The concepts of logically constrained overall systems and subsystems of recon-structability analysis are introduced. Then the paper gave an important basis for furtherresearches of the author-the sufficient conditions...The concepts of logically constrained overall systems and subsystems of recon-structability analysis are introduced. Then the paper gave an important basis for furtherresearches of the author-the sufficient conditions for their structural representation graphsto become Boolean lattices, and proved it.展开更多
The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of den...The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of dendritic solidification structures.Combining scanning electron microscopy and energy-dispersive scanning analysis and ANSYS simulation,the high-precision image processing software Mimics Research was utilized to conduct the extraction of dendritic morphologies.Reverse engineering software NX Imageware was employed for the 3D reconstruction of two-dimensional dendritic morphologies,restoring the dendritic characteristics in three-dimensional space.The results demonstrate that in a two-dimensional plane,dendrites connect with each other to form irregularly shaped“ring-like”structures.These dendrites have a thickness greater than 0.1 mm along the Z-axis direction,leading to the envelopment of molten steel by dendrites in a 3D space of at least 0.1 mm.This results in obstructed flow,confirming the“bridging”of dendrites in three-dimensional space,resulting in a tendency for central segregation.Dense and dispersed tiny dendrites,under the influence of heat flow direction,interconnect and continuously grow,gradually forming primary and secondary dendrites in three-dimensional space.After the completion of dendritic solidification and growth,these microdendrites appear dense and dispersed on the two-dimensional plane,providing the nuclei for the formation of new dendrites.When reduction occurs at a solid fraction of 0.46,there is a noticeable decrease in dendritic spacing,resulting in improved central segregation.展开更多
Deep geological sequestration is widely recognized as a reliable method for nuclear waste management,with expanded applications in thermal energy storage and adiabatic compressed air energy storage systems.This study ...Deep geological sequestration is widely recognized as a reliable method for nuclear waste management,with expanded applications in thermal energy storage and adiabatic compressed air energy storage systems.This study evaluated the suitability of granite,basalt,and marble as reservoir rocks capable of withstanding extreme high-temperature and high-pressure conditions.Using a custom-designed triaxial testing apparatus for thermal-hydro-mechanical(THM)coupling,we subjected rock samples to temperatures ranging from 20℃to 800℃,triaxial stresses up to 25 MPa,and seepage pressures of 0.6 MPa.After THM treatment,the specimens were analyzed using a Real-Time Load-Synchronized Micro-Computed Tomography(MCT)Scanner under a triaxial stress of 25 MPa,allowing for high-resolution insights into pore and fissure responses.Our findings revealed distinct thermal stability profiles and microscopic parameter changes across three phasesdslow growth,slow decline,and rapid growthdwith critical temperature thresholds observed at 500℃for granite,600℃for basalt,and 300℃for marble.Basalt showed minimal porosity changes,increasing gradually from 3.83%at 20℃to 12.45%at 800℃,indicating high structural integrity and resilience under extreme THM conditions.Granite shows significant increases in porosity due to thermally induced microcracking,while marble rapidly deteriorated beyond 300℃due to carbonate decomposition.Consequently,basalt,with its minimal porosity variability,high thermal stability,and robust mechanical properties,emerges as an optimal candidate for nuclear waste repositories and other high-temperature geological engineering applications,offering enhanced reliability,structural stability,and long-term safety in such settings.展开更多
High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-co...High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.展开更多
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim...After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.展开更多
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Th...This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data reconstruction.The model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT Analysis.The model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample data.Reconstructed data is used to retain more semantic information to generate features.The model was applied to species in Southern California,USA,citing SWOT analysis data to train the model.Experiments show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development environments.The model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data domain.This study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.展开更多
Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has ...Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has been often correlated with the activity enhancement.Here,a systematic study on the roles of Fe substitution in activation of perovskite LaNiO_(3)is reported.The substituting Fe content influences both current change tendency and surface reconstruction degree.LaNi_(0.9)Fe_(0.1)O_(3)is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi_(1-x)Fe_(x)O_(3)(x=0.00,0.10,0.25,0.50,0.75,1.00)series.The reconstructed LaNi_(0.9)Fe_(0.1)O_(3)shows a higher intrinsic activity than most reported NiFe-based catalysts.Besides,density functional theory calculations reveal that Fe substitution can lower the O 2p level,which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability.Furthermore,it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree.The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction.This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation.展开更多
Structural reconstruction of electrocatalysts plays a pivotal role in catalytic performances for CO_(2)reduction reaction(CO_(2)RR),whereas the behavior is by far superficially understood.Here,we report that CO_(2)acc...Structural reconstruction of electrocatalysts plays a pivotal role in catalytic performances for CO_(2)reduction reaction(CO_(2)RR),whereas the behavior is by far superficially understood.Here,we report that CO_(2)accessibility results in a universal self-adaptive structural reconstruction from Cu_(2)O to Cu@CuxO composites,ending with feeding gas-dependent microstructures and catalytic performances.The CO_(2)-rich atmosphere favors reconstruction for CO_(2)RR,whereas the CO_(2)-deficient one prefers that for hydrogen evolution reaction.With the assistance of spectroscopic analysis and theoretical calculations,we uncover a CO_(2)-induced passivation behavior by identifying a reductionresistant but catalytic active Cu(I)-rich amorphous layer stabilized by*CO intermediates.Additionally,we find extra CO production is indispensable for the robust production of C2H4.An inverse correlation between durability and FECO/FEC2H4 is disclosed,suggesting that the selfstabilization process involving the absorption of*CO intermediates on Cu(I)sites is essential for durable electrolysis.Guided by this insight,we design hollow Cu_(2)O nanospheres for durable and selective CO_(2)RR electrolysis in producing C2H4.Our work recognizes the previously overlooked passivation reconstruction and self-stabilizing behavior and highlights the critical role of the local atmosphere in modulating reconstruction and catalytic processes.展开更多
The surgical approach for patellar instability usually refers to reconstruction of the medial patellofemoral ligament associated with an osteotomy of the tibial tuberosity or a trochleoplasty when required.The medial ...The surgical approach for patellar instability usually refers to reconstruction of the medial patellofemoral ligament associated with an osteotomy of the tibial tuberosity or a trochleoplasty when required.The medial patellotibial ligament and the medial patellomeniscal ligament are secondary stabilizers of the patella.Despite this,both the medial patellotibial and patellofemoral ligaments aid in patellar rotation and tilt when the knee is flexed beyond 45°.The medial patellotibial ligament plays a particularly important role in the final stages of stretching in extension and between 40 degrees to 90 degrees of flexion.The clinical relevance and surgical indications for medial patellotibial ligament reconstruction associated with medial patellofemoral ligament reconstruction are still controversial.This editorial explores the surgical indications and clinical results for medial patellotibial ligament reconstruction to improve readers’understanding of this technique,especially because reported clinical outcomes have remained sparse.展开更多
Monsoon has an important impact on the development of vegetation that subsequently has significant influence on the evolution of plant consumers.The diversities of forest dwellers or herbivores follow the evolution of...Monsoon has an important impact on the development of vegetation that subsequently has significant influence on the evolution of plant consumers.The diversities of forest dwellers or herbivores follow the evolution of the vegetation,and it is therefore possible to take such diversities as forest or vegetation dynamic proxies.The present work selected 36 Pleistocene faunas of large mammals from monsoon-dominated provinces in China as materials and calculated the diversities of forest dwellers and herbivores with different approaches,as well as the consensus gradient coefficients of all the selected faunas in different flora regionalized subkingdoms.The results show that with the evolution and transitions of the East Asian summer and winter monsoon intensities,the forest vitality decreased while steppe vitality increased gradually in a fluctuated way from the Early Pleistocene to the Late Pleistocene,especially in the provinces north of the Qinling-Huaihe Line.The analyses of such diversities of the faunas can help to determine the forest dynamic proxies.Moreover,the correlation of such proxies to loess-paleosol sequences and marine isotope stages can in turn help to improve the accuracy of dating fauna ages and paleoenvironment reconstruction.展开更多
The conversion of urea-containing wastewater into clean hydrogen energy has gained increasing attention.However,challenges remain,particularly with sluggish catalytic kinetics and limited long-term stability of urea o...The conversion of urea-containing wastewater into clean hydrogen energy has gained increasing attention.However,challenges remain,particularly with sluggish catalytic kinetics and limited long-term stability of urea oxidation reaction(UOR).Herein,we report the loosely porous CoOOH nano-architecture(CoOOH LPNAs)with hydrophilic surface and abundant oxygen vacancies(Ov)on carbon fiber paper(CFP)by electrochemical reconstruction of the CoP nanoneedles precursor.The resulting three-dimensional electrode exhibited an impressively low potential of 1.38 V at 1000 mA·cm^(−2) and excellent durability for UOR.Furthermore,when tested in an anion exchange membrane(AEM)electrolyzer,it required only 1.53 V at 1000 mA·cm^(−2) for industrial urea-assisted water splitting and operated stably for 100 h without degrada-tion.Experimental and theoretical investigations revealed that rich oxygen vacancies effectively modulate the electronic structure of the CoOOH while creating unique Co3-triangle sites with Co atoms close together.As a result,the adsorption and desorption processes of reactants and intermediates in UOR could be finely tuned,thereby significantly reducing ther-modynamic barriers.Additionally,the superhydrophilic self-supported nanoarray structure facilitated rapid gas bubble release,improving the overall efficiency of the reaction and preventing potential catalyst detachment caused by bubble accumulation,thereby improving both catalytic activity and stability at high current densities.展开更多
Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual...Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects.展开更多
This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low ...This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.展开更多
After a brief review of the basic notions the paper defines the G^L-structuresand their partial ordering. On this basis, the paper proves the necessary and sufficientconditions for G^L-structures to form bounded latti...After a brief review of the basic notions the paper defines the G^L-structuresand their partial ordering. On this basis, the paper proves the necessary and sufficientconditions for G^L-structures to form bounded lattices.展开更多
Transplantation of the left lateral section(LLS)of the liver is now an established practice for treating advanced diffuse and unresectable focal liver diseases in children,with variants of the LLS primarily used in in...Transplantation of the left lateral section(LLS)of the liver is now an established practice for treating advanced diffuse and unresectable focal liver diseases in children,with variants of the LLS primarily used in infants.However,the surgical challenge of matching the size of an adult donor's graft to the volume of a child's abdomen remains significant.This review explores historical developments,various approaches to measuring the required functional liver mass,and techniques to prevent complications associated with large-for-size grafts in infants.展开更多
Introduction:Distal ureteral obstruction has classically been managed by ureteroneocystostomy(UNC).The feasibility and success of robotic primary ureteroureterostomy(UU)for benign obstruction appears promising with se...Introduction:Distal ureteral obstruction has classically been managed by ureteroneocystostomy(UNC).The feasibility and success of robotic primary ureteroureterostomy(UU)for benign obstruction appears promising with several benefits over UNC but is poorly studied.Robotic repair offers superior visualization and precision,allowing for minimal ureteral dissection.Here we report on our experience and short-term outcomes.Materials and Methods:We identified patients who underwent robotic distal ureteroureterostomy for benign distal ureteral obstruction at our institution from 2020–2024.Etiology,stricture length,and post-operative outcomes were recorded.All patients had renal ultrasound(US),diuretic renography,or cross-sectional imaging within 6 months of repair.Results:Seven patients underwent distal UU from 2020–2024,with one case of bilateral repair for a total of 8 anastomoses.Iatrogenic injury from hysterectomy represented 5/8 injuries.The mean time between injury and repair was 3.5 months.All defects were 1–1.5 cm in length.At follow-up imaging,there was no evidence of obstruction in any patient with a median follow-up of 10 months,including diuretic renography in 5 of 7 patients.One patient had mild hydronephrosis on their initial renal US but with normal drainage on subsequent diuretic renography.All patients reported no flank pain at follow-up.Conclusions:Robotic UU is feasible for short,benign distal ureteral obstruction in carefully selected patients.Advantages over traditional UNC include a significantly shorter catheter time,no risk of vesicoureteral reflux,no effect on bladder capacity or function,and the ability to retain the native ureteral orifice.Continued research will elucidate the long-term efficacy of this approach.展开更多
This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D n...This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications.展开更多
ECharles Osterberg。Dr.Osterberg is a board-certified urologist with fellowship training in male genitourinary reconstruction.He moved to Austin(TX,USA)in 2016 to join the University of Texas-Dell Medical School as As...ECharles Osterberg。Dr.Osterberg is a board-certified urologist with fellowship training in male genitourinary reconstruction.He moved to Austin(TX,USA)in 2016 to join the University of Texas-Dell Medical School as Associate Professor of Surgery.Dr.Osterberg specializes in reconstructive urology,genitourinary trauma,prosthetics,and robotic surgery.After serving as the Chief of Urology at Dell-Seton Medical Center-the main teaching hospital for Dell Medical School for 7 years,Dr.Osterberg transitioned his practice to Urology Austin,an affiliate of Urology America.At his new practice,he and his team have performed hundreds of complex urologic reconstructions and urethral stricture surgeries.展开更多
ABOUT THE JOURNAL The Chinese Journal of Plastic and Reconstructive Surgery (CN10-1634/R6,ISSN 2096-6911 Quarterly) is an academic journal,which is headed by the National Health Commission of the People's Republic...ABOUT THE JOURNAL The Chinese Journal of Plastic and Reconstructive Surgery (CN10-1634/R6,ISSN 2096-6911 Quarterly) is an academic journal,which is headed by the National Health Commission of the People's Republic of China and recognized by the State Administration of Press,Publication,Radio,Film and Television of the People's Republic of China.It primarily focuses on surgical research.展开更多
Basal cell carcinoma(BCC)is the most prevalent form of skin cancer in the world,primarily affecting sun-exposed areas,including the periocular region.When BCC occurs near the eyes,surgical treatment becomes uniquely c...Basal cell carcinoma(BCC)is the most prevalent form of skin cancer in the world,primarily affecting sun-exposed areas,including the periocular region.When BCC occurs near the eyes,surgical treatment becomes uniquely complex.Excess excisions may cause detrimental effects to eyelid function and undesirable aesthetic outcomes.Conversely,adequate resection must occur to prevent further disease progression.Mohs micrographic surgery(MMS),a technique offering high remission rates,is often employed for periocular BCC.This method allows for precise cancer removal while preserving as much healthy tissue as possible,balancing the need for both effective treatment and aesthetic and functional preservation.Following Mohs surgery of periocular BCC,reconstruction methods vary and can be tailored based on the size of the resection and the functional requirements of the affected tissue.Amongst these methods,primary closure with and without secondary intentions,direct margin repair,local flap closure and advance flap,Tenzel flap,tarso-conjunctival flap,periocular skin grafting,and structural grafting are commonly utilized and each has its advantages and limitations.In the future,advancements in synthetic flaps and stabilizing glues in the periocular region may provide additional tools for post-Mohs reconstruction.However,these emerging techniques require further research to establish efficacy and safety,especially in more complex and sensitive regions like the periocular tissues.The primary purpose of this review is to provide a comprehensive analysis of periocular reconstructive techniques following Mohs surgery,comparing their efficacy,functional outcomes,and aesthetic considerations while addressing recent advancements such as synthetic flaps and stabilizing glues to guide clinical decision-making.展开更多
文摘The concepts of logically constrained overall systems and subsystems of recon-structability analysis are introduced. Then the paper gave an important basis for furtherresearches of the author-the sufficient conditions for their structural representation graphsto become Boolean lattices, and proved it.
基金supported by Open Foundation of the State Key Laboratory of Refractories and Metallurgy(No.G201711)the National Natural Science Foundation of China(Nos.52104317 and 51874001).
文摘The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of dendritic solidification structures.Combining scanning electron microscopy and energy-dispersive scanning analysis and ANSYS simulation,the high-precision image processing software Mimics Research was utilized to conduct the extraction of dendritic morphologies.Reverse engineering software NX Imageware was employed for the 3D reconstruction of two-dimensional dendritic morphologies,restoring the dendritic characteristics in three-dimensional space.The results demonstrate that in a two-dimensional plane,dendrites connect with each other to form irregularly shaped“ring-like”structures.These dendrites have a thickness greater than 0.1 mm along the Z-axis direction,leading to the envelopment of molten steel by dendrites in a 3D space of at least 0.1 mm.This results in obstructed flow,confirming the“bridging”of dendrites in three-dimensional space,resulting in a tendency for central segregation.Dense and dispersed tiny dendrites,under the influence of heat flow direction,interconnect and continuously grow,gradually forming primary and secondary dendrites in three-dimensional space.After the completion of dendritic solidification and growth,these microdendrites appear dense and dispersed on the two-dimensional plane,providing the nuclei for the formation of new dendrites.When reduction occurs at a solid fraction of 0.46,there is a noticeable decrease in dendritic spacing,resulting in improved central segregation.
基金financial supported by Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines(Grant No.DM2022B03)Youth Program of National Natural Science Foundation of China(Grant No.51904195)Scientific and Technological Innovation Programs of Higher Educations Institutions in Shanxi Province(Grant No.2022L608).
文摘Deep geological sequestration is widely recognized as a reliable method for nuclear waste management,with expanded applications in thermal energy storage and adiabatic compressed air energy storage systems.This study evaluated the suitability of granite,basalt,and marble as reservoir rocks capable of withstanding extreme high-temperature and high-pressure conditions.Using a custom-designed triaxial testing apparatus for thermal-hydro-mechanical(THM)coupling,we subjected rock samples to temperatures ranging from 20℃to 800℃,triaxial stresses up to 25 MPa,and seepage pressures of 0.6 MPa.After THM treatment,the specimens were analyzed using a Real-Time Load-Synchronized Micro-Computed Tomography(MCT)Scanner under a triaxial stress of 25 MPa,allowing for high-resolution insights into pore and fissure responses.Our findings revealed distinct thermal stability profiles and microscopic parameter changes across three phasesdslow growth,slow decline,and rapid growthdwith critical temperature thresholds observed at 500℃for granite,600℃for basalt,and 300℃for marble.Basalt showed minimal porosity changes,increasing gradually from 3.83%at 20℃to 12.45%at 800℃,indicating high structural integrity and resilience under extreme THM conditions.Granite shows significant increases in porosity due to thermally induced microcracking,while marble rapidly deteriorated beyond 300℃due to carbonate decomposition.Consequently,basalt,with its minimal porosity variability,high thermal stability,and robust mechanical properties,emerges as an optimal candidate for nuclear waste repositories and other high-temperature geological engineering applications,offering enhanced reliability,structural stability,and long-term safety in such settings.
基金financial support from the National Natural Science Foundation of China(Grant No.61971201)。
文摘High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.
基金supported by the National Key Research and Development Program of China,No.2023YFC3603705(to DX)the National Natural Science Foundation of China,No.82302866(to YZ).
文摘After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.
基金supported by the Fundamental Research Funds for the Liaoning Universities(LJ212410146025).
文摘This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data reconstruction.The model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT Analysis.The model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample data.Reconstructed data is used to retain more semantic information to generate features.The model was applied to species in Southern California,USA,citing SWOT analysis data to train the model.Experiments show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development environments.The model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data domain.This study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.
基金funded by the National Key R&D Program of China(2021YFA1501101)the National Natural Science Foundation of China(No.22471103,22425105,22201111,21931001,22221001,and 22271124)+5 种基金Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province(2019ZX-04)the 111 Project(B20027)as well as the National Natural Science Foundation of Gansu Province(22JR5RA470)the Fundamental Research Funds for the Central Universities(lzujbky-2023-eyt03)supported by the Agency for Science,Technology and Research(A*STAR)MTC Individual Research Grants(IRG)M22K2c0078.
文摘Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has been often correlated with the activity enhancement.Here,a systematic study on the roles of Fe substitution in activation of perovskite LaNiO_(3)is reported.The substituting Fe content influences both current change tendency and surface reconstruction degree.LaNi_(0.9)Fe_(0.1)O_(3)is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi_(1-x)Fe_(x)O_(3)(x=0.00,0.10,0.25,0.50,0.75,1.00)series.The reconstructed LaNi_(0.9)Fe_(0.1)O_(3)shows a higher intrinsic activity than most reported NiFe-based catalysts.Besides,density functional theory calculations reveal that Fe substitution can lower the O 2p level,which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability.Furthermore,it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree.The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction.This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation.
基金supported by the National Natural Science Foundation of China(Grant No.22479097)the Shanghai Science and Technology Committee(Grant No.23ZR1433000)the National High-Level Talent Program for Young Scholars,the Start-up Fund(F.S.)from Shanghai Jiao Tong University.
文摘Structural reconstruction of electrocatalysts plays a pivotal role in catalytic performances for CO_(2)reduction reaction(CO_(2)RR),whereas the behavior is by far superficially understood.Here,we report that CO_(2)accessibility results in a universal self-adaptive structural reconstruction from Cu_(2)O to Cu@CuxO composites,ending with feeding gas-dependent microstructures and catalytic performances.The CO_(2)-rich atmosphere favors reconstruction for CO_(2)RR,whereas the CO_(2)-deficient one prefers that for hydrogen evolution reaction.With the assistance of spectroscopic analysis and theoretical calculations,we uncover a CO_(2)-induced passivation behavior by identifying a reductionresistant but catalytic active Cu(I)-rich amorphous layer stabilized by*CO intermediates.Additionally,we find extra CO production is indispensable for the robust production of C2H4.An inverse correlation between durability and FECO/FEC2H4 is disclosed,suggesting that the selfstabilization process involving the absorption of*CO intermediates on Cu(I)sites is essential for durable electrolysis.Guided by this insight,we design hollow Cu_(2)O nanospheres for durable and selective CO_(2)RR electrolysis in producing C2H4.Our work recognizes the previously overlooked passivation reconstruction and self-stabilizing behavior and highlights the critical role of the local atmosphere in modulating reconstruction and catalytic processes.
文摘The surgical approach for patellar instability usually refers to reconstruction of the medial patellofemoral ligament associated with an osteotomy of the tibial tuberosity or a trochleoplasty when required.The medial patellotibial ligament and the medial patellomeniscal ligament are secondary stabilizers of the patella.Despite this,both the medial patellotibial and patellofemoral ligaments aid in patellar rotation and tilt when the knee is flexed beyond 45°.The medial patellotibial ligament plays a particularly important role in the final stages of stretching in extension and between 40 degrees to 90 degrees of flexion.The clinical relevance and surgical indications for medial patellotibial ligament reconstruction associated with medial patellofemoral ligament reconstruction are still controversial.This editorial explores the surgical indications and clinical results for medial patellotibial ligament reconstruction to improve readers’understanding of this technique,especially because reported clinical outcomes have remained sparse.
文摘Monsoon has an important impact on the development of vegetation that subsequently has significant influence on the evolution of plant consumers.The diversities of forest dwellers or herbivores follow the evolution of the vegetation,and it is therefore possible to take such diversities as forest or vegetation dynamic proxies.The present work selected 36 Pleistocene faunas of large mammals from monsoon-dominated provinces in China as materials and calculated the diversities of forest dwellers and herbivores with different approaches,as well as the consensus gradient coefficients of all the selected faunas in different flora regionalized subkingdoms.The results show that with the evolution and transitions of the East Asian summer and winter monsoon intensities,the forest vitality decreased while steppe vitality increased gradually in a fluctuated way from the Early Pleistocene to the Late Pleistocene,especially in the provinces north of the Qinling-Huaihe Line.The analyses of such diversities of the faunas can help to determine the forest dynamic proxies.Moreover,the correlation of such proxies to loess-paleosol sequences and marine isotope stages can in turn help to improve the accuracy of dating fauna ages and paleoenvironment reconstruction.
基金supported by the Applied Basic Research Program of Yunnan Province(202101BE070001-032)Yunnan Major Scientific and Technological Projects(No.202202AG050001).
文摘The conversion of urea-containing wastewater into clean hydrogen energy has gained increasing attention.However,challenges remain,particularly with sluggish catalytic kinetics and limited long-term stability of urea oxidation reaction(UOR).Herein,we report the loosely porous CoOOH nano-architecture(CoOOH LPNAs)with hydrophilic surface and abundant oxygen vacancies(Ov)on carbon fiber paper(CFP)by electrochemical reconstruction of the CoP nanoneedles precursor.The resulting three-dimensional electrode exhibited an impressively low potential of 1.38 V at 1000 mA·cm^(−2) and excellent durability for UOR.Furthermore,when tested in an anion exchange membrane(AEM)electrolyzer,it required only 1.53 V at 1000 mA·cm^(−2) for industrial urea-assisted water splitting and operated stably for 100 h without degrada-tion.Experimental and theoretical investigations revealed that rich oxygen vacancies effectively modulate the electronic structure of the CoOOH while creating unique Co3-triangle sites with Co atoms close together.As a result,the adsorption and desorption processes of reactants and intermediates in UOR could be finely tuned,thereby significantly reducing ther-modynamic barriers.Additionally,the superhydrophilic self-supported nanoarray structure facilitated rapid gas bubble release,improving the overall efficiency of the reaction and preventing potential catalyst detachment caused by bubble accumulation,thereby improving both catalytic activity and stability at high current densities.
文摘Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects.
基金Support by the Fundamental Research Funds for the Central Universities(2024300443)the National Natural Science Foundation of China(NSFC)Young Scientists Fund(62405131)。
文摘This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.
文摘After a brief review of the basic notions the paper defines the G^L-structuresand their partial ordering. On this basis, the paper proves the necessary and sufficientconditions for G^L-structures to form bounded lattices.
文摘Transplantation of the left lateral section(LLS)of the liver is now an established practice for treating advanced diffuse and unresectable focal liver diseases in children,with variants of the LLS primarily used in infants.However,the surgical challenge of matching the size of an adult donor's graft to the volume of a child's abdomen remains significant.This review explores historical developments,various approaches to measuring the required functional liver mass,and techniques to prevent complications associated with large-for-size grafts in infants.
文摘Introduction:Distal ureteral obstruction has classically been managed by ureteroneocystostomy(UNC).The feasibility and success of robotic primary ureteroureterostomy(UU)for benign obstruction appears promising with several benefits over UNC but is poorly studied.Robotic repair offers superior visualization and precision,allowing for minimal ureteral dissection.Here we report on our experience and short-term outcomes.Materials and Methods:We identified patients who underwent robotic distal ureteroureterostomy for benign distal ureteral obstruction at our institution from 2020–2024.Etiology,stricture length,and post-operative outcomes were recorded.All patients had renal ultrasound(US),diuretic renography,or cross-sectional imaging within 6 months of repair.Results:Seven patients underwent distal UU from 2020–2024,with one case of bilateral repair for a total of 8 anastomoses.Iatrogenic injury from hysterectomy represented 5/8 injuries.The mean time between injury and repair was 3.5 months.All defects were 1–1.5 cm in length.At follow-up imaging,there was no evidence of obstruction in any patient with a median follow-up of 10 months,including diuretic renography in 5 of 7 patients.One patient had mild hydronephrosis on their initial renal US but with normal drainage on subsequent diuretic renography.All patients reported no flank pain at follow-up.Conclusions:Robotic UU is feasible for short,benign distal ureteral obstruction in carefully selected patients.Advantages over traditional UNC include a significantly shorter catheter time,no risk of vesicoureteral reflux,no effect on bladder capacity or function,and the ability to retain the native ureteral orifice.Continued research will elucidate the long-term efficacy of this approach.
文摘This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications.
文摘ECharles Osterberg。Dr.Osterberg is a board-certified urologist with fellowship training in male genitourinary reconstruction.He moved to Austin(TX,USA)in 2016 to join the University of Texas-Dell Medical School as Associate Professor of Surgery.Dr.Osterberg specializes in reconstructive urology,genitourinary trauma,prosthetics,and robotic surgery.After serving as the Chief of Urology at Dell-Seton Medical Center-the main teaching hospital for Dell Medical School for 7 years,Dr.Osterberg transitioned his practice to Urology Austin,an affiliate of Urology America.At his new practice,he and his team have performed hundreds of complex urologic reconstructions and urethral stricture surgeries.
文摘ABOUT THE JOURNAL The Chinese Journal of Plastic and Reconstructive Surgery (CN10-1634/R6,ISSN 2096-6911 Quarterly) is an academic journal,which is headed by the National Health Commission of the People's Republic of China and recognized by the State Administration of Press,Publication,Radio,Film and Television of the People's Republic of China.It primarily focuses on surgical research.
文摘Basal cell carcinoma(BCC)is the most prevalent form of skin cancer in the world,primarily affecting sun-exposed areas,including the periocular region.When BCC occurs near the eyes,surgical treatment becomes uniquely complex.Excess excisions may cause detrimental effects to eyelid function and undesirable aesthetic outcomes.Conversely,adequate resection must occur to prevent further disease progression.Mohs micrographic surgery(MMS),a technique offering high remission rates,is often employed for periocular BCC.This method allows for precise cancer removal while preserving as much healthy tissue as possible,balancing the need for both effective treatment and aesthetic and functional preservation.Following Mohs surgery of periocular BCC,reconstruction methods vary and can be tailored based on the size of the resection and the functional requirements of the affected tissue.Amongst these methods,primary closure with and without secondary intentions,direct margin repair,local flap closure and advance flap,Tenzel flap,tarso-conjunctival flap,periocular skin grafting,and structural grafting are commonly utilized and each has its advantages and limitations.In the future,advancements in synthetic flaps and stabilizing glues in the periocular region may provide additional tools for post-Mohs reconstruction.However,these emerging techniques require further research to establish efficacy and safety,especially in more complex and sensitive regions like the periocular tissues.The primary purpose of this review is to provide a comprehensive analysis of periocular reconstructive techniques following Mohs surgery,comparing their efficacy,functional outcomes,and aesthetic considerations while addressing recent advancements such as synthetic flaps and stabilizing glues to guide clinical decision-making.