期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
VIBRATIONS OF STEPPED RECTANGULAR THIN PLATES ON WINKLER’S FOUNDATION
1
作者 张英世 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第5期106-116,共11页
Differential equations of free/forc ed vibrations of stepped rectangular thin plates on Winkler's foundation are estab lished by using singular functions, and their general solutions are also solved for expressi... Differential equations of free/forc ed vibrations of stepped rectangular thin plates on Winkler's foundation are estab lished by using singular functions, and their general solutions are also solved for expression of vibration mode function and frequency equations on usual suppo rts derived with W operator, as well as forced responses of such plates unde r different_type loads disc ussed with Fourier expansion of generalized functions. 展开更多
关键词 Winkler's foundation stepped rectan gular thin plate free vibration forced response
在线阅读 下载PDF
有限元/间接边界元法求解浸水板振动特性 被引量:5
2
作者 刘城 洪明 刘晓冰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2014年第4期395-400,431,共7页
针对浸水板结构振动,考虑流体可压缩特性,利用间接边界元法计算附加质量矩阵,包含计算中奇异边界单元的处理。结合结构有限元法求解无限域浸水板的振动特性,通过编制的相应计算机程序,对浸水悬臂矩形平板进行了流体间接边界元与结构有... 针对浸水板结构振动,考虑流体可压缩特性,利用间接边界元法计算附加质量矩阵,包含计算中奇异边界单元的处理。结合结构有限元法求解无限域浸水板的振动特性,通过编制的相应计算机程序,对浸水悬臂矩形平板进行了流体间接边界元与结构有限元耦合数值模拟;并对水下自由板进行了模态识别实验,实验结果验证了数值计算结果的可靠性。典型算例表明了流体介质改变了结构的动力特性,在低频段流体的可压缩性对结构的动力特性影响甚微;推导的流固耦合数值方法对研究浸水结构动力和声辐射研究有很好的参考价值。 展开更多
关键词 有限元法 间接边界元法 浸水板 附加质量矩阵 矩形平板 固有频率 流体可压缩性 模态识别
在线阅读 下载PDF
扫描式数据采集测头半径的三维智能计算补偿
3
作者 张伟 陈颖 《机械设计与研究》 CSCD 北大核心 2012年第4期73-78,共6页
探讨了基于扩展的自组织特征映射神经网络的扫描式密集数据采集的测头半径三维补偿。构建了测头半径三维补偿神经网络模型及其训练算法。首先经过训练,神经网络将整个数字化点群数据分成许多子区域,每个子区域用一个微切平面逼近;然后... 探讨了基于扩展的自组织特征映射神经网络的扫描式密集数据采集的测头半径三维补偿。构建了测头半径三维补偿神经网络模型及其训练算法。首先经过训练,神经网络将整个数字化点群数据分成许多子区域,每个子区域用一个微切平面逼近;然后对子区域的分类核心,即神经元位置权重,沿微切平面法矢方向进行修正;最后根据微切平面的法线,对测头半径进行三维补偿。算例表明所创建的测头半径三维补偿神经网络模型有效可行。 展开更多
关键词 三坐标测量机 测头半径补偿 神经网络 微切平面 矩形网格 密集散乱数据
原文传递
多应力区光纤应力各向异性研究
4
作者 黄刘军 季敏宁 《激光杂志》 北大核心 2017年第4期17-20,共4页
研究多应力区光纤的应力各向异性振荡特性。首先采用COMSOL Multiphysics软件中的固体力学模块,研究了三应力、四应力、五应力区光纤主应力差的振荡幅度。结果表明,对于呈周期性幅向分布的多应力区,应力区块越多,各向异性周期振荡幅度... 研究多应力区光纤的应力各向异性振荡特性。首先采用COMSOL Multiphysics软件中的固体力学模块,研究了三应力、四应力、五应力区光纤主应力差的振荡幅度。结果表明,对于呈周期性幅向分布的多应力区,应力区块越多,各向异性周期振荡幅度就越小-三应力区光纤的振荡幅度最大,各向异性程度最高,四应力区次之,五应力区则最小。最后对不同形状应力块的三应力区光纤进行了研究,得到了应力区块的条状程度越高,其主应力差的振荡幅度也越高的结论。这些结论对于提高手征光纤的特性具有重要的意义。 展开更多
关键词 多应力区光纤 各向异性振荡特性 主应力差 条状程度
原文传递
四阶强阻尼非线性波动方程的Hermite型矩形混合有限元分析 被引量:3
5
作者 毛凤梅 张厚超 《数学的实践与认识》 北大核心 2016年第2期262-269,共8页
讨论了四阶强阻尼非线性波动方程的Hermite型混合有限元方法,并证明了半离散格式下解的存在唯一性.基于该元积分恒等式结果,利用插值与Ritz投影之间的误差估计,可得到半离散格式下O(h^3)阶的超逼近性质,再借助于插值后处理技术导出整体... 讨论了四阶强阻尼非线性波动方程的Hermite型混合有限元方法,并证明了半离散格式下解的存在唯一性.基于该元积分恒等式结果,利用插值与Ritz投影之间的误差估计,可得到半离散格式下O(h^3)阶的超逼近性质,再借助于插值后处理技术导出整体超收敛.进而,通过构造一个新的金离散格式,得到了O(h^3+τ~2)的超逼近和超收敛结果. 展开更多
关键词 四阶强阻尼非线性波动方程 Hermite型矩形元 半离散和全离散格式
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部