We consider a profound problem of two-point resistance in the resistor network with a null resistor edge and an arbitrary boundary,which has not been solved before because the Green's function technique and the Lapla...We consider a profound problem of two-point resistance in the resistor network with a null resistor edge and an arbitrary boundary,which has not been solved before because the Green's function technique and the Laplacian matrix approach are invalid in this case.Looking for the exact solutions of resistance is important but difficult in the case of the arbitrary boundary since the boundary is a wall or trap which affects the behavior of a finite network.In this paper,we give a general resistance formula that is composed of a single summation by using the recursion-transform method.Meanwhile,several interesting results are derived by the general formula.Further,the current distribution is given explicitly as a byproduct of the method.展开更多
In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found ...In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.展开更多
文摘We consider a profound problem of two-point resistance in the resistor network with a null resistor edge and an arbitrary boundary,which has not been solved before because the Green's function technique and the Laplacian matrix approach are invalid in this case.Looking for the exact solutions of resistance is important but difficult in the case of the arbitrary boundary since the boundary is a wall or trap which affects the behavior of a finite network.In this paper,we give a general resistance formula that is composed of a single summation by using the recursion-transform method.Meanwhile,several interesting results are derived by the general formula.Further,the current distribution is given explicitly as a byproduct of the method.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161278)
文摘In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.