期刊文献+
共找到268篇文章
< 1 2 14 >
每页显示 20 50 100
Detection of healthy and pathological heartbeat dynamics in ECG signals using multivariate recurrence networks with multiple scale factors
1
作者 马璐 陈梅辉 +2 位作者 何爱军 程德强 杨小冬 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期273-282,共10页
The electrocardiogram(ECG)is one of the physiological signals applied in medical clinics to determine health status.The physiological complexity of the cardiac system is related to age,disease,etc.For the investigatio... The electrocardiogram(ECG)is one of the physiological signals applied in medical clinics to determine health status.The physiological complexity of the cardiac system is related to age,disease,etc.For the investigation of the effects of age and cardiovascular disease on the cardiac system,we then construct multivariate recurrence networks with multiple scale factors from multivariate time series.We propose a new concept of cross-clustering coefficient entropy to construct a weighted network,and calculate the average weighted path length and the graph energy of the weighted network to quantitatively probe the topological properties.The obtained results suggest that these two network measures show distinct changes between different subjects.This is because,with aging or cardiovascular disease,a reduction in the conductivity or structural changes in the myocardium of the heart contributes to a reduction in the complexity of the cardiac system.Consequently,the complexity of the cardiac system is reduced.After that,the support vector machine(SVM)classifier is adopted to evaluate the performance of the proposed approach.Accuracy of 94.1%and 95.58%between healthy and myocardial infarction is achieved on two datasets.Therefore,this method can be adopted for the development of a noninvasive and low-cost clinical prognostic system to identify heart-related diseases and detect hidden state changes in the cardiac system. 展开更多
关键词 electrocardiogram signals multivariate recurrence networks cross-clustering coefficient entropy multiscale analysis
原文传递
Application of feedforward and recurrent neural networks for model-based control systems
2
作者 Marek Krok Wojciech P.Hunek +2 位作者 Szymon Mielczarek Filip Buchwald Adam Kolender 《Control Theory and Technology》 2025年第1期91-104,共14页
In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the l... In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the learning process to fully embrace the control pattern.Interestingly,the instances driven by neural networks have the ability to outperform the original analytically driven scenarios.Three different control schemes,namely perfect,linear-quadratic,and generalized predictive controllers were used in the theoretical study.In addition,the nonlinear recurrent neural network-based generalized predictive controller with the radial basis function-originated predictor was obtained to exemplify the main results of the paper regarding the real-world application. 展开更多
关键词 Predictive control Linear-quadratic control Inverse problems Feedforward network Recurrent neural network OPTIMIZATION
原文传递
Demand Forecasting of a Microgrid-Powered Electric Vehicle Charging Station Enabled by Emerging Technologies and Deep Recurrent Neural Networks
3
作者 Sahbi Boubaker Adel Mellit +3 位作者 Nejib Ghazouani Walid Meskine Mohamed Benghanem Habib Kraiem 《Computer Modeling in Engineering & Sciences》 2025年第5期2237-2259,共23页
Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and d... Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations. 展开更多
关键词 MICROGRID electric vehicles charging station forecasting deep recurrent neural networks energy management system
在线阅读 下载PDF
Hedging Against Material Uncertainty via Chance-Constrained Recurrent Neural Networks:A Continuous Pharmaceutical Manufacturing Case Study
4
作者 Qingbo Meng I.David L.Bogle Vassilis M.Charitopoulos 《Engineering》 2025年第9期129-141,共13页
In the pharmaceutical industry,model-based prediction is a crucial stage in process development that allows pharmaceutical companies to simulate different scenarios toward improving process efficiency,reducing costs,a... In the pharmaceutical industry,model-based prediction is a crucial stage in process development that allows pharmaceutical companies to simulate different scenarios toward improving process efficiency,reducing costs,and enhancing product quality.Nevertheless,ensuring the quality of formulated pharmaceutical products through the management of raw material variations has always been a challenging task.In this work,data-driven chance-constrained recurrent neural networks(CCRNNs)are developed to address the issue arising from raw material uncertainty.Our goal is to explore how,by proactively incorporating uncertainty into the model training process,more accurate predictions and enhanced robustness can be realized.The proposed approach is tested on a fluid bed dryer(FBD)from a continuous pharmaceutical manufacturing pilot plant.The results demonstrate that CCRNN models offer more robust and accurate predictions for the critical quality attribute(CQA)-in this case,moisture content-when material variations occur,compared with conventional recurrent neural network-based models. 展开更多
关键词 Data-driven chance constraints Recurrent neural networks Managing material uncertainty Continuous pharmaceutical manufacturing Smart manufacturing
在线阅读 下载PDF
Smelting stage recognition for converter steelmaking based on the convolutional recurrent neural network
5
作者 Zhangjie Dai Ye Sun +2 位作者 Wei Liu Shufeng Yang Jingshe Li 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2152-2163,共12页
The converter steelmaking process represents a pivotal aspect of steel metallurgical production,with the characteristics of the flame at the furnace mouth serving as an indirect indicator of the internal smelting stag... The converter steelmaking process represents a pivotal aspect of steel metallurgical production,with the characteristics of the flame at the furnace mouth serving as an indirect indicator of the internal smelting stage.Effectively identifying and predicting the smelt-ing stage poses a significant challenge within industrial production.Traditional image-based methodologies,which rely on a single static flame image as input,demonstrate low recognition accuracy and inadequately extract the dynamic changes in smelting stage.To address this issue,the present study introduces an innovative recognition model that preprocesses flame video sequences from the furnace mouth and then employs a convolutional recurrent neural network(CRNN)to extract spatiotemporal features and derive recognition outputs.Ad-ditionally,we adopt feature layer visualization techniques to verify the model’s effectiveness and further enhance model performance by integrating the Bayesian optimization algorithm.The results indicate that the ResNet18 with convolutional block attention module(CBAM)in the convolutional layer demonstrates superior image feature extraction capabilities,achieving an accuracy of 90.70%and an area under the curve of 98.05%.The constructed Bayesian optimization-CRNN(BO-CRNN)model exhibits a significant improvement in comprehensive performance,with an accuracy of 97.01%and an area under the curve of 99.85%.Furthermore,statistics on the model’s average recognition time,computational complexity,and parameter quantity(Average recognition time:5.49 ms,floating-point opera-tions per second:18260.21 M(1 M=1×10^(6)),parameters:11.58 M)demonstrate superior performance.Through extensive repeated ex-periments on real-world datasets,the proposed CRNN model is capable of rapidly and accurately identifying smelting stages,offering a novel approach for converter smelting endpoint control. 展开更多
关键词 intelligent steelmaking flame state recognition deep learning convolutional recurrent neural network
在线阅读 下载PDF
CGB-Net:A Novel Convolutional Gated Bidirectional Network for Enhanced Sleep Posture Classification
6
作者 Hoang-Dieu Vu Duc-Nghia Tran +2 位作者 Quang-TuPham Ngoc-Linh Nguyen Duc-Tan Tran 《Computers, Materials & Continua》 2025年第11期2819-2835,共17页
This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophagea... This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophageal reflux disease(GERD)monitoring.Unlike conventional approaches limited to four basic postures,CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions,providing enhanced resolution for personalized health assessment.The architecture introduces a unique integration of three complementary components:1D Convolutional Neural Networks(1D-CNN)for efficient local spatial feature extraction,Gated Recurrent Units(GRU)to capture short-termtemporal dependencieswith reduced computational complexity,and Bidirectional Long Short-Term Memory(Bi-LSTM)networks for modeling long-term temporal context in both forward and backward directions.This complementary integration allows the model to better represent dynamic and contextual information inherent in the sensor data,surpassing the performance of simpler or previously published hybrid models.Experiments were conducted on a benchmark dataset consisting of 18 volunteers(age range:19–24 years,mean 20.56±1.1 years;height 164.78±8.18 cm;weight 55.39±8.30 kg;BMI 20.24±2.04),monitored via a single abdominal accelerometer.A subjectindependent evaluation protocol with multiple random splits was employed to ensure robustness and generalizability.The proposed model achieves an average Accuracy of 87.60% and F1-score of 83.38%,both reported with standard deviations over multiple runs,outperforming several baseline and state-of-the-art methods.By releasing the dataset publicly and detailing themodel design,this work aims to facilitate reproducibility and advance research in sleep posture classification for clinical applications. 展开更多
关键词 Sleep posture classification deep learning accelerometer gastroesophageal reflux disease(GERD) CGB-Net convolutional neural networks recurrent neural networks human activity recognition
在线阅读 下载PDF
Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction 被引量:1
7
作者 Zhiming Zhang Shangce Gao +2 位作者 MengChu Zhou Mengtao Yan Shuyang Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1331-1341,共11页
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i... Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU. 展开更多
关键词 Convolutional neural network deep learning recurrent neural network turbulence prediction wind load predic-tion.
在线阅读 下载PDF
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance 被引量:1
8
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 Tunnel boring machine(TBM) Penetration rate(PR) Time series forecasting Recurrent neural network(RNN)
在线阅读 下载PDF
Recurrent neural network decoding of rotated surface codes based on distributed strategy
9
作者 李帆 李熬庆 +1 位作者 甘启迪 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期322-330,共9页
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre... Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder. 展开更多
关键词 quantum error correction rotated surface code recurrent neural network distributed strategy
原文传递
Neural Network Optimization of Multivariate KDE Bandwidth for Buoy Spatial Information
10
作者 XU Liangkun XUE Han +1 位作者 JIN Yongxing ZHOU Shibo 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第5期773-779,共7页
It is one of the responsibilities of the navigation support department to ensure the correct layout position of the light buoy and provide as accurate position information as possible for ship navigation and positioni... It is one of the responsibilities of the navigation support department to ensure the correct layout position of the light buoy and provide as accurate position information as possible for ship navigation and positioning.If the position deviation of the light buoy is too large to be detected in time,sending wrong navigation assistance information to the ship will directly affect the navigation safety of the ship and increase the pressure on the management department.Therefore,mastering the offset characteristics of light buoy is of great significance for the maintenance of light buoy and improving the navigation aid efficiency of light buoy.Kernel density estimation can intuitively express the spatial and temporal distribution characteristics of buoy position,and indicates the intensive areas of buoy position in the channel.In this paper,in order to speed up deciding the optimal variable width of kernel density estimator,an improved adaptive variable width kernel density estimator is proposed,which reduces the risk of too smooth probability density estimation phenomenon and improves the estimation accuracy of probability density.A fractional recurrent neural network is designed to search the optimal bandwidth of kernel density estimator.It not only achieves faster training speed,but also improves the estimation accuracy of probability density. 展开更多
关键词 kernel density estimation BUOY bandwidth optimization recurrent neural network navigation aid efficiency spatial information
原文传递
Secrecy Outage Probability Minimization in Wireless-Powered Communications Using an Improved Biogeography-Based Optimization-Inspired Recurrent Neural Network
11
作者 Mohammad Mehdi Sharifi Nevisi Elnaz Bashir +3 位作者 Diego Martín Seyedkian Rezvanjou Farzaneh Shoushtari Ehsan Ghafourian 《Computers, Materials & Continua》 SCIE EI 2024年第3期3971-3991,共21页
This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The mai... This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs. 展开更多
关键词 Wireless-powered communications secrecy outage probability improved biogeography-based optimization recurrent neural network
在线阅读 下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
12
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection Recurrent Neural network(RNN) Whale Optimization Algorithm(WOA) CYBERSECURITY machine learning optimization
在线阅读 下载PDF
Optimizing the Clinical Decision Support System (CDSS) by Using Recurrent Neural Network (RNN) Language Models for Real-Time Medical Query Processing
13
作者 Israa Ibraheem Al Barazanchi Wahidah Hashim +4 位作者 Reema Thabit Mashary Nawwaf Alrasheedy Abeer Aljohan Jongwoon Park Byoungchol Chang 《Computers, Materials & Continua》 SCIE EI 2024年第12期4787-4832,共46页
This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagno... This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks(RNNs)with Long Short-Term Memory(LSTM)layers and echo state cells.These models are tailored to improve diagnostic precision,particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases.Traditional diagnostic methods and existing CDSS frameworks often fall short in managing complex,sequential medical data,struggling with long-term dependencies and data imbalances,resulting in suboptimal accuracy and delayed decisions.Our goal is to develop Artificial Intelligence(AI)models that address these shortcomings,offering robust,real-time diagnostic support.We propose a hybrid RNN model that integrates SimpleRNN,LSTM layers,and echo state cells to manage long-term dependencies effectively.Additionally,we introduce CG-Net,a novel Convolutional Neural Network(CNN)framework for gastrointestinal disease classification,which outperforms traditional CNN models.We further enhance model performance through data augmentation and transfer learning,improving generalization and robustness against data scarcity and imbalance.Comprehensive validation,including 5-fold cross-validation and metrics such as accuracy,precision,recall,F1-score,and Area Under the Curve(AUC),confirms the models’reliability.Moreover,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)are employed to improve model interpretability.Our findings show that the proposed models significantly enhance diagnostic accuracy and efficiency,offering substantial advancements in WBANs and CDSS. 展开更多
关键词 Computer science clinical decision support system(CDSS) medical queries healthcare deep learning recurrent neural network(RNN) long short-term memory(LSTM)
在线阅读 下载PDF
Study on Ecological Change Remote Sensing Monitoring Method Based on Elman Dynamic Recurrent Neural Network
14
作者 Zhen Chen Yiyang Zheng 《Journal of Geoscience and Environment Protection》 2024年第4期31-44,共14页
In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to t... In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area. 展开更多
关键词 Remote Sensing Ecological Index Long Time Series Space-Time Change Elman Dynamic Recurrent Neural network
在线阅读 下载PDF
Exponential stability and existence of periodic solutions for a class of recurrent neural networks with delays 被引量:1
15
作者 戴志娟 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期286-293,共8页
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ... Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications. 展开更多
关键词 recurrent neural network global exponential stability periodic solution delay HOMEOMORPHISM Lyapunov function
在线阅读 下载PDF
Designing the counter pressure casting gating system for a large thin-walled cabin by machine learning 被引量:1
16
作者 Xiao-long Zhang Hua Hou +2 位作者 Xiao-long Pei Zhi-qiang Duan Yu-hong Zhao 《China Foundry》 2025年第4期395-406,共12页
The design of casting gating system directly determines the solidification sequence,defect severity,and overall quality of the casting.A novel machine learning strategy was developed to design the counter pressure cas... The design of casting gating system directly determines the solidification sequence,defect severity,and overall quality of the casting.A novel machine learning strategy was developed to design the counter pressure casting gating system of a large thin-walled cabin casting.A high-quality dataset was established through orthogonal experiments combined with design criteria for the gating system.Spearman’s correlation analysis was used to select high-quality features.The gating system dimensions were predicted using a gated recurrent unit(GRU)recurrent neural network and an elastic network model.Using EasyCast and ProCAST casting software,a comparative analysis of the flow field,temperature field,and solidification field can be conducted to demonstrate the achievement of steady filling and top-down sequential solidification.Compared to the empirical formula method,this method eliminates trial-and-error iterations,reduces porosity,reduces casting defect volume from 11.23 cubic centimeters to 2.23 cubic centimeters,eliminates internal casting defects through the incorporation of an internally cooled iron,fulfilling the goal of intelligent gating system design. 展开更多
关键词 machine learning large thin-walled cabin gating system design GRU recurrent neural network
在线阅读 下载PDF
Improving Fashion Sentiment Detection on X through Hybrid Transformers and RNNs
17
作者 Bandar Alotaibi Aljawhara Almutarie +1 位作者 Shuaa Alotaibi Munif Alotaibi 《Computers, Materials & Continua》 2025年第9期4451-4467,共17页
X(formerly known as Twitter)is one of the most prominent social media platforms,enabling users to share short messages(tweets)with the public or their followers.It serves various purposes,from real-time news dissemina... X(formerly known as Twitter)is one of the most prominent social media platforms,enabling users to share short messages(tweets)with the public or their followers.It serves various purposes,from real-time news dissemination and political discourse to trend spotting and consumer engagement.X has emerged as a key space for understanding shifting brand perceptions,consumer preferences,and product-related sentiment in the fashion industry.However,the platform’s informal,dynamic,and context-dependent language poses substantial challenges for sentiment analysis,mainly when attempting to detect sarcasm,slang,and nuanced emotional tones.This study introduces a hybrid deep learning framework that integrates Transformer encoders,recurrent neural networks(i.e.,Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU)),and attention mechanisms to improve the accuracy of fashion-related sentiment classification.These methods were selected due to their proven strength in capturing both contextual dependencies and sequential structures,which are essential for interpreting short-form text.Our model was evaluated on a dataset of 20,000 fashion tweets.The experimental results demonstrate a classification accuracy of 92.25%,outperforming conventional models such as Logistic Regression,Linear Support Vector Machine(SVM),and even standalone LSTM by a margin of up to 8%.This improvement highlights the importance of hybrid architectures in handling noisy,informal social media data.This study’s findings offer strong implications for digital marketing and brand management,where timely sentiment detection is critical.Despite the promising results,challenges remain regarding the precise identification of negative sentiments,indicating that further work is needed to detect subtle and contextually embedded expressions. 展开更多
关键词 Sentiment analysis deep learning natural language processing TRANSFORMERS recurrent neural networks
在线阅读 下载PDF
A Novel Attention-Augmented LSTM(AA-LSTM)Model for Optimized Energy Management in EV Charging Stations
18
作者 Harendra Pratap Singh Ishfaq Hussain Rather +2 位作者 Sushil Kumar Mohammad Aljaidi Omprakash Kaiwartya 《Computers, Materials & Continua》 2025年第9期5577-5595,共19页
Electric Vehicles(EVs)have emerged as a cleaner,low-carbon,and environmentally friendly alternative to traditional internal combustion engine(ICE)vehicles.With the increasing adoption of EVs,they are expected to event... Electric Vehicles(EVs)have emerged as a cleaner,low-carbon,and environmentally friendly alternative to traditional internal combustion engine(ICE)vehicles.With the increasing adoption of EVs,they are expected to eventually replace ICE vehicles entirely.However,the rapid growth of EVs has significantly increased energy demand,posing challenges for power grids and infrastructure.This surge in energy demand has driven advancements in developing efficient charging infrastructure and energy management solutions to mitigate the risks of power outages and disruptions caused by the rising number of EVs on the road.To address these challenges,various deep learning(DL)models,such as Recurrent Neural Networks(RNNs)and Long Short-Term Memory(LSTM)networks,have been employed for predicting energy demand at EV charging stations(EVCS).However,these models face certain limitations.They often lack interpretability,treating all input steps equally without assigning greater importance to critical patterns that are more relevant for prediction.Additionally,these models process data sequentially,which makes them computationally slower and less efficient when dealing with large datasets.In the context of these limitations,this paper introduces a novel Attention-Augmented Long Short-Term Memory(AA-LSTM)model.The proposed model integrates an attention mechanism to focus on the most relevant time steps,thereby enhancing its ability to capture long-term dependencies and improve prediction accuracy.By combining the strengths of LSTM networks in handling sequential data with the interpretability and efficiency of the attention mechanism,the AA-LSTM model delivers superior performance.The attention mechanism selectively prioritizes critical parts of the input sequence,reducing the computational burden and making the model faster and more effective.The AA-LSTM model achieves impressive results,demonstrating a Mean Absolute Percentage Error(MAPE)of 3.90%and a Mean Squared Error(MSE)of 0.40,highlighting its accuracy and reliability.These results suggest that the AA-LSTM model is a highly promising solution for predicting energy demand at EVCS,offering improved performance and efficiency compared to contemporary approaches. 展开更多
关键词 Electric vehicle deep learning long short-term memory charging station recurrent neural networks
在线阅读 下载PDF
Role of deep learning in cognitive healthcare:Wearable signal analysis,algorithms,benefits,and challenges
19
作者 Md.Sakib Bin Alam Aiman Lameesa +4 位作者 Senzuti Sharmin Shaila Afrin Shams Forruque Ahmed Mohammad Reza Nikoo Amir H.Gandomi 《Digital Communications and Networks》 2025年第3期642-670,共29页
Deep Learning(DL)offers promising solutions for analyzing wearable signals and gaining valuable insights into cognitive disorders.While previous review studies have explored various aspects of DL in cognitive healthca... Deep Learning(DL)offers promising solutions for analyzing wearable signals and gaining valuable insights into cognitive disorders.While previous review studies have explored various aspects of DL in cognitive healthcare,there remains a lack of comprehensive analysis that integrates wearable signals,data processing techniques,and the broader applications,benefits,and challenges of DL methods.Addressing this limitation,our study provides an extensive review of DL’s role in cognitive healthcare,with a particular emphasis on wearables,data processing,and the inherent challenges in this field.This review also highlights the considerable promise of DL approaches in addressing a broad spectrum of cognitive issues.By enhancing the understanding and analysis of wearable signal modalities,DL models can achieve remarkable accuracy in cognitive healthcare.Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),and Long Short-term Memory(LSTM)networks have demonstrated improved performance and effectiveness in the early diagnosis and progression monitoring of neurological disorders.Beyond cognitive impairment detection,DL has been applied to emotion recognition,sleep analysis,stress monitoring,and neurofeedback.These applications lead to advanced diagnosis,personalized treatment,early intervention,assistive technologies,remote monitoring,and reduced healthcare costs.Nevertheless,the integration of DL and wearable technologies presents several challenges,such as data quality,privacy,interpretability,model generalizability,ethical concerns,and clinical adoption.These challenges emphasize the importance of conducting future research in areas such as multimodal signal analysis and explainable AI.The findings of this review aim to benefit clinicians,healthcare professionals,and society by facilitating better patient outcomes in cognitive healthcare. 展开更多
关键词 Cognitive healthcare Deep learning Wearable sensor Convolutional neural network Recurrent neural network
暂未订购
Exploiting a No-Regret Opponent in Repeated Zero-Sum Games
20
作者 LI Kai HUANG Wenhan +1 位作者 LI Chenchen DENG Xiaotie 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期385-398,共14页
In repeated zero-sum games,instead of constantly playing an equilibrium strategy of the stage game,learning to exploit the opponent given historical interactions could typically obtain a higher utility.However,when pl... In repeated zero-sum games,instead of constantly playing an equilibrium strategy of the stage game,learning to exploit the opponent given historical interactions could typically obtain a higher utility.However,when playing against a fully adaptive opponent,one would have dificulty identifying the opponent's adaptive dynamics and further exploiting its potential weakness.In this paper,we study the problem of optimizing against the adaptive opponent who uses no-regret learning.No-regret learning is a classic and widely-used branch of adaptive learning algorithms.We propose a general framework for online modeling no-regret opponents and exploiting their weakness.With this framework,one could approximate the opponent's no-regret learning dynamics and then develop a response plan to obtain a significant profit based on the inferences of the opponent's strategies.We employ two system identification architectures,including the recurrent neural network(RNN)and the nonlinear autoregressive exogenous model,and adopt an efficient greedy response plan within the framework.Theoretically,we prove the approximation capability of our RNN architecture at approximating specific no-regret dynamics.Empirically,we demonstrate that during interactions at a low level of non-stationarity,our architectures could approximate the dynamics with a low error,and the derived policies could exploit the no-regret opponent to obtain a decent utility. 展开更多
关键词 no-regret learning repeated game opponent exploitation opponent modeling dynamical system system identification recurrent neural network(RNN)
原文传递
上一页 1 2 14 下一页 到第
使用帮助 返回顶部