的预测精度。 展开更多
关键词 安全工程 管道腐蚀速率 哈里斯鹰优化算法 混沌映射 BP神经网络 模型精度
原文传递
样本不平衡条件下煤矿突水水源识别——以谢桥煤矿为例
19
作者 王彦彬 闫晓杉 《安全与环境学报》 北大核心 2025年第7期2553-2561,共9页
为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条... 为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条谢桥煤矿水化学数据进行分析,首先对样本数据进行标准化处理和主成分分析(Principal Component Analysis, PCA),将数据集划分为训练集和测试集,对训练集中少数类样本采用SMOTE法生成新的样本,然后采用改进混沌哈里斯鹰优化(Chaos Harris Hawks Optimization, CHHO)算法结合十折交叉验证优化支持向量机惩罚因子C和径向基函数(Radial Basis Function, RBF)核的参数γ,根据优化结果建立突水水源识别模型,对测试集中突水水源进行识别。将该方法与朴素贝叶斯、随机森林所得结果进行比较,结果显示,采用本方法对测试集识别结果准确性优于其他两种方法,表明该方法在突水水源识别上具有良好的实用性和有效性。 展开更多
关键词 安全工程 突水水源识别 主成分分析 合成少数类过采样技术 混沌哈里斯鹰优化算法 支持向量机
原文传递
基于多策略改进HHO算法的机器人路径规划 被引量:1
20
作者 刘拴 艾尔肯·亥木都拉 岳凡 《组合机床与自动化加工技术》 北大核心 2025年第6期94-98,103,共6页
为解决服务机器人在路径规划中收敛效率低及易陷入局部最优的问题,提出了一种多策略改进的哈里斯鹰优化算法(MIHHO)。首先,引入分段式混沌映射对种群进行初始化,使得种群分布更加均匀;其次,通过引入随机余弦能量收敛因子对猎物能量进行... 为解决服务机器人在路径规划中收敛效率低及易陷入局部最优的问题,提出了一种多策略改进的哈里斯鹰优化算法(MIHHO)。首先,引入分段式混沌映射对种群进行初始化,使得种群分布更加均匀;其次,通过引入随机余弦能量收敛因子对猎物能量进行平衡开发探索;然后,通过动态透镜成像学习及余弦优化策略对种群进行位置更新,提高算法的收敛效率;最后,通过融合莱维飞行与多维随机游走策略,避免了算法陷入局部最优。结果表明,MIHHO算法在路径规划中表现出高效的寻优能力,路径寻优时间缩短了42.49%,迭代次数减少了43.06%。 展开更多
关键词 服务机器人 哈里斯鹰优化算法 路径规划 高效寻优
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部