期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adaptive Hammerstein Predistorter Using the Recursive Prediction Error Method 被引量:2
1
作者 李辉 王德生 陈兆武 《Tsinghua Science and Technology》 SCIE EI CAS 2008年第1期17-22,共6页
The digital baseband predistorter is an effective technique to compensate for the nonlinearity of power amplifiers (PAs) with memory effects. However, most available adaptive predistorters based on direct learning a... The digital baseband predistorter is an effective technique to compensate for the nonlinearity of power amplifiers (PAs) with memory effects. However, most available adaptive predistorters based on direct learning architectures suffer from slow convergence speeds. In this paper, the recursive prediction error method is used to construct an adaptive Hammerstein predistorter based on the direct learning architecture, which is used to linearize the Wiener PA model. The effectiveness of the scheme is demonstrated on a digital video broadcasting-terrestrial system. Simulation results show that the predistorter outperforms previous predistorters based on direct learning architectures in terms of convergence speed and linearization. A similar algorithm can be applied to estimate the Wiener PA model, which will achieve high model accuracy. 展开更多
关键词 power amplifier PREDISTORTER Wiener system Hammerstein system recursive prediction error method
原文传递
NONLINEAR MODELING AND CONTROLLING OF ARTIFICIAL MUSCLE SYSTEM USING NEURAL NETWORKS
2
作者 Tian Sheping Ding Guoqing +1 位作者 Yan Detian Lin Liangming Department of Information Measurement and Instrumentation,Shanghai Jiaotong University,Shanghai 200030, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期306-310,共5页
The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is... The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is designed. The recursive prediction error (RPE)algorithm which yields faster convergence than back propagation (BP) algorithm is applied to trainthe neural networks. The realization of RPE algorithm is given. The difference of modeling ofartificial muscles using neural networks with different input nodes and different hidden layer nodesis discussed. On this basis the nonlinear control scheme using neural networks for artificialmuscle system has been introduced. The experimental results show that the nonlinear control schemeyields faster response and higher control accuracy than the traditional linear control scheme. 展开更多
关键词 Artificial muscle Neural networks recursive prediction error algorithm Nonlinear modeling and controlling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部