Rectangular explosive charges are usually used in military or civilian explosive transportation and storage.The effects of shape parameters and detonation positions on the peak overpressure and maximum impulse of blas...Rectangular explosive charges are usually used in military or civilian explosive transportation and storage.The effects of shape parameters and detonation positions on the peak overpressure and maximum impulse of blasts lack comprehensive investigation,which is significant for the design of blast-resistant structures.In this paper,the side-length ratio of the rectangle,orientation,and detonation position of the charge are chosen as controlling parameters to investigate their influence on blast loads in the scaled distances of the gauges ranging from 0.63 to 10.54 m/kg^(1/3) with well validated 3D numerical simulations.The results show that there is a large difference in the near-field spatial distribution of the blast load of the rectangular charge;if the blast load of the rectangular charge is simply evaluated with the spherical charge,the maximum peak overpressure(maximum impulse)will be underestimated by a factor of 7.46(4.84).This must be taken seriously by blast-resistant structure designers.With the increase in the scaled distance,when the critical scaled distance is greater than 6.32(7.38)m/kg^(1/3),the influence of the charge shape on the maximum peak overpressure(maximum impulse)of the spatial blast load can be ignored.In general,the impact of detonation of the charge at the end on the maximum peak overpressure is greater compared with central detonation,but for the impact of the maximum impulse,it is necessary to pay attention to the side-length ratio of the rectangular charge and the specific detonation position on the end face.Furthermore,the structural response of steel plates placed at different azimuths under the blast load of a rectangular charge is preliminarily analyzed,and the results show that the deformation and energy of the plates are consistent with the distribution of the blast load.These analysis results provide a reference for the explosion protection design in near-field air explosions.展开更多
Estimating fracture size is a fundamental aspect of rock engineering.However,determining the most probable diameter(MPD)from a fracture's surface trace remains challenging in the scientific community.The prevailin...Estimating fracture size is a fundamental aspect of rock engineering.However,determining the most probable diameter(MPD)from a fracture's surface trace remains challenging in the scientific community.The prevailing methodologies typically infer statistical distributions of fracture sizes rather than specific values.This research presents a novel approach to inferring the MPD and the true spatial distribution pattern of each fracture.The challenge lies in linking the inference process with the trace length of each fracture and the statistical characteristics of the entire outcrop.Additionally,it is necessary to address the non-unique inverse problem.The methodology comprises several key steps.Firstly,the issue of censoring bias is addressed by considering the lengths of the traces contained.Secondly,the orientation bias is corrected using the vector method,and the true mean trace length and standard deviation are estimated and derived.Thirdly,assuming a lognormal distribution for fracture sizes,the mean and standard deviation of diameters are derived through a high-order moment relationship between trace lengths and diameters,validated by Crofton's theorem.Finally,the MPDs of all trace samples are determined by relating MPDs to trace lengths and the standard deviation of diameters using stereology techniques.Furthermore,the true fracture spatial patterns are inverted based on spatial geometric relationships.The proposed methodology is validated through rigorous Monte Carlo simulation and applied in a practical engineering case study,demonstrating its potential for use in rock engineering applications.展开更多
This study investigates the nonlinear dynamic properties of rotating functionally graded sandwich rectangular plates in a thermal environment.The nonlinear vibration equations for a rotating metal-ceramic functionally...This study investigates the nonlinear dynamic properties of rotating functionally graded sandwich rectangular plates in a thermal environment.The nonlinear vibration equations for a rotating metal-ceramic functionally graded sandwich rectangular plate in a thermal environment are derived using classical thin plate theory and Hamilton’s principle,considering geometric nonlinearity,temperature-dependent material properties,and power law distribution of components through the thickness.With cantilever boundary conditions,the flexural nonlinear differential equations of the rectangular sandwich plate are obtained via the Galerkin method.Since the natural vibration differential equations exhibit nonlinear characteristics,the multiscale method is employed to derive the expression for nonlinear natural frequency.An example analysis reveals how the natural frequency of a functionally graded sandwich rectangular plate varies with rotational speed and temperature.Results show that the nonlinear/linear frequency ratio increases with rotational angular velocity Ω and thickness-to-length ratio h/a,follows a cosine-like periodic pattern with the setting angle,and shows a sharp decrease followed by a rapid increase with increasing width-to-length ratio b/a.The derived analytical solutions for nonlinear frequency provide valuable insights for assessing the dynamic characteristics of functionally graded structures.展开更多
The growing need for enhanced heat dissipation is compelling the development of more effective heat exchangers.Innovation inspired by nature bionics,four types of leaf-shaped pin fins were proposed and four combinatio...The growing need for enhanced heat dissipation is compelling the development of more effective heat exchangers.Innovation inspired by nature bionics,four types of leaf-shaped pin fins were proposed and four combinations of them were considered.The leaf-shaped design of the cooling pin fin enhances uniformity and synergy,effectively creating an optimized flow path that boosts cooling performance.Eight three-dimensional conjugate heat transfer models in staggered arrangement were developed using ANSYS-Fluent software.Aluminum6061material was used as the heat sinkmaterial and single-phase liquid water flowed through the rectangular channel where the Reynolds(R_(e))number varies from 40 to 100.Using the same boundary conditions as the software simulations,two leaf-shaped channels were printed to validate numerical models.Velocity field and temperature differences of the eight proposed leaf-shaped pin fins configurations were discussed by comparison with cylindrical pin fins.Based on the findings of this study,at a Reynolds number of 80,the Leaf B Staggered Array(LBSA)records a maximum temperature that is 0.72 K lower than that of the cylindrical pin fins arrangement.Additionally,the LBSA exhibits a reduction in the friction factor by approximately 33.3%relative to the circular pin fins array under the same R_(e).This implies that the design of LBSA has been optimized to provide better heat dissipation performance while maintaining lower energy consumption.Furthermore,the LBSA demonstrates the most favorable thermal-hydraulic performance index(TPI),which is 1.18 times higher than that of the circular pin fins arrangement at R_(e)=80.The temperature reduction and friction factor reduction of the lobed channel is more pronounced than that of the conventional cooling channel,highlighting its potential to increase heat transfer efficiency and reduce energy consumption in practical applications.展开更多
Determining earth pressure on jacked pipes is essential for ensuring lining safety and calculating jacking force,especially for deep-buried pipes.To better reflect the soil arching effect resulting from the excavation...Determining earth pressure on jacked pipes is essential for ensuring lining safety and calculating jacking force,especially for deep-buried pipes.To better reflect the soil arching effect resulting from the excavation of rectangular jacked pipes and the distribution of the earth pressure on jacked pipes,we present an analytical solution for predicting the vertical earth pressure on deep-buried rectangular pipe jacking tunnels,incorporating the tunnelling-induced ground loss distribution.Our proposed analytical model consists of the upper multi-layer parabolic soil arch and the lower friction arch.The key parameters(i.e.,width and height of friction arch B and height of parabolic soil arch H 1)are determined according to the existing research,and an analytical solution for K l is derived based on the distribution characteristics of the principal stress rotation angle.With consideration for the transition effect of the mechanical characteristics of the parabolic arch zone,an analytical solution for soil load transfer is derived.The prediction results of our analytical solution are compared with tests and simulation results to validate the effectiveness of the proposed analytical solution.Finally,the effects of different parameters on the soil pressure are discussed.展开更多
The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areex...The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areexamined,particularly,the combinations of rectangular solid and perforated blocks,used to create a disturbancein the flow.The analysis focuses on several key aspects and related metrics,including the temperature distribution,the mean Fanning friction factor,the pressure drop,the Nusselt number,and the overall heat transfer coefficientacross a range of Reynolds numbers(80–870).It is shown that the introduction of such blocks significantlyenhances the heat transfer performances of the MCHS compared to the straight-through flow channel.Specifically,a case is found where the Nusselt number increases by 2.3 times relative to the reference case.The integrationof perforated blocks facilitates the generation of vorticity within the channel,promoting the mixing of coldand hot fluids.Notably,MCHS incorporating perforated rectangular blocks exhibit more pronounced heat transferbenefits at Reynolds numbers smaller than 400.展开更多
In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbo...In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships.展开更多
Implicit large-eddy simulation of an over-expanded screeching rectangular jet is performed with a seventh-order finite difference scheme.Good agreement is found between the predicted flow-and acoustic fields with the ...Implicit large-eddy simulation of an over-expanded screeching rectangular jet is performed with a seventh-order finite difference scheme.Good agreement is found between the predicted flow-and acoustic fields with the experimental observations.Fourier decomposition,phase-averaging analysis and Spectral Proper Orthogonal Decomposition(SPOD)are used to investigate the origin of the screech,the shock leakage during the shear-layer flapping,and the distinguishing fluctuating characteristics in the minor-and major-axis plane of the rectangular jet.It finds that the screech is radiated from the end of the forth shock cell,where the interaction of the shock waves with the shear layer causes periodic leakages of shock-wave tips in the minor-axis plane,resulting in the generation of intense acoustic waves in the surrounding air.An obvious flapping mode at the same frequency of the screech is captured in the minor-axis plane and dominates the dynamic motions of the rectangular jet.The SPOD modes of pressure and velocity fluctuations at the screech frequency help to reveal the relationship between the screech generation and the coherent structures.展开更多
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti...The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.展开更多
The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel...The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel walls. The electric potential distribution was governed by the Poisson–Boltzmann equation, whereas the velocity distribution was determined by the Navier–Stokes equation. The finite-difference method was employed to solve these two equations. The detailed discussion focuses on the impact of the curvature ratio, electrokinetic width, aspect ratio and slip length on the velocity. The results indicate that the present problem is strongly dependent on these parameters. The results demonstrate that by varying the dimensionless slip length from 0.001 to 0.01 while maintaining a curvature ratio of 0.5 there is a twofold increase in the maximum velocity. Moreover, this increase becomes more pronounced at higher curvature ratios. In addition, the velocity difference between the inner and outer radial regions increases with increasing slip length. Therefore, the incorporation of the slip boundary condition results in an augmented velocity and a more non-uniform velocity distribution. The findings presented here offer valuable insights into the design and optimization of EOF performance in curved hydrophobic microchannels featuring rectangular cross-sections.展开更多
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The h...This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The hydrodynamic characteristics of this breakwater are analyzed through analytical potential solutions and experimental tests.The quadratic pressure drop conditions are exerted on the horizontal perforated plates to facilitate assessing the effect of wave height on the dissipated wave energy of breakwater through the analytical solution.The hydrodynamic quantities of the breakwater,including the reflection,transmission,and energyloss coefficients,together with vertical and horizontal wave forces,are calculated using the velocity potential decomposition method as well as an iterative algorithm.Furthermore,the reflection and transmission coefficients of the breakwater are measured by conducting experimental tests at various wave periods,wave heights,and both porosities and widths of the horizontal perforated plates.The analytical predicted results demonstrate good agreement with the iterative boundary element method solution and measured data.The influences of variable incident waves and structure parameters on the hydrodynamic characteristics of the breakwater are investigated through further calculations based on analytical solutions.Results indicate that horizontal perforated plates placed on the water surface for both sides of the rectangular breakwater can enhance the wave dissipation ability of the breakwater while effectively decreasing the transmission and reflection coefficients.展开更多
The dynamic control equation of a new prestressed partially concrete-filled rectangular steel tube(CFRT)beam can be derived based on D’Alembert’s principle.It is used to infer the theoretical results of the dynamic ...The dynamic control equation of a new prestressed partially concrete-filled rectangular steel tube(CFRT)beam can be derived based on D’Alembert’s principle.It is used to infer the theoretical results of the dynamic characteristics for the prestressed CFRT beam.Additionally,the finite element model is set up by ABAQUS for simulation analysis.The results show that the natural vibration frequencies and mode function of the prestressed CFRT simply supported beam calculated by the theoretical formulas are reliable since the relative errors of the first-order frequencies under different prestressing levels are within 6%compared with the finite element results.Further analysis of the prestressing parameters is carried out using the theoretical formulas,in which factors such as the prestressing level,eccentricity of tendons,and tensile stiffness of prestressed tendons have different influences on the natural vibration frequencies.Finally,it provides a theoretical basis for the dynamic design of the prestressed CFRT beams.展开更多
The effect of porosity on surface wave scattering by a vertical porous barrier over a rectangular trench is studied here under the assumption of linearized theory of water waves.The fluid region is divided into four s...The effect of porosity on surface wave scattering by a vertical porous barrier over a rectangular trench is studied here under the assumption of linearized theory of water waves.The fluid region is divided into four subregions depending on the position of the barrier and the trench.Using the Havelock’s expansion of water wave potential in different regions along with suitable matching conditions at the interface of different regions,the problem is formulated in terms of three integral equations.Considering the edge conditions at the submerged end of the barrier and at the edges of the trench,these integral equations are solved using multi-term Galerkin approximation technique taking orthogonal Chebyshev’s polynomials and ultra-spherical Gegenbauer polynomial as its basis function and also simple polynomial as basis function.Using the solutions of the integral equations,the reflection coefficient,transmission coefficient,energy dissipation coefficient and horizontal wave force are determined and depicted graphically.It was observed that the rate of convergence of the Galerkin method in computing the reflection coefficient,considering special functions as basis function is more than the simple polynomial as basis function.The change of porous parameter of the barrier and variation of trench width and height significantly contribute to the change in the scattering coefficients and the hydrodynamic force.The present results are likely to play a crucial role in the analysis of surface wave propagation in oceans involving porous barrier over submarine trench.展开更多
Tunnel heading stability in two dimensions(2D)has been extensively investigated by numerous scholars in the past decade.One significant limitation of 2D analysis is the absence of actual tunnel geometry modeling with ...Tunnel heading stability in two dimensions(2D)has been extensively investigated by numerous scholars in the past decade.One significant limitation of 2D analysis is the absence of actual tunnel geometry modeling with a considerable degree of idealization.Nevertheless,it is possible to study the stability of tunnels in three dimensions(3D)with a rectangular shape using finite element limit analysis(FELA)and a nonlinear programming technique.This paper employs 3D FELA to generate rigorous solutions for stability numbers,failure mechanisms,and safety factors for rectangular-shaped tunnels.To further explore the usefulness of the produced results,multivariate adaptive regression spline(MARS)is used for machine learning of big dataset and development of design equations for practical design applications.The study should be of great benefit to tunnel design practices using the developed equations provided in the paper.展开更多
The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition a...The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...展开更多
In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis meth...In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.展开更多
Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the ...Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the joint is influenced by infilled concrete, stiffener length and relative dimensions of column and beam. It is found that the hysteresis curves obtained in the experiment are full and the joints have a good energy dissipation capacity. The nonlinear finite element models are also used to analyze the hysteresis behavior of the joints under reversed cyclic loads using ANSYS 8.0. The influences of the stiffener length and the infilled concrete are analyzed. Analytical results show that the stiffener length and the infilled concrete are critical for the joints. Furthermore, the skeleton curves of the finite element models are in good agreement with those of experiments.展开更多
In integrated circuits, the defects associated with photolithography are assumed to be in the shape of circular discs in order to perform the estimation of yield and fault analysis. However,real defects exhibit a grea...In integrated circuits, the defects associated with photolithography are assumed to be in the shape of circular discs in order to perform the estimation of yield and fault analysis. However,real defects exhibit a great variety of shapes. In this paper,a novel yield model is presented and the critical area model of short circuit is correspondingly provided. In comparison with the circular model corrently available, the new model takes the similarity shape to an original defect, the two-dimensional distributional characteristic of defects, the feature of a layout routing and the character of yield estimation into account. As for the aspect of prediction of yield, the experimental results show that the new model may predict the yield caused by real defects more accurately than the circular model does. It is significant that the yield is accurately estimated and improved using the proposed model.展开更多
An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,...An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,free surface and solid boundary in this paper.The characteristics of waves propagating over a step have been investigated by this numerical model.The breaker wave height is determined depending on the kinetic criterion.The numerical model is verified by laboratory experiments,and the empirical formula for the damping of wave height due to breaking is also given by experiments.展开更多
基金supported by the National Science Foundation of China(Grant No.14102428)the Fundamental Research Funds for the Central Universities(Grant Nos.WK2090000019 and YD2480002002)the Open Research Fund of Anhui Province Key Laboratory of Green Building and Assembly Construction,Anhui Institute of Building Research&Design(Grant No.2021-JKYL-005).
文摘Rectangular explosive charges are usually used in military or civilian explosive transportation and storage.The effects of shape parameters and detonation positions on the peak overpressure and maximum impulse of blasts lack comprehensive investigation,which is significant for the design of blast-resistant structures.In this paper,the side-length ratio of the rectangle,orientation,and detonation position of the charge are chosen as controlling parameters to investigate their influence on blast loads in the scaled distances of the gauges ranging from 0.63 to 10.54 m/kg^(1/3) with well validated 3D numerical simulations.The results show that there is a large difference in the near-field spatial distribution of the blast load of the rectangular charge;if the blast load of the rectangular charge is simply evaluated with the spherical charge,the maximum peak overpressure(maximum impulse)will be underestimated by a factor of 7.46(4.84).This must be taken seriously by blast-resistant structure designers.With the increase in the scaled distance,when the critical scaled distance is greater than 6.32(7.38)m/kg^(1/3),the influence of the charge shape on the maximum peak overpressure(maximum impulse)of the spatial blast load can be ignored.In general,the impact of detonation of the charge at the end on the maximum peak overpressure is greater compared with central detonation,but for the impact of the maximum impulse,it is necessary to pay attention to the side-length ratio of the rectangular charge and the specific detonation position on the end face.Furthermore,the structural response of steel plates placed at different azimuths under the blast load of a rectangular charge is preliminarily analyzed,and the results show that the deformation and energy of the plates are consistent with the distribution of the blast load.These analysis results provide a reference for the explosion protection design in near-field air explosions.
基金supported by the National Natural Science Foundation of China(Grant Nos.41941017 and U1702241).
文摘Estimating fracture size is a fundamental aspect of rock engineering.However,determining the most probable diameter(MPD)from a fracture's surface trace remains challenging in the scientific community.The prevailing methodologies typically infer statistical distributions of fracture sizes rather than specific values.This research presents a novel approach to inferring the MPD and the true spatial distribution pattern of each fracture.The challenge lies in linking the inference process with the trace length of each fracture and the statistical characteristics of the entire outcrop.Additionally,it is necessary to address the non-unique inverse problem.The methodology comprises several key steps.Firstly,the issue of censoring bias is addressed by considering the lengths of the traces contained.Secondly,the orientation bias is corrected using the vector method,and the true mean trace length and standard deviation are estimated and derived.Thirdly,assuming a lognormal distribution for fracture sizes,the mean and standard deviation of diameters are derived through a high-order moment relationship between trace lengths and diameters,validated by Crofton's theorem.Finally,the MPDs of all trace samples are determined by relating MPDs to trace lengths and the standard deviation of diameters using stereology techniques.Furthermore,the true fracture spatial patterns are inverted based on spatial geometric relationships.The proposed methodology is validated through rigorous Monte Carlo simulation and applied in a practical engineering case study,demonstrating its potential for use in rock engineering applications.
基金supported by the National Natural Science Foundation of China(No.11772090).
文摘This study investigates the nonlinear dynamic properties of rotating functionally graded sandwich rectangular plates in a thermal environment.The nonlinear vibration equations for a rotating metal-ceramic functionally graded sandwich rectangular plate in a thermal environment are derived using classical thin plate theory and Hamilton’s principle,considering geometric nonlinearity,temperature-dependent material properties,and power law distribution of components through the thickness.With cantilever boundary conditions,the flexural nonlinear differential equations of the rectangular sandwich plate are obtained via the Galerkin method.Since the natural vibration differential equations exhibit nonlinear characteristics,the multiscale method is employed to derive the expression for nonlinear natural frequency.An example analysis reveals how the natural frequency of a functionally graded sandwich rectangular plate varies with rotational speed and temperature.Results show that the nonlinear/linear frequency ratio increases with rotational angular velocity Ω and thickness-to-length ratio h/a,follows a cosine-like periodic pattern with the setting angle,and shows a sharp decrease followed by a rapid increase with increasing width-to-length ratio b/a.The derived analytical solutions for nonlinear frequency provide valuable insights for assessing the dynamic characteristics of functionally graded structures.
基金supported by the Shandong Provincial Natural Science Foundation,China(Grant ZR2024ME136).
文摘The growing need for enhanced heat dissipation is compelling the development of more effective heat exchangers.Innovation inspired by nature bionics,four types of leaf-shaped pin fins were proposed and four combinations of them were considered.The leaf-shaped design of the cooling pin fin enhances uniformity and synergy,effectively creating an optimized flow path that boosts cooling performance.Eight three-dimensional conjugate heat transfer models in staggered arrangement were developed using ANSYS-Fluent software.Aluminum6061material was used as the heat sinkmaterial and single-phase liquid water flowed through the rectangular channel where the Reynolds(R_(e))number varies from 40 to 100.Using the same boundary conditions as the software simulations,two leaf-shaped channels were printed to validate numerical models.Velocity field and temperature differences of the eight proposed leaf-shaped pin fins configurations were discussed by comparison with cylindrical pin fins.Based on the findings of this study,at a Reynolds number of 80,the Leaf B Staggered Array(LBSA)records a maximum temperature that is 0.72 K lower than that of the cylindrical pin fins arrangement.Additionally,the LBSA exhibits a reduction in the friction factor by approximately 33.3%relative to the circular pin fins array under the same R_(e).This implies that the design of LBSA has been optimized to provide better heat dissipation performance while maintaining lower energy consumption.Furthermore,the LBSA demonstrates the most favorable thermal-hydraulic performance index(TPI),which is 1.18 times higher than that of the circular pin fins arrangement at R_(e)=80.The temperature reduction and friction factor reduction of the lobed channel is more pronounced than that of the conventional cooling channel,highlighting its potential to increase heat transfer efficiency and reduce energy consumption in practical applications.
基金Project(2022YJS073)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2024YFE0198500)supported by the National Key Research and Development Program of China:Intergovernmental International Science and Technology Innovation CooperationProject(U2469207)supported by the National Natural Science Foundation Railway Innovation and Development Joint Fund Project,China。
文摘Determining earth pressure on jacked pipes is essential for ensuring lining safety and calculating jacking force,especially for deep-buried pipes.To better reflect the soil arching effect resulting from the excavation of rectangular jacked pipes and the distribution of the earth pressure on jacked pipes,we present an analytical solution for predicting the vertical earth pressure on deep-buried rectangular pipe jacking tunnels,incorporating the tunnelling-induced ground loss distribution.Our proposed analytical model consists of the upper multi-layer parabolic soil arch and the lower friction arch.The key parameters(i.e.,width and height of friction arch B and height of parabolic soil arch H 1)are determined according to the existing research,and an analytical solution for K l is derived based on the distribution characteristics of the principal stress rotation angle.With consideration for the transition effect of the mechanical characteristics of the parabolic arch zone,an analytical solution for soil load transfer is derived.The prediction results of our analytical solution are compared with tests and simulation results to validate the effectiveness of the proposed analytical solution.Finally,the effects of different parameters on the soil pressure are discussed.
基金funded by the Project of the Hubei Provincial Department of Science and Technology(Grant No.2022CFB957)the Project of Hubei Engineering University of Teaching Research(Grant No.JY2024032)+1 种基金Ministry of Education University-Industry Cooperation Collaborative Education Project(Grant No.220903584161245)College Students’Innovation and Entrepreneurship Training Program(Grant Nos.DC2024031,DC2024032).
文摘The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areexamined,particularly,the combinations of rectangular solid and perforated blocks,used to create a disturbancein the flow.The analysis focuses on several key aspects and related metrics,including the temperature distribution,the mean Fanning friction factor,the pressure drop,the Nusselt number,and the overall heat transfer coefficientacross a range of Reynolds numbers(80–870).It is shown that the introduction of such blocks significantlyenhances the heat transfer performances of the MCHS compared to the straight-through flow channel.Specifically,a case is found where the Nusselt number increases by 2.3 times relative to the reference case.The integrationof perforated blocks facilitates the generation of vorticity within the channel,promoting the mixing of coldand hot fluids.Notably,MCHS incorporating perforated rectangular blocks exhibit more pronounced heat transferbenefits at Reynolds numbers smaller than 400.
基金supported by the National Natural Science Foundation of China(21972131)。
文摘In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships.
基金support of the National Natural Science Foundation of China(No.12372221)is acknowledged。
文摘Implicit large-eddy simulation of an over-expanded screeching rectangular jet is performed with a seventh-order finite difference scheme.Good agreement is found between the predicted flow-and acoustic fields with the experimental observations.Fourier decomposition,phase-averaging analysis and Spectral Proper Orthogonal Decomposition(SPOD)are used to investigate the origin of the screech,the shock leakage during the shear-layer flapping,and the distinguishing fluctuating characteristics in the minor-and major-axis plane of the rectangular jet.It finds that the screech is radiated from the end of the forth shock cell,where the interaction of the shock waves with the shear layer causes periodic leakages of shock-wave tips in the minor-axis plane,resulting in the generation of intense acoustic waves in the surrounding air.An obvious flapping mode at the same frequency of the screech is captured in the minor-axis plane and dominates the dynamic motions of the rectangular jet.The SPOD modes of pressure and velocity fluctuations at the screech frequency help to reveal the relationship between the screech generation and the coherent structures.
基金funded jointly by the National Nature Science Funds of China(No.42274010)the Fundamental Research Funds for the Central Universities(Nos.2023000540,2023000407).
文摘The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.
基金Project supported by the Natural Science Foundation of Inner Mongolia of China(Grant No.2021BS01008)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(Grant No.NMGIRT2323)the Scientific Research Funding Project for introduced high level talents of IMNU(Grant No.2020YJRC014)。
文摘The aim of this study is to numerically investigate the impact of boundary slip on electroosmotic flow(EOF) in curved rectangular microchannels. Navier slip boundary conditions were employed at the curved microchannel walls. The electric potential distribution was governed by the Poisson–Boltzmann equation, whereas the velocity distribution was determined by the Navier–Stokes equation. The finite-difference method was employed to solve these two equations. The detailed discussion focuses on the impact of the curvature ratio, electrokinetic width, aspect ratio and slip length on the velocity. The results indicate that the present problem is strongly dependent on these parameters. The results demonstrate that by varying the dimensionless slip length from 0.001 to 0.01 while maintaining a curvature ratio of 0.5 there is a twofold increase in the maximum velocity. Moreover, this increase becomes more pronounced at higher curvature ratios. In addition, the velocity difference between the inner and outer radial regions increases with increasing slip length. Therefore, the incorporation of the slip boundary condition results in an augmented velocity and a more non-uniform velocity distribution. The findings presented here offer valuable insights into the design and optimization of EOF performance in curved hydrophobic microchannels featuring rectangular cross-sections.
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
基金supported by the National Natural Sci-ence Foundation of China(Nos.52201345,and 52001293)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘This study proposes a novel open-type rectangular breakwater combined with horizontal perforated plates on both sides to enhance the sheltering effect of the rectangular box-type breakwaters against longer waves.The hydrodynamic characteristics of this breakwater are analyzed through analytical potential solutions and experimental tests.The quadratic pressure drop conditions are exerted on the horizontal perforated plates to facilitate assessing the effect of wave height on the dissipated wave energy of breakwater through the analytical solution.The hydrodynamic quantities of the breakwater,including the reflection,transmission,and energyloss coefficients,together with vertical and horizontal wave forces,are calculated using the velocity potential decomposition method as well as an iterative algorithm.Furthermore,the reflection and transmission coefficients of the breakwater are measured by conducting experimental tests at various wave periods,wave heights,and both porosities and widths of the horizontal perforated plates.The analytical predicted results demonstrate good agreement with the iterative boundary element method solution and measured data.The influences of variable incident waves and structure parameters on the hydrodynamic characteristics of the breakwater are investigated through further calculations based on analytical solutions.Results indicate that horizontal perforated plates placed on the water surface for both sides of the rectangular breakwater can enhance the wave dissipation ability of the breakwater while effectively decreasing the transmission and reflection coefficients.
基金the National Natural Science Foundation of China(No.51878407)。
文摘The dynamic control equation of a new prestressed partially concrete-filled rectangular steel tube(CFRT)beam can be derived based on D’Alembert’s principle.It is used to infer the theoretical results of the dynamic characteristics for the prestressed CFRT beam.Additionally,the finite element model is set up by ABAQUS for simulation analysis.The results show that the natural vibration frequencies and mode function of the prestressed CFRT simply supported beam calculated by the theoretical formulas are reliable since the relative errors of the first-order frequencies under different prestressing levels are within 6%compared with the finite element results.Further analysis of the prestressing parameters is carried out using the theoretical formulas,in which factors such as the prestressing level,eccentricity of tendons,and tensile stiffness of prestressed tendons have different influences on the natural vibration frequencies.Finally,it provides a theoretical basis for the dynamic design of the prestressed CFRT beams.
文摘The effect of porosity on surface wave scattering by a vertical porous barrier over a rectangular trench is studied here under the assumption of linearized theory of water waves.The fluid region is divided into four subregions depending on the position of the barrier and the trench.Using the Havelock’s expansion of water wave potential in different regions along with suitable matching conditions at the interface of different regions,the problem is formulated in terms of three integral equations.Considering the edge conditions at the submerged end of the barrier and at the edges of the trench,these integral equations are solved using multi-term Galerkin approximation technique taking orthogonal Chebyshev’s polynomials and ultra-spherical Gegenbauer polynomial as its basis function and also simple polynomial as basis function.Using the solutions of the integral equations,the reflection coefficient,transmission coefficient,energy dissipation coefficient and horizontal wave force are determined and depicted graphically.It was observed that the rate of convergence of the Galerkin method in computing the reflection coefficient,considering special functions as basis function is more than the simple polynomial as basis function.The change of porous parameter of the barrier and variation of trench width and height significantly contribute to the change in the scattering coefficients and the hydrodynamic force.The present results are likely to play a crucial role in the analysis of surface wave propagation in oceans involving porous barrier over submarine trench.
基金supported by the Thailand Science Research and Innovation Fundamental Fund fiscal year 2023The fifth author (V.Kamchoom)acknowledges the financial support from the National Science,Research and Innovation Fund (NSRF)at King Mongkut's Institute of Technology Ladkrabang (KMITL),Thailand (Grant No.FRB66065/0258-RE-KRIS/FF66/53)+1 种基金the Climate Change and Climate Variability Research in Monsoon Asia (CMON3)from the National Research Council of Thailand (NRCT) (Grant No.N10A650844)the National Natural Science Foundation of China (NSFC).
文摘Tunnel heading stability in two dimensions(2D)has been extensively investigated by numerous scholars in the past decade.One significant limitation of 2D analysis is the absence of actual tunnel geometry modeling with a considerable degree of idealization.Nevertheless,it is possible to study the stability of tunnels in three dimensions(3D)with a rectangular shape using finite element limit analysis(FELA)and a nonlinear programming technique.This paper employs 3D FELA to generate rigorous solutions for stability numbers,failure mechanisms,and safety factors for rectangular-shaped tunnels.To further explore the usefulness of the produced results,multivariate adaptive regression spline(MARS)is used for machine learning of big dataset and development of design equations for practical design applications.The study should be of great benefit to tunnel design practices using the developed equations provided in the paper.
文摘The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...
基金Project (50975235) supported by the National Natural Science Foundation of ChinaProject (B08040) supported by the 111 Project
文摘In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.
基金Supprorted by the Science and Technology Foundation of Jiangsu Construction Committee(JS200214)the Science Research Foundation of Nanjing Institute of Technology(KXJ08122)~~
文摘Experimental results of new type joints between the column and the. steel beam of concrete-filled rectangular steel tubular (CFRT) under reversed cyclic loads are presented. The earthquake resistant capacity of the joint is influenced by infilled concrete, stiffener length and relative dimensions of column and beam. It is found that the hysteresis curves obtained in the experiment are full and the joints have a good energy dissipation capacity. The nonlinear finite element models are also used to analyze the hysteresis behavior of the joints under reversed cyclic loads using ANSYS 8.0. The influences of the stiffener length and the infilled concrete are analyzed. Analytical results show that the stiffener length and the infilled concrete are critical for the joints. Furthermore, the skeleton curves of the finite element models are in good agreement with those of experiments.
文摘In integrated circuits, the defects associated with photolithography are assumed to be in the shape of circular discs in order to perform the estimation of yield and fault analysis. However,real defects exhibit a great variety of shapes. In this paper,a novel yield model is presented and the critical area model of short circuit is correspondingly provided. In comparison with the circular model corrently available, the new model takes the similarity shape to an original defect, the two-dimensional distributional characteristic of defects, the feature of a layout routing and the character of yield estimation into account. As for the aspect of prediction of yield, the experimental results show that the new model may predict the yield caused by real defects more accurately than the circular model does. It is significant that the yield is accurately estimated and improved using the proposed model.
文摘An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,free surface and solid boundary in this paper.The characteristics of waves propagating over a step have been investigated by this numerical model.The breaker wave height is determined depending on the kinetic criterion.The numerical model is verified by laboratory experiments,and the empirical formula for the damping of wave height due to breaking is also given by experiments.