In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co...In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.展开更多
In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At...In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At any time, each agent updates its estimate using the local observation and the information derived from its neighboring agents. The algorithms are based on the truncated stochastic approximation and their convergence is proved. A simulation example is presented and the computation results are shown to be consistent with theoretical analysis.展开更多
Most of existing methods in system identification with possible exception of those for linear systems are off-line in nature, and hence are nonrecursive. This paper demonstrates the recent progress in recursive system...Most of existing methods in system identification with possible exception of those for linear systems are off-line in nature, and hence are nonrecursive. This paper demonstrates the recent progress in recursive system identification. The recursive identification algorithms are presented not only for linear systems (multivariate ARMAX systems) but also for nonlinear systems such as the Hammerstein and Wiener systems, and the nonlinear ARX systems. The estimates generated by the algorithms are online updated and converge a.s. to the true values as time tends to infinity.展开更多
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ...Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
A closed-loop subspace identification method is proposed for industrial systems subject to noisy input-output observations, known as the error-in-variables (EIV) problem. Using the orthogonal projection approach to el...A closed-loop subspace identification method is proposed for industrial systems subject to noisy input-output observations, known as the error-in-variables (EIV) problem. Using the orthogonal projection approach to eliminate the noise influence, consistent estimation is guaranteed for the deterministic part of such a system. A strict proof is given for analyzing the rank condition for such orthogonal projection, in order to use the principal component analysis (PCA) based singular value decomposition (SVD) to derive the extended observability matrix and lower triangular Toeliptz matrix of the plant state-space model. In the result, the plant state matrices can be retrieved in a transparent manner from the above matrices. An illustrative example is shown to demonstrate the effectiveness and merits of the proposed subspace identification method.展开更多
The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algori...The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm.展开更多
This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the ...This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification,CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition,a proper Bernstein polynomial order can be determined using the Akaike information criterion(AIC)or the Bayesian information criterion(BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.展开更多
The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained accor...The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained according to the identification procedures in the open-loop, or in the closed-loop. In the open-loop, the identification methods are well known and offer good process approximation, which is not valid for the closed-loop identification, when the system provides the feedback output and doesn’t permit it to be identified in the open-loop. This paper offers an approach for experimental identification in the closed-loop, which supposes the approximation of the process with inertial models, with or without time delay and astatism. The coefficients are calculated based on the values of the critical transfer coefficient and period of the underdamped response of the closed-loop system with P controller, when system achieves the limit of stability. Finally, the closed-loop identification was verified by the computer simulation and the obtained results demonstrated, that the identification procedure in the closed-loop offers good results in process of estimation of the model of the process.展开更多
Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based o...Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters struc^tres. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis.展开更多
The recursive structure and quasi-recursive structure of Adaptive Volterra Fil-ter(AVF) are put forward, their algorithms are given, and their characteristics and applications are discussed. The introduction of recurs...The recursive structure and quasi-recursive structure of Adaptive Volterra Fil-ter(AVF) are put forward, their algorithms are given, and their characteristics and applications are discussed. The introduction of recursive structure can remarkably reduce the parameters and computational cost of AVF.展开更多
The paper presents an approach to identfying a fhzzy model composed of fuzzy-logic rules for a multi-in-put/single outpu system. The ther of fuzzy rules and membership functions of input variables are obtained by mean...The paper presents an approach to identfying a fhzzy model composed of fuzzy-logic rules for a multi-in-put/single outpu system. The ther of fuzzy rules and membership functions of input variables are obtained by means of a fuzzy competitive lerning method with a validity criterion. This method avoids the complexity of system structure identilication and decreases the number of fuzzy rules. Recareive least square algorithm can be used to iden-tify the parameters of conclusion polynomials .The proposed method is used to identify the well-known Box-Jenkins da-ta set with the result shawn at the end of the paper to demonstrae its advanages.展开更多
The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive da...The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive damped least square is proposed. This is done by normalizing the measurement vector entering into the identification algorithm. rt is shown that the parametric distance converges to a zero mean random variable. It is also shown that under persistent excitation condition, the condition number of the adaptation gain matrix is bounded, and the variance of the parametric distance is bounded.展开更多
The frequent explosion of Internet worms has been one of the most serious problems in cyberspace security. In this paper, by analyzing the worm's propagation model, we propose a new worm warning system based on the m...The frequent explosion of Internet worms has been one of the most serious problems in cyberspace security. In this paper, by analyzing the worm's propagation model, we propose a new worm warning system based on the method of system identification, and use recursive least squares algorithm to estimate the worm's infection rate. The simulation result shows the method we adopted is an efficient way to conduct Internet worm warning.展开更多
A pair of multichannel recursive least squares (RLS) adaptive lattice algorithms based on the order recursive of lattice filters and the superior numerical properties of Givens algorithms is derived in this paper. The...A pair of multichannel recursive least squares (RLS) adaptive lattice algorithms based on the order recursive of lattice filters and the superior numerical properties of Givens algorithms is derived in this paper. The derivation of the first algorithm is based on QR decomposition of the input data matrix directly, and the Givens rotations approach is used to compute the QR decomposition. Using first a prerotation of the input data matrix and then a repetition of the single channel Givens lattice algorithm, the second algorithm can be obtained. Both algorithms have superior numerical properties, particularly the robustness to wordlength limitations. The parameter vector to be estimated can be extracted directly from internal variables in the present algorithms without a backsolve operation with an extra triangular array. The results of computer simulation of the parameter identification of a two-channel system are presented to confirm efficiently the derivation.展开更多
This paper presents an approach that is useful for the identification of a fuzzy model in SISO system. The initial values of cluster centers are identified by the Hough transformation, which considers the linearity an...This paper presents an approach that is useful for the identification of a fuzzy model in SISO system. The initial values of cluster centers are identified by the Hough transformation, which considers the linearity and continuity of given input-output data, respectively. For the premise parts parameters identification, we use fuzzy-C-means clustering method. The consequent parameters are identified based on recursive least square. This method not only makes approximation more accurate, but also let computation be simpler and the procedure is realized more easily. Finally, it is shown that this method is useful for the identification of a fuzzy model by simulation.展开更多
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy...In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.展开更多
Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery,thereby influencing safety of entire electric vehicles.Precise estimation of battery model parameters using key mea...Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery,thereby influencing safety of entire electric vehicles.Precise estimation of battery model parameters using key measured signals is essential.However,measured signals inevitably carry random noise due to complex real-world operating environments and sensor errors,potentially diminishing model estimation accuracy.Addressing the challenge of accuracy reduction caused by noise,this paper introduces a Bias-Compensated Forgetting Factor Recursive Least Squares(BCFFRLS)method.Initially,a variational error model is crafted to estimate the average weighted variance of random noise.Subsequently,an augmentation matrix is devised to calculate the bias term using augmented and extended parameter vectors,compensating for bias in the parameter estimates.To assess the proposed method's effectiveness in improving parameter identification accuracy,lithium-ion battery experiments were conducted in three test conditions—Urban Dynamometer Driving Schedule(UDDS),Dynamic Stress Test(DST),and Hybrid Pulse Power Characterization(HPPC).The proposed method,alongside two contrasting methods—the offline identification method and Forgetting Factor Recursive Least Squares(FFRLS)—was employed for battery model parameter identification.Comparative analysis reveals substantial improvements,with the mean absolute error reduced by 25%,28%,and 15%,and the root mean square error reduced by 25.1%,42.7%,and 15.9%in UDDS,HPPC,and DST operating conditions,respectively,when compared to the FFRLS method.展开更多
基金Supported in part by the National Thousand Talents Program of Chinathe National Natural Science Foundation of China(61473054)the Fundamental Research Funds for the Central Universities of China
文摘In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.
文摘In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At any time, each agent updates its estimate using the local observation and the information derived from its neighboring agents. The algorithms are based on the truncated stochastic approximation and their convergence is proved. A simulation example is presented and the computation results are shown to be consistent with theoretical analysis.
基金supported by NSFC (60221301 and 60874001)a grant from the National Laboratory of Space Intelligent Control
文摘Most of existing methods in system identification with possible exception of those for linear systems are off-line in nature, and hence are nonrecursive. This paper demonstrates the recent progress in recursive system identification. The recursive identification algorithms are presented not only for linear systems (multivariate ARMAX systems) but also for nonlinear systems such as the Hammerstein and Wiener systems, and the nonlinear ARX systems. The estimates generated by the algorithms are online updated and converge a.s. to the true values as time tends to infinity.
基金financially supported by the National Natural Science Foundation of China(No.52174001)the National Natural Science Foundation of China(No.52004064)+1 种基金the Hainan Province Science and Technology Special Fund “Research on Real-time Intelligent Sensing Technology for Closed-loop Drilling of Oil and Gas Reservoirs in Deepwater Drilling”(ZDYF2023GXJS012)Heilongjiang Provincial Government and Daqing Oilfield's first batch of the scientific and technological key project “Research on the Construction Technology of Gulong Shale Oil Big Data Analysis System”(DQYT-2022-JS-750)。
文摘Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
基金Supported in part by Chinese Recruitment Program of Global Young Expert,Alexander von Humboldt Research Fellowship of Germany,the Foundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China (61074020)
文摘A closed-loop subspace identification method is proposed for industrial systems subject to noisy input-output observations, known as the error-in-variables (EIV) problem. Using the orthogonal projection approach to eliminate the noise influence, consistent estimation is guaranteed for the deterministic part of such a system. A strict proof is given for analyzing the rank condition for such orthogonal projection, in order to use the principal component analysis (PCA) based singular value decomposition (SVD) to derive the extended observability matrix and lower triangular Toeliptz matrix of the plant state-space model. In the result, the plant state matrices can be retrieved in a transparent manner from the above matrices. An illustrative example is shown to demonstrate the effectiveness and merits of the proposed subspace identification method.
基金Supported by the National Natural Science Foundation of China(61573052,61174128)
文摘The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm.
基金partially supported by National Key Research and Development Program of China(2019YFC1510902)National Natural Science Foundation of China(62073104)+1 种基金Natural Science Foundation of Heilongjiang Province(LH2022F024)China Postdoctoral Science Foundation(2022M710965)。
文摘This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification,CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition,a proper Bernstein polynomial order can be determined using the Akaike information criterion(AIC)or the Bayesian information criterion(BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.
文摘The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained according to the identification procedures in the open-loop, or in the closed-loop. In the open-loop, the identification methods are well known and offer good process approximation, which is not valid for the closed-loop identification, when the system provides the feedback output and doesn’t permit it to be identified in the open-loop. This paper offers an approach for experimental identification in the closed-loop, which supposes the approximation of the process with inertial models, with or without time delay and astatism. The coefficients are calculated based on the values of the critical transfer coefficient and period of the underdamped response of the closed-loop system with P controller, when system achieves the limit of stability. Finally, the closed-loop identification was verified by the computer simulation and the obtained results demonstrated, that the identification procedure in the closed-loop offers good results in process of estimation of the model of the process.
基金supported by National Natural Science Foundation of China(Grant No.51175511)
文摘Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters struc^tres. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis.
文摘The recursive structure and quasi-recursive structure of Adaptive Volterra Fil-ter(AVF) are put forward, their algorithms are given, and their characteristics and applications are discussed. The introduction of recursive structure can remarkably reduce the parameters and computational cost of AVF.
文摘The paper presents an approach to identfying a fhzzy model composed of fuzzy-logic rules for a multi-in-put/single outpu system. The ther of fuzzy rules and membership functions of input variables are obtained by means of a fuzzy competitive lerning method with a validity criterion. This method avoids the complexity of system structure identilication and decreases the number of fuzzy rules. Recareive least square algorithm can be used to iden-tify the parameters of conclusion polynomials .The proposed method is used to identify the well-known Box-Jenkins da-ta set with the result shawn at the end of the paper to demonstrae its advanages.
文摘The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive damped least square is proposed. This is done by normalizing the measurement vector entering into the identification algorithm. rt is shown that the parametric distance converges to a zero mean random variable. It is also shown that under persistent excitation condition, the condition number of the adaptation gain matrix is bounded, and the variance of the parametric distance is bounded.
文摘The frequent explosion of Internet worms has been one of the most serious problems in cyberspace security. In this paper, by analyzing the worm's propagation model, we propose a new worm warning system based on the method of system identification, and use recursive least squares algorithm to estimate the worm's infection rate. The simulation result shows the method we adopted is an efficient way to conduct Internet worm warning.
基金Foundation of the Academy of Electronic Science,China
文摘A pair of multichannel recursive least squares (RLS) adaptive lattice algorithms based on the order recursive of lattice filters and the superior numerical properties of Givens algorithms is derived in this paper. The derivation of the first algorithm is based on QR decomposition of the input data matrix directly, and the Givens rotations approach is used to compute the QR decomposition. Using first a prerotation of the input data matrix and then a repetition of the single channel Givens lattice algorithm, the second algorithm can be obtained. Both algorithms have superior numerical properties, particularly the robustness to wordlength limitations. The parameter vector to be estimated can be extracted directly from internal variables in the present algorithms without a backsolve operation with an extra triangular array. The results of computer simulation of the parameter identification of a two-channel system are presented to confirm efficiently the derivation.
基金This project was supported by the Natural Science Foundation of Heilongjiang province and Doctor Foundation of Yanshan U-niversity.
文摘This paper presents an approach that is useful for the identification of a fuzzy model in SISO system. The initial values of cluster centers are identified by the Hough transformation, which considers the linearity and continuity of given input-output data, respectively. For the premise parts parameters identification, we use fuzzy-C-means clustering method. The consequent parameters are identified based on recursive least square. This method not only makes approximation more accurate, but also let computation be simpler and the procedure is realized more easily. Finally, it is shown that this method is useful for the identification of a fuzzy model by simulation.
文摘In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.
基金Scientific Research Project of Tianjin Education Commission(Grant No:2023KJ303)Hebei Provincial Department of Education(Grant No:C20220315)+1 种基金Tianjin Natural Science Foundation(Grant No:21JCZDJC00720)Hebei Natural Science Foundation(Grant No:E2022202047).
文摘Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery,thereby influencing safety of entire electric vehicles.Precise estimation of battery model parameters using key measured signals is essential.However,measured signals inevitably carry random noise due to complex real-world operating environments and sensor errors,potentially diminishing model estimation accuracy.Addressing the challenge of accuracy reduction caused by noise,this paper introduces a Bias-Compensated Forgetting Factor Recursive Least Squares(BCFFRLS)method.Initially,a variational error model is crafted to estimate the average weighted variance of random noise.Subsequently,an augmentation matrix is devised to calculate the bias term using augmented and extended parameter vectors,compensating for bias in the parameter estimates.To assess the proposed method's effectiveness in improving parameter identification accuracy,lithium-ion battery experiments were conducted in three test conditions—Urban Dynamometer Driving Schedule(UDDS),Dynamic Stress Test(DST),and Hybrid Pulse Power Characterization(HPPC).The proposed method,alongside two contrasting methods—the offline identification method and Forgetting Factor Recursive Least Squares(FFRLS)—was employed for battery model parameter identification.Comparative analysis reveals substantial improvements,with the mean absolute error reduced by 25%,28%,and 15%,and the root mean square error reduced by 25.1%,42.7%,and 15.9%in UDDS,HPPC,and DST operating conditions,respectively,when compared to the FFRLS method.