期刊文献+
共找到591篇文章
< 1 2 30 >
每页显示 20 50 100
Recursive State-space Model Identification of Non-uniformly Sampled Systems Using Singular Value Decomposition 被引量:2
1
作者 王宏伟 刘涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1268-1273,共6页
In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co... In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method. 展开更多
关键词 Non-uniformly sampling system STATE-SPACE model identification SINGULAR value decomposition recursive algorithm
在线阅读 下载PDF
Distributed and recursive blind channel identification to sensor networks 被引量:1
2
《Control Theory and Technology》 EI CSCD 2017年第4期274-287,共14页
In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At... In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At any time, each agent updates its estimate using the local observation and the information derived from its neighboring agents. The algorithms are based on the truncated stochastic approximation and their convergence is proved. A simulation example is presented and the computation results are shown to be consistent with theoretical analysis. 展开更多
关键词 Blind channel identification distributed and recursive algorithm truncated stochastic approximation sensornetworks
原文传递
RECURSIVE SYSTEM IDENTIFICATION
3
作者 陈翰馥 《Acta Mathematica Scientia》 SCIE CSCD 2009年第3期650-672,共23页
Most of existing methods in system identification with possible exception of those for linear systems are off-line in nature, and hence are nonrecursive. This paper demonstrates the recent progress in recursive system... Most of existing methods in system identification with possible exception of those for linear systems are off-line in nature, and hence are nonrecursive. This paper demonstrates the recent progress in recursive system identification. The recursive identification algorithms are presented not only for linear systems (multivariate ARMAX systems) but also for nonlinear systems such as the Hammerstein and Wiener systems, and the nonlinear ARX systems. The estimates generated by the algorithms are online updated and converge a.s. to the true values as time tends to infinity. 展开更多
关键词 recursive identification ARMAX Hammerstein systems Wiener systems nonlinear ARX systems stochastic approximation CONVERGENCE
在线阅读 下载PDF
A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm 被引量:6
4
作者 Tie Yan Rui Xu +2 位作者 Shi-Hui Sun Zhao-Kai Hou Jin-Yu Feng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1135-1148,共14页
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ... Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation. 展开更多
关键词 Intelligent drilling closed-loop drilling Lithology identification Random forest algorithm Feature extraction
原文传递
Identification of time-varying system and energy-based optimization of adaptive control in seismically excited structure
5
作者 Elham Aghabarari Fereidoun Amini Pedram Ghaderi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期227-240,共14页
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ... The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems. 展开更多
关键词 integrated online identification time-varying systems structural energy multiple forgetting factor recursive least squares optimal simple adaptive control algorithm
在线阅读 下载PDF
An Extended Closed-loop Subspace Identification Method for Error-in-variables Systems 被引量:1
6
作者 刘涛 邵诚 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1136-1141,共6页
A closed-loop subspace identification method is proposed for industrial systems subject to noisy input-output observations, known as the error-in-variables (EIV) problem. Using the orthogonal projection approach to el... A closed-loop subspace identification method is proposed for industrial systems subject to noisy input-output observations, known as the error-in-variables (EIV) problem. Using the orthogonal projection approach to eliminate the noise influence, consistent estimation is guaranteed for the deterministic part of such a system. A strict proof is given for analyzing the rank condition for such orthogonal projection, in order to use the principal component analysis (PCA) based singular value decomposition (SVD) to derive the extended observability matrix and lower triangular Toeliptz matrix of the plant state-space model. In the result, the plant state matrices can be retrieved in a transparent manner from the above matrices. An illustrative example is shown to demonstrate the effectiveness and merits of the proposed subspace identification method. 展开更多
关键词 closed-loop error-in-variables system subspace identification extended observability matrix orthogonal projection
在线阅读 下载PDF
Closed-loop identification of systems using hybrid Box–Jenkins structure and its application to PID tuning 被引量:1
7
作者 李全善 李大字 曹柳林 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1997-2004,共8页
The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algori... The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm. 展开更多
关键词 Hybrid Box–Jenkins models ARMA models Instrumental variable closed-loop identification PID tuning
在线阅读 下载PDF
Subspace Identification for Closed-Loop Systems With Unknown Deterministic Disturbances
8
作者 Kuan Li Hao Luo +2 位作者 Yuchen Jiang Dejia Tang Hongyan Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第12期2248-2257,共10页
This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the ... This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification,CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition,a proper Bernstein polynomial order can be determined using the Akaike information criterion(AIC)or the Bayesian information criterion(BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances. 展开更多
关键词 Bernstein polynomial closed-loop system subspace identification unknown deterministic disturbances
在线阅读 下载PDF
Closed-Loop System Identification Approach of the Inertial Models
9
作者 Irina Cojuhari 《Applied Mathematics》 2023年第2期107-120,共14页
The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained accor... The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained according to the identification procedures in the open-loop, or in the closed-loop. In the open-loop, the identification methods are well known and offer good process approximation, which is not valid for the closed-loop identification, when the system provides the feedback output and doesn’t permit it to be identified in the open-loop. This paper offers an approach for experimental identification in the closed-loop, which supposes the approximation of the process with inertial models, with or without time delay and astatism. The coefficients are calculated based on the values of the critical transfer coefficient and period of the underdamped response of the closed-loop system with P controller, when system achieves the limit of stability. Finally, the closed-loop identification was verified by the computer simulation and the obtained results demonstrated, that the identification procedure in the closed-loop offers good results in process of estimation of the model of the process. 展开更多
关键词 closed-loop identification Mathematical Modelling Inertial Models Time Delay Astatism
在线阅读 下载PDF
Nonlinear Modeling and Identification of the Electro-hydraulic Control System of an Excavator Arm Using BONL Model 被引量:2
10
作者 YAN Jun LI Bo +2 位作者 GUO Gang ZENG Yonghua ZHANG Meijun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第6期1212-1221,共10页
Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based o... Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters struc^tres. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis. 展开更多
关键词 electro-hydraulic control system BACKLASH Pseudo-Hammerstein-Wiener model nonlinear identification recursive least square algorithm
在线阅读 下载PDF
RECURSIVE STRUCTURE AND QUASI-RECURSIVE STRUCTURE OF ADAPTIVE VOLTERRA FILTER AND THEIR ALGORITHMS AND APPLICATIONS 被引量:1
11
作者 Lian Bing(Software Group, Northeast University, Shenyang 110006)Wang Hongyu(Dalian University of Technology, Dalian 116023) 《Journal of Electronics(China)》 1998年第1期76-83,共8页
The recursive structure and quasi-recursive structure of Adaptive Volterra Fil-ter(AVF) are put forward, their algorithms are given, and their characteristics and applications are discussed. The introduction of recurs... The recursive structure and quasi-recursive structure of Adaptive Volterra Fil-ter(AVF) are put forward, their algorithms are given, and their characteristics and applications are discussed. The introduction of recursive structure can remarkably reduce the parameters and computational cost of AVF. 展开更多
关键词 Adaptive FILTERS System identification Noise elimination/volterra series EXPANSION recursive structure
在线阅读 下载PDF
Identification of Fuzzy System Via Fuzzy Competitive Learning Method
12
作者 王宏伟 王子才 马萍 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第2期60-63,共4页
The paper presents an approach to identfying a fhzzy model composed of fuzzy-logic rules for a multi-in-put/single outpu system. The ther of fuzzy rules and membership functions of input variables are obtained by mean... The paper presents an approach to identfying a fhzzy model composed of fuzzy-logic rules for a multi-in-put/single outpu system. The ther of fuzzy rules and membership functions of input variables are obtained by means of a fuzzy competitive lerning method with a validity criterion. This method avoids the complexity of system structure identilication and decreases the number of fuzzy rules. Recareive least square algorithm can be used to iden-tify the parameters of conclusion polynomials .The proposed method is used to identify the well-known Box-Jenkins da-ta set with the result shawn at the end of the paper to demonstrae its advanages. 展开更多
关键词 FUZZY identification FUZZY COMPETITIVE LEARNING recursive least SQUARE estimation system identification
在线阅读 下载PDF
CONVERGENCE AND STABILITY OF RECURSIVE DAMPED LEAST SQUARE ALGORITHM
13
作者 陈增强 林茂琼 袁著祉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第2期237-242,共6页
The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive da... The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive damped least square is proposed. This is done by normalizing the measurement vector entering into the identification algorithm. rt is shown that the parametric distance converges to a zero mean random variable. It is also shown that under persistent excitation condition, the condition number of the adaptation gain matrix is bounded, and the variance of the parametric distance is bounded. 展开更多
关键词 system identification damped least square recursive algorithm CONVERGENCE STABILITY
在线阅读 下载PDF
Research of internet worm warning system based on system identification
14
作者 Tao ZHOU Guanzhong DAI Huimin YE 《控制理论与应用(英文版)》 EI 2006年第4期409-412,共4页
The frequent explosion of Internet worms has been one of the most serious problems in cyberspace security. In this paper, by analyzing the worm's propagation model, we propose a new worm warning system based on the m... The frequent explosion of Internet worms has been one of the most serious problems in cyberspace security. In this paper, by analyzing the worm's propagation model, we propose a new worm warning system based on the method of system identification, and use recursive least squares algorithm to estimate the worm's infection rate. The simulation result shows the method we adopted is an efficient way to conduct Internet worm warning. 展开更多
关键词 Cyberspace security Internet worm System identification recursive least squares
在线阅读 下载PDF
QRD-BASED MULTICHANNEL ADAPTIVE LATTICEALGORITHMS FOR THE PARAMETERIDENTIFICATION PROBLEM
15
作者 Ouyang Shan Fang Huijun(Guilin Institute of EJectronic TechnoJogy, Guilin 541004) 《Journal of Electronics(China)》 1996年第3期201-210,共10页
A pair of multichannel recursive least squares (RLS) adaptive lattice algorithms based on the order recursive of lattice filters and the superior numerical properties of Givens algorithms is derived in this paper. The... A pair of multichannel recursive least squares (RLS) adaptive lattice algorithms based on the order recursive of lattice filters and the superior numerical properties of Givens algorithms is derived in this paper. The derivation of the first algorithm is based on QR decomposition of the input data matrix directly, and the Givens rotations approach is used to compute the QR decomposition. Using first a prerotation of the input data matrix and then a repetition of the single channel Givens lattice algorithm, the second algorithm can be obtained. Both algorithms have superior numerical properties, particularly the robustness to wordlength limitations. The parameter vector to be estimated can be extracted directly from internal variables in the present algorithms without a backsolve operation with an extra triangular array. The results of computer simulation of the parameter identification of a two-channel system are presented to confirm efficiently the derivation. 展开更多
关键词 recursive least SQUARES lattice algorithm QR decomposition MULTICHANNEL signals Adaptive PARAMETER identification
在线阅读 下载PDF
Improved fuzzy identification method based on Hough transformation and fuzzy clustering
16
作者 刘福才 路平立 +1 位作者 潘江华 裴润 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期257-261,共5页
This paper presents an approach that is useful for the identification of a fuzzy model in SISO system. The initial values of cluster centers are identified by the Hough transformation, which considers the linearity an... This paper presents an approach that is useful for the identification of a fuzzy model in SISO system. The initial values of cluster centers are identified by the Hough transformation, which considers the linearity and continuity of given input-output data, respectively. For the premise parts parameters identification, we use fuzzy-C-means clustering method. The consequent parameters are identified based on recursive least square. This method not only makes approximation more accurate, but also let computation be simpler and the procedure is realized more easily. Finally, it is shown that this method is useful for the identification of a fuzzy model by simulation. 展开更多
关键词 fuzzy identification Hough transformation fuzzy clustering recursive least square.
在线阅读 下载PDF
Data-Driven Model Identification and Control of the Inertial Systems
17
作者 Irina Cojuhari 《Intelligent Control and Automation》 2023年第1期1-18,共18页
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy... In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation. 展开更多
关键词 Data-Driven Model identification Controller Tuning Undamped Transient Response closed-loop System identification PID Controller
在线阅读 下载PDF
Online battery model parameters identification approach based on bias-compensated forgetting factor recursive least squares
18
作者 Dong Zhen Jiahao Liu +5 位作者 Shuqin Ma Jingyu Zhu Jinzhen Kong Yizhao Gao Guojin Feng Fengshou Gu 《Green Energy and Intelligent Transportation》 2024年第4期12-22,共11页
Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery,thereby influencing safety of entire electric vehicles.Precise estimation of battery model parameters using key mea... Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery,thereby influencing safety of entire electric vehicles.Precise estimation of battery model parameters using key measured signals is essential.However,measured signals inevitably carry random noise due to complex real-world operating environments and sensor errors,potentially diminishing model estimation accuracy.Addressing the challenge of accuracy reduction caused by noise,this paper introduces a Bias-Compensated Forgetting Factor Recursive Least Squares(BCFFRLS)method.Initially,a variational error model is crafted to estimate the average weighted variance of random noise.Subsequently,an augmentation matrix is devised to calculate the bias term using augmented and extended parameter vectors,compensating for bias in the parameter estimates.To assess the proposed method's effectiveness in improving parameter identification accuracy,lithium-ion battery experiments were conducted in three test conditions—Urban Dynamometer Driving Schedule(UDDS),Dynamic Stress Test(DST),and Hybrid Pulse Power Characterization(HPPC).The proposed method,alongside two contrasting methods—the offline identification method and Forgetting Factor Recursive Least Squares(FFRLS)—was employed for battery model parameter identification.Comparative analysis reveals substantial improvements,with the mean absolute error reduced by 25%,28%,and 15%,and the root mean square error reduced by 25.1%,42.7%,and 15.9%in UDDS,HPPC,and DST operating conditions,respectively,when compared to the FFRLS method. 展开更多
关键词 Lithium-ion battery Battery model recursive least squares Parameter identification
原文传递
耦合辨识(2):部分耦合参数向量系统的部分耦合递推参数辨识 被引量:3
19
作者 丁锋 栾小丽 +2 位作者 徐玲 周怡红 刘喜梅 《青岛科技大学学报(自然科学版)》 2025年第2期1-12,17,共13页
针对子系统间存在参数耦合的多变量系统,利用耦合辨识概念,研究和提出了部分耦合随机梯度辨识方法和部分耦合多新息随机梯度辨识方法,部分耦合递推梯度辨识方法和部分耦合多新息递推梯度辨识方法,部分耦合递推最小二乘辨识方法和部分耦... 针对子系统间存在参数耦合的多变量系统,利用耦合辨识概念,研究和提出了部分耦合随机梯度辨识方法和部分耦合多新息随机梯度辨识方法,部分耦合递推梯度辨识方法和部分耦合多新息递推梯度辨识方法,部分耦合递推最小二乘辨识方法和部分耦合多新息递推最小二乘梯度辨识方法,以及部分耦合递阶最小二乘辨识方法和部分耦合多新息递阶最小二乘梯度辨识方法。这些部分耦合递推参数辨识方法可以推广到其他有色噪声干扰下的线性和非线性多变量随机系统中。 展开更多
关键词 参数估计 递推辨识 多新息辨识 递阶辨识 耦合辨识 最小二乘 多变量系统
在线阅读 下载PDF
耦合辨识(3):部分耦合参数向量信息向量系统的部分耦合递推参数辨识 被引量:2
20
作者 丁锋 栾小丽 +2 位作者 徐玲 周怡红 刘喜梅 《青岛科技大学学报(自然科学版)》 2025年第3期1-13,20,共14页
针对子系统间既存在参数向量耦合,又存在信息向量耦合的多变量系统,利用耦合辨识概念,研究和提出了递阶递推参数辨识方法,部分耦合递推最小二乘参数辨识方法。这些递推参数辨识方法可以推广到其他有色噪声干扰下的线性和非线性多变量随... 针对子系统间既存在参数向量耦合,又存在信息向量耦合的多变量系统,利用耦合辨识概念,研究和提出了递阶递推参数辨识方法,部分耦合递推最小二乘参数辨识方法。这些递推参数辨识方法可以推广到其他有色噪声干扰下的线性和非线性多变量随机系统中。 展开更多
关键词 参数估计 递推辨识 多新息辨识 递阶辨识 耦合辨识 最小二乘 多变量系统
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部